
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 



Framework for the Participation of EV Aggregators in 

the Electricity Market

R.J. Bessa, M.A. Matos, F.J. Soares 

Center for Power and Energy Systems 

INESC TEC 

Porto, Portugal 

ricardo.j.bessa@inesctec.pt; mam@fe.up.pt; filipe.j.soares@inesctec.pt 

Abstract—The Electric Vehicle (EV) is one source of 

flexibility to the electric power system. When aggregated by a 

market agent, it can offer its flexibility in the balancing reserve 

market. In order to meet this goal, a framework of optimization 

and forecasting algorithms must designed to cover the different 

time horizons of the decision process. This paper describes a full 

framework for EV aggregators participating in different 

electricity market sessions. This framework is illustrated for the 

balancing reserve market and the impact of forecasts of different 

quality for the balancing reserve direction is evaluated. The test 

case consists in synthetic time series generated from real data for 

3000 EV participating in the Iberian electricity market.
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I. INTRODUCTION

In the European Union (EU), the GHG emissions from the 
transport sector increased around 36% since 1990, which 
degraded the environmental quality [1]. This sector, because of 
its oil-dependency, is responsible for around a quarter of EU 
GHG emissions, and the road transport represents about one-
fifth of the EU’s CO2 total emissions [2]. Moreover, concerns 
such as the dependency on oil supply and a foreseen ``end of 
cheap oil’’ during this century have motivated a wide range of 
policy and technological measures for the transport sector. 

The electric vehicle (EV) is one element that helps to 
decarbonize the transport sector and decrease oil-dependency 
[3]. There are three main types of EV: battery, hybrid and fuel 
cell. This paper only covers the battery EV type.  

The deployment of EV technology establishes a connection 
between the transport and electric power sectors. In fact, this 
EV deployment can contribute to a sustainable development of 
the electric power system, but their positive effect depends on 
two aspects: (a) the impact on GHG emissions varies with 
several factors, such as the power system generation portfolio, 
season of the year and geographical location of EV charging; 
(b) the EV charging strategy, in particular whether it is 
controllable or not, impacts the power system operation. 

The second aspect, and which is related to this paper, is 
that, even in countries with a high penetration of renewable 
energy sources, if the EV are charged during peak hours, peak 
power units with intensive GHG emissions are likely to be 

dispatched, which undermines the benefits from EV. This is 
likely to happen if the EV charging is uncontrollable, e.g. the 
EV starts charging when the drivers plug-in at home after 
returning from work. This uncontrollable charging can create 
technical problems in the distribution network [4] (e.g., 
branches congestion and voltage limits violation). 

Therefore, in order to take full advantage of the EV benefits 
to the system and avoid technical problems, it is essential to 
directly control and coordinate the charging process of each 
EV. Moreover, direct control also enables the provision of 
ancillary services (e.g., reserves) from the EV [5]. 

The backbone that enables EV charging control is a smart 
grid infrastructure, which provides additional capabilities for 
the observability and controllability of the distribution network 
level, and is strongly supported by the Information and 
Communications Technology (ICT) and the Advanced 
Metering Infrastructure (AMI). This enables new features, such 
as a two-way connection infrastructure, which creates 
conditions for demand management.  

The massive deployment of the EV and necessary 
interaction with the power system operators can be supported 
by an agent (called aggregator) responsible for aggregating EV 
and managing their charging process within the smart grid 
paradigm [6]. From the system operators’ viewpoint, the EV 
aggregator is part of a hierarchical control architecture and 
coordinates the EV charging in response to the system 
operators’ signals, which decreases their communication 
requirements [7]. From the EV owners’ viewpoint, the 
aggregator uses their available flexibility to purchase electrical 
energy at low price and sells ancillary services in the electricity 
markets, which ultimately lead to a retailing tariff reduction. 

Related to this context and considering the potential 
benefits from EV aggregators for the power system, this paper 
aims to contribute with a framework that includes the 
necessary interdisciplinary computational models (from 
operations research, statistics, data mining, etc.) for each 
market session. 

Within this framework, the participation in the balancing 
reserve market is addressed. More specifically, the impact of 
incorrect reserve direction forecasts provided by different 
algorithms will be studied in terms of reserve not supplied and 
total cost for the aggregator. 
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This balancing reserve topic covers an unexplored area in 
the current literature, since most of the optimization techniques 
either assume perfect forecast (e.g., [8][9]) or neglect the 
impact of having reserve not activated as foreseen (e.g., 
[10][11]). Furthermore, it departs from the forecasting 
techniques for EV variables described in [12] and the 
optimization problem for balancing (or manual) reserve 
described in [13]. 

