
A logic for robotics?
Alexandre Madeira∗, Renato Neves∗, Manuel A. Martins† and Luís S. Barbosa∗

∗HASLab - INESC TEC & Universidade do Minho
†CIDMA, Dep. of Mathematics, Universidade de Aveiro

Abstract. Dynamic logic combines logic with programs, which at a certain level of abstraction, can be regarded as behaviours
changing the system state and, therefore, the truth value of formulas. This paper suggests a method for generating such logics
for the domain of robot controllers and illustrates it with a logic for handling resource consumption.

Keywords: Logic in Computer Science, Dynamic logic; Robotics
PACS: 03B70

Motivation

One of the main challenges in robotics is the generation of controllers for autonomous, high-level robot behaviors
comprising non-trivial sequences of actions. The standpoint of this paper is that these can be specified, and verified, in
the classical framework of dynamic logic [4, 1], provided such logics are generated over a notion of program suitable
to capture the sort of behaviours, or behavioural views, relevant for the robotics domain.

Dynamic logic has been used very successfully for conventional discrete programs defined by a (Kleene) algebra of
“execution statements". On the other side of the spectrum, they are also used to reasoning about hybrid, or cyber-
physical systems by considering an algebra of actions based on real numbers assignments, the standard Kleene
operators and differential equations to specify continuous transitions from the “real" (physical) world (see, e.g., [3],
where also probabilistic extensions are considered).

This paper sketches an approach to the specification of controllers for robotic engines based on a double use of
(suitably generated) dynamic logics: one to deal with elementary programs or methods; another to reason about
complex behaviours in robot missions. For illustration purposes, we focus on a very simple logic able to take care
of resource management. Energy, for example, is a critical resource for deep sea robotics. In particular, the behaviour
of a controller for this sort of robots deeply depends on the management of their energy resources. In this logic,
M |=w

r ρ means that a model M can satisfy requirement ρ consuming at most r resources units.

A dynamic logic for resource management

We start from the observation that a controller for a robotic engine can be modelled by a state space and a number of
methods defined upon it. The former captures possible robot configurations which may be related, for example, to its
physical location or to a combination of context variables as measured by its sensors. In the example below, two such
states are considered: deep and base, to distinguish between a robot staying underwater or docked. Methods, on the
other hand, exhibit behaviour specified by a transition structure. An arrow between two states represents a possible
transition labelled by an expression. The latter may be a single action, often annotated with some sort of weight (e.g.,
a cost, a probability, or even a condition on a continuous variable). But it may also be an expression on such actions or
weights. Consider the method read in the example below. Its behaviour is given by a square matrix whose values are
regarded, for illustration purposes, as operation costs. The first entry specifies that the cost of performing this method
while remaining underwater is a∪a′, i.e., a choice between two values a and a′ (depending, for example, on contextual
conditions abstracted here). On the other hand, performing read when docked is for free (entry (2,2) marked as 0).
Finally, annotation ⊥ on the other two entries means that no data is gathered when the robot moves from one location
to the other.

Modelling complex behaviours entails the need for reasoning at two levels: locally to a method, in order to combine
local annotations, and globally to combine methods. In the tradition of dynamic logics, both local annotations and
methods are composed through the operations of a Kleene algebra, which is the prototypical way of combining



programs irrespectively of the different ways they can be defined. Technically, this is made possible by the well-
known result that Kleene algebras are closed under the formation of matrices. Actually, we resort to action lattices [2]
— an extension of Kleene algebras with a residuated lattice structure, which has the advantage of being equationally
axiomatised and, consequently, a variety. This smooths formal reasoning but is relatively irrelevant for the introduction
this paper aims at. Moreover, this lattice structure supports the truth space for a graded satisfaction.

On top of this two-staged model we define a specific dynamic logic. This is illustrated in the sequel through an
example focused on resource consumption. Although the example is small enough to fit in the paper, the topic, related
to energy saving, is a main concern in real-world submarine robotics.

Syntax. Signatures for a resource dynamic logic consists of pairs τ = (Prop,Π) of sets of propositions and atomic
methods, respectively. In this running example we take, as explained above, τ =

(
{deep,base},{down,up,read}

)
where propositions deep and base denote the location states and symbols up,down and read, the methods for
immersing, emerging and data gathering, respectively.