This paper is organized as follows: section II describes a 
general framework for EV participation in the electricity 
market; section III presents the day-ahead and operational 
management algorithms; section IV presents the test-case 
results; finally, section V presents the conclusions. 

II. FRAMEWORK FOR EV PARTICIPATION IN THE ELECTRICITY 

MARKET

A. General Architecture 

The architecture adopted in this paper consists of a 
hierarchical direct control, illustrated in Fig. 1 and described in 
the following paragraphs. 

…

Flexible EV Load 

EV 

Aggregator

…

Inflexible EV load

DSO

Ancillary 

Services 

Market

Energy

Market

Electricity Market

TSO

Bidirectional communication

Unidirectional communication

Selling bid

Bids validation

Buying bid

Fig. 1. EV aggregator architecture. 

The owners of plug-in EV, seeking the lowest electricity 
tariff, establish a contract with an aggregator. The aggregator is 
an electricity retailer and represents the EV drivers in the 
electricity market. The retailing activity is only for electrical 
mobility, which allows separate pricing of electricity for this 
purpose and the inclusion of taxes from the government. 

Two different groups of clients are foreseen for the EV 
aggregator: 

• inflexible EV load: a client who does not allow the 
aggregator to control the charging process. For this 
client, the aggregator is only an electricity provider; 

• flexible EV load: a client who allows the aggregator to 
control the charging process (bidirectional 
communication), which means that its requirements 
(i.e., final SoC and departure time instant) must be 
satisfied, but presents a degree of freedom regarding 
when this load can be supplied.    

The aggregator can present the following bids in the 
electricity market: 

• buying bid in the energy market: the aggregator 
purchases electrical energy for charging the EV at the 
lowest price. The sellers are generators; 

• selling bid in the energy market: if V2G is available, the 
aggregator can offer electrical energy in the electricity 
market in hours with high prices. The buyers are other 
electricity retailers; 

• selling bid in the ancillary services market: the 
aggregator offers reserve services and the buyers are the 
TSO and DSO.  

The DSO makes an ex-ante technical validation of the 
aggregator’s bids. The TSO purchases reserve services from 
the aggregator for load-generation balancing.  

The V2G mode is not considered in this paper and reserve 
services are provided using the preferred operating point (POP) 
approach [5].  

B. Electricity Market Framework and Algorithms 

The framework proposed in this paper covers three 
different time horizons [14]: 

• short-term: time horizon up to two days ahead with 
hourly or half-hourly time steps (depending on market 
rules). The aggregator participates in day-ahead markets 
to buy electrical energy and sell ancillary services; 

• very short-term: time horizon ranging from 1 to 6 hours 
ahead with hourly and half-hourly time steps. The 
aggregator participates in intraday markets to adjust the 
day-ahead bids, reserve markets or in real-time (or 
hour-ahead) markets; 

• operational (or ``almost’’ real-time): the starting point 
is the short or very short-term schedule and the 
aggregator coordinates the EV individual charging to 
fulfill the market commitments (and avoid financial 
penalizations) and EV owners’ needs. The aggregator 
may also respond to signals from the DSO under 
abnormal operating conditions (such as network 
operated near its technical limits). 

As the time horizon decreases, more information is 
available since all plugged EV are monitored by the aggregator 
and it is assumed that the EV drivers communicate their 
preferences for the charging process (otherwise, a default 
profile is used).  

  For inflexible EV, an optimization model for the market 
bids is not necessary. The aggregator only needs to forecast the 
total consumption in each hour and purchase, in the energy 
market, the forecasted quantity. 

Fig. 2 depicts the proposed framework of electricity market 
sessions and optimization/forecasting algorithms for flexible 
EV. This framework covers the majority of electricity markets 
schemes across the world, it is divided by time horizons and a 
separation is made between input information and market 
processes. 
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Fig. 2. EV aggregator architecture. 

1) Short-term Horizon 

The day-ahead (or short-term) optimization processes are 
intended for energy, secondary reserve and balancing reserve 
market sessions. The aggregator has different possibilities: (a) 
optimization of the energy bids [15]; (b) joint optimization of 
the energy and secondary reserve bids [16]; (c) joint 
optimization of the energy and balancing reserve bids [13]; (d) 
joint optimization of energy, secondary and balancing bids. 

The outputs from the day-ahead optimization algorithms 
are: energy bid for each market time interval; upward and 
downward balancing reserve capacity bid; upward and 
downward secondary reserve capacity bid (in MW). Since the 
aggregator is a “price-taker”, it is assumed that the bid price is 
lower enough to be accepted. 

Joint optimization algorithms can be developed for 
sequential markets or joint markets where energy and reserve 
bids are cleared together. 

This framework assumes that secondary reserve is only 
contracted in a day-ahead session. This is valid for most 
European markets with daily secondary reserve markets, like 
the Iberian and Italian markets.  In most of the USA markets it 
can be contracted in the real-time (or hour-ahead) market, but 
as mentioned in [17], the majority of secondary reserve in the 
USA is contracted in the day-ahead market. A day-ahead 
session for the balancing reserve market is also considered. 

The day-ahead optimization algorithms require forecasts 
for different variables: energy and reserve prices, balancing 
reserve direction and EV variables. 

Forecasting the balancing reserve direction (topic discussed 
in sections III and IV) consists in anticipating if the power 
system will need upward or downward balancing reserve in 
each time interval of the next hours and day. Based on this 
information the aggregator can define a combined strategy for 
participating in the electrical energy and reserve market 
(addressed in section III). For example, if in a specific hour the 
probability of downward reserve is high, the aggregator can 
offer a bid with a very low quantity (or zero) in the electrical 
energy market and then offer the required electrical energy for 
charging as downward reserve. 

Since the secondary reserve handles less predictable events, 
the optimization algorithm for secondary reserve does not use 
information about secondary reserve direction (see the 
optimization model in [16]). 

The load forecasting task is common in problems related to 
power systems and electricity markets. However, this problem 
is different because the aggregator controls EV consumption, 
which means that the approach of forecasting the EV 
consumption in each time interval (similarly to classical load 
forecasting problems) cannot be strictly followed. The 
approach proposed in [12] is to forecast two EV variables 
(illustrated in Fig. 3): charging requirement and availability. 

The availability is the time-period where the EV is 
plugged-in for charging. In the example of Fig. 3, it is the time 
period between 21h30 and 8h30. The charging requirement is 
the total electrical energy needed to get from the initial (i.e., 
when the EV arrives for charging) to the target state of charge 
(SoC) defined by the EV driver for the next trip, including the 



charger efficiency. In Fig. 3, the charging requirement is the 
total energy required for getting from a 50% to a 100% SoC, 
which is 10 kWh, plus the charger’s efficiency losses (1.11 
kWh). A charging requirement value is always associated to an 
availability period. The aggregator then distributes this 
quantity, according to its optimization strategy, by the time 
intervals of the corresponding plug-in period. 

21h30 8h30

SoCini=50% 

(=10 kWh)

SoCend=100% 

(=20 kWh)

(1) Availability Period

(2) Charging Requirement = 11.11 kWh 

(90% of charger efficiency)

EV Arrives EV Departs

Fig. 3. EV variables: charging requirement and availability. 

Note that this approach does not require personal 
information, such as driving routes (historical and planned) or 
the number of travelled kilometers.  

2) Very Short-term Horizon 

The following sessions are included in the very short-term 
horizon: hour-ahead balancing reserve market; intraday market 
(typically in Europe); real-time market (typically in the USA).  

The participation in the intraday market sessions is not 
mandatory, but it is foreseen that the aggregator will use these 
sessions to update day-ahead bids using recent information. 
The same is valid for the real-time market and, in both cases, 
the aggregator is mitigating imbalances and corresponding 
financial penalties. Note that the price difference between real-
time (or intraday) and day-ahead price can induce losses and 
income in case of differences to the day-ahead bid quantity. 

Two situations are considered for balancing reserve: (a) 
day-ahead submission of bids that cannot be changed during 
the operating day; (b) day-ahead bids that can be adjusted or 
removed 45 minutes before the operating hour in an hour-
ahead market for this reserve.  

For instance, a bidding optimization algorithm for the hour-
ahead balancing reserve market takes as inputs hour-ahead 
forecasts for the reserve price and direction, as well as 
information transmitted by plugged-in EV (i.e., target SoC and 
expected departure time instant).  