The set Fm(τ) of formulas for a signature τ = (Prop,Π), is given by the following grammar:

ρ 3 p |ρ�ρ | 〈π〉ρ | [π]ρ (1)

π 3 π0 |π;π |π ∪π |π∗ (2)

where p ∈ Prop, � ∈ {∧,∨,→} and π0 ∈Π. Terms defined by the grammar (2) are called Π-programs.

Models. To handle resources a specific action lattice ([N],max,+,⊥,0,∗,−⊥,−⊥,min), known as the Floyd-Warshall
algebra, is used. Its carrier is the set [N] = N∪{⊥,>}. This means that non-deterministic choice is taken as the max
function (applied to the relevant resources); composition (whenever defined) adds consumptions

a+b =


a+b, if a,b 6∈ {⊥,>}
⊥, if a or b equals to ⊥
>, otherwise

and the Kleene closure a∗ =

{
>, if a ∈ N\{0}∪{>}
0, if a ∈ {⊥,0}

represents the arbitrary repetition of a consume cost.

Elements ⊥ and 0 are the absorvent and the neutral elements for + and max, respectively. Informally, ⊥ and >
represent undefined and infinite amount of resources, respectively. Finally, both left and right residuals are defined as

truncated subtraction a−⊥ b =

{
a−b, if b≤ a
0, otherwise

and, the meet lattice operation as the min function.

The behaviour of methods is encoded in n×n-matrices, for n the cardinal of the state space, over this action lattice.
Therefore, models for a signature τ = (Prop,Π), consists of triples M = (W,V,MΠ) where W is the set of states, with
cardinal n, V : Prop→P(W ) is a valuation, and MΠ =

(
Mπ ∈ Mn([N])

)
π∈Π

the set of interpretations of methods
available at the controller.

In our example, M =
(
{sdeep,sbase},V,MΠ

)
, where valuation V is defined by V (deep) = {sdeep} and V (base) =

{sbase}. Methods (or atomic controller programs) MΠ consist of the following matrices:

Mread =

[
a∪a′ ⊥
⊥ 0

]
Mup =

[
⊥ b
⊥ ⊥

]
Mdown =

[
⊥ ⊥
c ⊥

]

ONMLHIJKsdeep

a∪a′

�� ONMLHIJKsbase

0

�� ONMLHIJKsdeep
b // ONMLHIJKsbase ONMLHIJKsdeep ONMLHIJKsbase

coo

for a,a′,b,c 6=⊥. Note that a∪a′ stands for max{a,a′}, the interpretation of the regular expression in the action lattice
of base.

Interpretation of global behaviours. The interpretation of a Π-behaviour π in M, denoted by Mπ , is recursively
defined from the methods in MΠ, taken as the atomic behaviours, as follows

• Mπ;π ′ = Mπ ⊕Mπ ′ = M, where Mi, j = max{(Mπ)i,k +(Mπ ′)k, j|k ≤ n};
• Mπ∪π ′ = M where Mi, j = max{(Mπ)i, j,(Mπ ′)i, j}, i.e., for any i, j ≤ n;



• Mπ∗ = (Mπ)
*, where (Mπ)

* is defined recursively by partitioning M in

[
A B

C D

]
for A and D square matrices,

and taking M* =

[
F* F* ⊕ B ⊕ D∗

C max{D*,D* ⊕C ⊕ F* ⊕ B ⊕ D*}

]
with F = max{A,B ⊕ D* ⊕C}. In the base case,

i.e. when the partitions are 1×1 matrices, we take a∗ =

{
>, if a ∈ N
0, if a ∈ {⊥,0,>}

.

These global behaviours are exactly the programs running on the robot controller. To illustrate this construction
consider a program controlling a data gathered mission. Informally, the robot makes an undetermined number of
checks to the sensors; then it dives in the sea, collects data and returns to the dock state. Thus,