3) Operational Management 

Since it is not possible to produce perfect forecasts, it is 
necessary to have an operational management phase were the 
EV individual charging is coordinated to satisfy the contracted 
energy and reserve levels (i.e., bids for the short-term and very 
short-term horizons).  

During the operating day, the TSO sends set-points 
requesting balancing and secondary reserve from the 
aggregator. Operational management algorithms are developed 

for the energy and reserve markets and use information from 
the plugged-in EV as input. These algorithms may include very 
short-term forecasts for the EV variables. Forecasts for the 
imbalance prices due to deviations between purchased energy 
and actual consumption are also used as input. 

4) Market Settlement Phase 

After the operating day, there is a settlement phase where 
the deviations from the market schedule (both energy and 
reserve) are determined using metered data for hourly (or half-
hourly) periods and priced according to positive and negative 
imbalance prices. From this process, it results a cost term that 
is summed to the cost from purchasing electrical energy. The 
income from providing secondary or balancing reserve is also 
computed in this phase. 

Market settlement schemes for secondary and balancing 
reserve are proposed in [11], [16] and [13]. 

III. PARTICIPATION IN THE BALANCING RESERVE MARKET

This section describes the day-ahead and operational 
management algorithms that follow the general framework 
detailed in section II.  

A. Forecasting Phase 

The availability period is a binary time series forecasted 
with a generalized linear model (GLM) with the response 
variable following a binomial distribution. After forecasting 
the availability period, the corresponding charging requirement 
is forecasted with non-parametric bootstrapping. A complete 
description of the forecasting algorithm can be found in [12]. 

The day-ahead energy price is forecasted with an additive 
model (using cubic splines) and using the following variables 
as explanatory variables: lagged variables of the price (i.e., t-1, 
t-2, t-3), forecasted wind power penetration, periodic function 
for the hour of the day and week day.  

The balancing reserve price (i.e., price for dispatched 
reserve) is an irregular time series forecasted with the Holt-
Winters model with trigonometric functions [18]. 

The reserve direction consists in two binary time series, one 
for upward direction and another for downward. Two separate 
variables are considered because in a specific hour the reserve 
can be mobilized in both directions. For this task, a comparison 
of four different algorithms (i.e., GLM with the response 
variable following a binomial distribution, support vector 
machines, neural networks and naïve Bayes) is given in [19].  

The best results are obtained with the following GLM 
model for day-ahead �t

-
 (upward reserve) forecast: 
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where �
-
t-l are lagged variables of the response variable, pt is 

the forecasted energy price. The model for day-ahead �t
+

(downward reserve) forecast is analogous but with an 



additional coefficient for �
+

t-144. The model for hour-ahead �t
-

(upward reserve) forecast is as follows:  
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The same model is used for hour-ahead �t
+
 forecast. 

The outputs are the posterior probabilities prob(�t
-
=1|.) and 

prob(�t
+
=1|.). The decision rule for transforming the posterior 

probabilities into binary values consists in offering a reserve 
bid in the most probable direction: �t

-
=1 if prob(�t

-
=1|x)> 

prob(�t
+
=1|x); �t

+
=1 if prob(�t

-
=1|x)< prob(�t

+
=1|x).  

B. Day-ahead Optimization Phase (Short-term) 

The decision variables are: energy purchased by the 
aggregator in the energy market for the jth vehicle and time 
interval t (Et,j); downward reserve capacity (Pdownt,j); upward 
reserve capacity (Pupt,j). The bid is the aggregation of the 
individual contribution from each EV for the same time 
interval t.  

The objective function is the minimization of the total cost 
divided in three components: i) cost of purchasing energy in 
the energy market; ii) cost from charging EV with downward 
reserve; iii) income from reducing the consumption (upward 
reserve). It is written as: 
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where
tp̂ is the forecasted energy price for time interval t, 

down

tp̂ is the forecasted downward reserve price, up

tp̂ is the 

forecasted upward reserve price, �t is the length of time 
interval t, H is the set of time intervals from the optimization 
period (e.g., for one day with �t=30 min, H ranges between 1 
and 48), Mt is the number of EV plugged-in. 

The main constraints are described in the following 
paragraphs. 

The energy purchased in the energy market for charging 
during �t plus the downward reserve power must be below or 
equal to the maximum charging power of the j-th EV in each 
time interval t: 

{ } HtMjPPtE tj

down

jtjt ∈∀∈∀≤+∆ ,,,1,max

,, �  (4) 

The upward reserve power should be lower or equal to the 
energy purchased in the market for charging during �t in each 
time interval t: 

( ) { } HtMjtEP ttjt
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where �t
-
 is the binary variable representing the upward 

reserve direction, and when its value is “0”, the upward reserve 
power must be zero.  

The downward reserve power should be zero when the 
forecasted binary variable for the downward reserve direction 
(�t

+
) is ”0”: 

{ } HtMjPP ttt
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, �τ  (6) 

The constraint of Eq. 7 consists in postponing EV charging 
by offering upward reserve. 
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where plug

jĤ is the forecasted availability period of the jth 

EV and tfinal is the departure interval.  

The balance between energy and reserve bids should be 
equal to the charging requirement of the j-th EV: 
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where 
jR̂ is the forecasted charging requirement of the j-th 

EV.  

Finally, the total upward reserve power in the availability 
period is limited by the charging requirement: 
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More details about this set of constraints can be found in 
[13] and [14]. 

C. Operational Management Phase 

The central idea of the operational algorithm consists in 
following the strategy from the day-ahead optimization model 
by minimizing the difference between the total charging and 
day-ahead plan (Et, Pt

down
, Pt

up
). The aim is to guarantee lower 

penalization costs due to reserve shortage, energy surplus and 
shortage, and increases reserve reliability.  

The objective function is convex, and can be formulated for 
a complete day (with T time intervals of length �t) as follows: 
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where Ek,j
*
 is the energy consumed by the j-th EV, t0 is the 

first time interval of the optimization period, �t is the same 
interval length of the day-ahead optimization algorithm and �
is a piecewise loss function given by 
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where �k
+
 and �k

-
 are constants that penalize situations with 

positive and negative deviations correspondingly.  

In terms of constraints, the consumed energy in each time 
interval must be below or equal to the maximum available 
power for charging: 

{ } plug

jtkjk HkMjPtE ∈∀∈∀≤∆ ,,,1,max*

, �  (12) 



The total consumed energy during the availability period 
must be equal to the charging requirement: 

( ) { } plug
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, 0
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Where Rt,j is the residual charging requirement at beginning 
of time interval t0. 

This optimization problem is applied sequentially as new 
EV arrive for charging: 

1. in the beginning of time interval t0, new information 
(expected departure time and target SOC) 
communicated by recently plugged EV is used, together 
with the metered initial SOC, to compute the charging 
requirement and availability period that are  included in 
Eq. 13; 

2. using this new information, the aggregator solves the 
optimization problem for a period between t0 and the 
maximum departure time interval of all the EV 
plugged-in in time interval t0 (this maximum is updated 
every time step); 

3. set points corresponding to the charging levels for time 
interval t0 are transmitted to the plugged-in EV; only the 
dispatch for time interval t0 remains unchanged, the 
charging levels for the subsequent time intervals can be 
modified in the next iteration (next time interval, t0+1); 

4. this process is repeated for the next time interval t0+1 (go 
to step 1). 

IV. EVALUATION RESULTS

A. Test Case Description 

The electricity market data of the case-study is from a three 
years period (2009-2011) and consists of: market prices 
(tertiary reserve and energy) for Portugal [20]; day-ahead load 
and wind power forecasts (that give the forecasted wind power 
penetration) for the Iberian Peninsula [21].  

Synthetic time series for the availability and charging 
requirement of 3000 EV along one year was simulated using a 
discrete-time-space Markov chain, in accordance with the 
traffic patterns in Portugal. The simulation time step is 30 
minutes.  

Each EV was characterized in terms of battery size and 
consumption per km. The charger efficiency was assumed to 
be 90%. Three different driver’s behaviors, obtained from a 
survey made in the MERGE project [22], were modeled: i) 
charge at the end of the day; ii) charge whenever possible; iii) 
EV charge only when it needs (i.e., SOC below 40%).  

These time series are used for fitting the forecasting 
algorithms (as historical data) and testing the optimization 
algorithms. A full description about the simulation mechanism 
can be found in [4].  

For a robust evaluation, a sampling process based on [23] is 
used to generate random repetitions of a test experiment. The 
objective is to evaluate the optimization algorithms for 
different market data randomly sampled (but maintaining the 

temporal sequence) from the three years period. Since the 
forecasting algorithms require training and testing datasets, a 
fixed length for these two sets was defined: 9 months for 
training and 3 months for testing. 