Mread∗;down;read;up

= { programs interpretation defn}
Mread∗ ⊕Mdown⊕Mread⊕Mup

= { programs interpretation defn}[
a∪a′ ⊥
⊥ 0

]∗
⊕
[
⊥ ⊥
c ⊥

]
⊕
[

a∪a′ ⊥
⊥ 0

]
⊕
[
⊥ b
⊥ ⊥

]
= { defn of ∗}[

f ∗ f ∗+⊥+0∗

⊥ max{0∗,0∗+⊥+ f ∗+⊥+0∗}

]
⊕
[
⊥ ⊥
c ⊥

]
⊕
[

a∪a′ ⊥
⊥ 0

]
⊕
[
⊥ b
⊥ ⊥

]
= { defn of ⊕}[

max{>+⊥,⊥+ c} max{>+⊥,⊥+⊥}
max{⊥+⊥,0+ c} max{⊥+⊥,0+⊥}

]
⊕
[

a∪a′ ⊥
⊥ 0

]
⊕
[
⊥ b
⊥ ⊥

]
= { defn of ⊕}[

max{⊥+(a∪a′),⊥+⊥} max{⊥+⊥,⊥+0}
max{c+(a∪a′),⊥+⊥} max{c+⊥,⊥+0}

]
⊕
[
⊥ b
⊥ ⊥

]
= { defn of ⊕}[

⊥ ⊥
c+(a∪a′) ⊥

]
⊕
[
⊥ b
⊥ ⊥

]
=

[
⊥ ⊥
⊥ (a∪a′)+ c+b

]
where f = max{a∪a′,⊥+⊥+0∗}= a∪a′. Note that, as expected, the unique transition captured by this behaviour
goes from sbase to sbase (all the others are marked with ⊥), and it consumes max{(a∪a′)+c+b} resource units on its
completion.

As in any other dynamic logic, behaviours are first class citizens in formulas expressing operational requirements
over controllers. Therefore, the satisfaction relation for formulas is presented as follows;

Satisfaction. Let M = (W,V,MΠ) be a model for a signature τ = (Prop,Π). The graded satisfaction relation in M
consists of a function

|= : W ×Fm(τ)→ [N]

defined as follows:

• for any p ∈ Prop,
(
w |= ρ

)
=

{
0, if w ∈V (p)
⊥, otherwise

•
(
w |= ρ ∧ρ ′

)
= min

{
w |= ρ , w |= ρ ′

}
•
(
w |= ρ ∨ρ ′

)
= max

{
w |= ρ , w |= ρ ′

}
•
(
w |= ρ → ρ ′

)
=

{(
w |= ρ ′

)
−
(
w |= ρ

)
if
(
w |= ρ ′

)
≥
(
w |= ρ

)
0 otherwise



•
(
w |= 〈π〉ρ

)
= maxw′∈W

{
Mπ(w,w′)+w′ |= ρ

}
•
(
w |= [π]ρ

)
= minw′∈W

{
Mπ(w,w′)+w′ |= ρ

}
Thus, satisfaction is defined by

w |=r ρ iff
(
w |= ρ

)
≤ r

We have now all ingredients to express and check properties about behaviours. Back to the example we are able to
check for which battery costs one may safely gather data at deep sea:

sbase |=r 〈read∗;down;read;up〉base
≡ { defn |=r}(

sbase |= 〈read∗;down;read;up〉base
)
≤ r

≡ { defn |=}(
max

{
Mread∗;down;read;up(sbase,w′)+

(
w′ |= base

)∣∣w′ ∈W
})
≤ r

≡ { since (w |= base) =⊥ for any w 6= sbase}(
max{Mread∗;down;read;up(sbase,sbase)+

(
sbase |= base

)
}
)
≤ r

≡ { by programs interpretation defn.}(
max{(a∪a′)+ c+b,>}

)
≤ r

≡ { since (a∪a′)+ c+b≤>}

(a∪a′)+ c+b≤ r
≡ { choice in the action lattice [N]}

max{a+ c+b,a′+ c+b} ≤ r

Therefore, we conclude that the implementation of this behaviour is successful whenever the level r of robot autonomy
is greater than max{a+ c+b,a′+ c+b} units.

Concluding

The method illustrated above can be instantiated in different engineering contexts, i.e., for distinct interpretations
of local and global behaviours of robot engines. In each case, however, a standard dynamic logic is generated
indeed. The interested reader may want to check some of its axioms; for example, it is no difficult task to proof
that 〈π;π ′〉ρ = 〈π〉〈π ′〉ρ still holds for the resource management logic discussed here.

Acknowledgements. This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme
(Operational Programme for Competitiveness) and by National Funds through FCT, the Portuguese Foundation for Science and
Technology, within projects FCOMP-01-0124-FEDER-028923, project PEst-OE/MAT/UI4106/2014; and by project NORTE-07-
0124-FEDER-000060, co-financed by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the
National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

REFERENCES

1. Dexter Kozen David Harel and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
2. Dexter Kozen. On action algebras. manuscript in: Logic and Flow of Information, Amsterdam, 1991.
3. André Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer, 2010.
4. Vaughan R. Pratt. Semantical considerations on floyd-hoare logic. In FOCS, pages 109–121. IEEE Computer Society, 1976.