The process is repeated 30 times (i.e., generates 30 
samples), and for each sample, the algorithms are evaluated in 
the test dataset. This sampling process is only used in the 
electricity market data. The synthetic time series for 3000 EV 
are divided in two groups with 1500 EV: fleet A and B.  

B. Impact of Reserve Direction Forecast 

Incorrect reserve direction forecasts require a change of the 
planned EV charging, which might result in higher pRNS 
(Percentage of Reserve Not Supplied) and total cost for the 
aggregator (calculated with the methodology described in 
[13]). In order to understand whether or not the forecasts from 
the GLM represent additional value and the impact of 
erroneous forecasts in the total cost and pRNS, the reserve 
direction forecasts obtained with the following approaches are 
compared in terms of optimization results: 

• GLM forecast (base case): forecast produced by the 
GLM model described in section III.A; 

• naive predictor: produces a forecast equal to the last 
observation from the same hour; 

• random predictor: in classification problems, it is 
typical to compare the model’s performance with a 
random predictor (e.g., flip of a coin), and if the 
performance of both models is comparable, then it is 
concluded that the advanced model is not valuable [24]. 
In this case, the random predictor consists in sampling 
from a uniform distribution between 0 and 1; if the 
sample value is greater than 0.5, then �t-=1, if not, 
�t+=1; 

• all upward: the reserve direction is always upward and 
the aggregator offers upward reserve bids when 
possible; 

• all downward: the reserve direction is always 
downward and the aggregator offers downward reserve 
bids when possible. 

The forecast accuracy results of the these four algorithms 
can be found in the appendix sections. 

Table I presents the average values of pRNS and cost 
increase (using the GLM forecast as reference), obtained for 
fleet A and for the four different forecasts and obtained with 
day-ahead reserve bidding and operational management 
algorithm. The results for fleet B are presented in Table II. 

The pRNS results for both upward and downward reserves 
do not differ significantly with the reserve direction forecast, 
which indicates the optimization models’ robustness. However, 
the results differ in terms of total cost reduction. All four 
different forecasts present cost increase, compared to the 
results with GLM forecasts, in almost all the test samples. Only 
the naive predictor in fleet A and the all downward forecast in 
both fleets present a negative cost increase (which means cost 
reduction) in some test samples, but on average, all the 



forecasts present a cost increase; in some test samples, the cost 
increase is greater than 60%. The naive predictor is the one that 
leads to the lowest cost increase. 

TABLE I 

PRNS OF THE UPWARD AND DOWNWARD BALANCING RESERVE AND TOTAL 

COST INCREASE WITH DIFFERENT FORECASTS FOR THE RESERVE DIRECTION 

AND FLEET A 

Method pRNSup pRNSdown Cost Increase 

GLM forecast 4.95% 2.41% Ref. 

Naive pred. 3.39% 2.88% 7.71% [-5.03%,26.88%] 

Random pred. 3.17% 2.67% 37.70% [5.07%,106.07%] 

All Upward 4.48% n.a. 29.95% [9.65%,65.35%] 

All Downward n.a. 2.33% 39.28% [-7.18%,118%] 

TABLE II 

PRNS OF THE UPWARD AND DOWNWARD BALANCING RESERVE AND TOTAL 

COST INCREASE WITH DIFFERENT FORECASTS FOR THE RESERVE DIRECTION 

AND FLEET B 

Method pRNSup pRNSdown Cost Increase 

GLM forecast 8.67% 3.74% Ref. 

Naive pred. 7.39% 4.41% 8.01% [1.65%,16.76%] 

Random pred. 8.13% 4.55% 33.35% [11.95%,73.60%] 

All Upward 7.58% n.a. 35.21% [14.49%,71.11%] 

All Downward n.a. 3.82% 20.28% [-7.13%,59.62%] 

In fleet A, the cost increase from the random predictor is 
higher than the all upward forecast, meaning that, in this case, 
a poor forecast in both directions leads to a higher cost 
compared to offering reserve only in one direction. The same is 
valid for fleet B, where the cost increase of the all downward
forecast is lower than the one obtained by the random
predictor. 

An interesting observation is that the difference in the total 
cost between the different forecasts does not come from a 
lower income with upward reserve provision but from higher 
energy imbalance costs. Because of a low accuracy in 
forecasting the reserve direction, models, such as the random
predictor, have a higher energy imbalances cost related to 
changes in the planned EV charging that must be performed 
when the realized reserve direction is not the same as the 
forecasted value.  

For example, if the downward reserve is not dispatched in 
one interval, the aggregator will need to consume this electrical 
energy in that interval anyway or in the subsequent intervals 
which creates an energy imbalance. 

The same is valid for upward reserve, if it is not dispatched 
in one hour, the aggregator has a surplus of electrical energy 
(compared to what was planned) and needs to reduce its 
consumption in this interval or in the next intervals, which also 
results in an energy imbalance. This leads to an increase of the 
aggregator’s imbalance costs. 

The analysis of the total cost’s components for one test 
sample (i.e., 9 months of training dataset and 3 months of 
evaluation dataset) of fleet A is presented in Table III. 

TABLE III 

TOTAL COST’S COMPONENTS FOR ONE TEST SAMPLE WITH DIFFERENT 

FORECASTS FOR THE RESERVE DIRECTION

Total cost’s 

components [k€] 
GLM 

Naive 

pred. 

Random 

pred. 

All 

Upward 

All 

Downward 

(+) Cons. Elect. 

Energy 
14.42 17.14 17.72 21.15 8.16 

(+) Down. Res. Cost 1.18 1.31 1.65 0.00 2.25 

(-) Up. Res. Income 12.00 15.48 17.09 17.72 0.00 

(+) Imb. Cost 3.35 6.07 11.11 4.99 7.30 

(+) Res. Shortage 

Cost 
1.32 1.16 1.12 2.13 0.36 

Total Cost 8.29 10.20 14.52 10.55 18.08 

The random and all upward forecasts have a higher cost of 
consumed electrical energy, but also offer more upward 
reserve. Therefore, in these two cases, the income from the 
dispatched upward reserve is higher. Nevertheless, this high 
income does not result in a lower cost as in the GLM, since the 
imbalance costs are higher, and as shown in Table IV, the ratio 
between dispatched and offered upward reserve is lower in 
these two cases. This occurs because of the lower accuracy of 
the random and all upward forecasts (see appendix section), 
which leads to an incorrect placement of upward and 
downward reserve bids in each time interval resulting in lower 
dispatched upward reserve and higher imbalance costs. Note 
that the aggregator must satisfy the driver’s requirements even 
if reserve is not dispatched.  

TABLE IV 

TOTAL DISPATCHED AND OFFERED BALANCING RESERVE. 

 GLM 
Naive 

pred. 

Random 

pred. 

All 

Upward 

All 

Downward 

Up. Res. [MW] 388 540 627 709 n.a. 

Disp. Up. Res. 

[MWh] 
248 320 352 371 n.a. 

Ratio of Up. Res. 64.0% 59.25% 56.2% 52.4% n.a. 

Down. Res. [MW] 317 399 552 n.a. 676 

Disp. Down. Res. 

[MWh] 
196 255 268 n.a. 345 

Ratio of Down. 

Res. 
61.9% 63.9% 48.5% n.a. 51.08% 

The naive predictor is characterized by a higher imbalance 
cost compared to the GLM forecast, as well as a higher cost 
with consumed electrical energy (but more upward reserve 
power is offered). In terms of consumed electrical energy, the 
higher value of 17.14 k€ (compared to 14.42 k€ of the GLM) is 
mitigated by a higher income from dispatched upward reserve 
(17.14-15.48=1.66 k€); note that, for the GLM forecast, this 
value is rather similar (i.e., 14.42-12.00=2.42 k€). The main 
difference is on the imbalance costs, mainly because in the 
upward reserve case the naive predictor has a lower percentage 
of dispatched reserve power compared to the GLM forecast, 
which ultimately results in higher energy imbalances.  

The same is valid for the downward reserve. For instance, 
the all downward forecast leads to a higher total of downward 
reserve bids, but only 51.08% of this power is actually 
dispatched, which results in a high imbalance cost and also in a 
high cost with dispatched downward reserve.   



As concluding remarks, these results demonstrate that it is 
possible to produce forecasts for the reserve direction variable 
that represent additional value to the optimization problem, 
otherwise the cost increase values of the four forecasts would 
be close to zero or even negative compared to the GLM 
forecast. Furthermore, it should be underlined that both fleets 
use the same price and reserve direction forecasts, and the cost 
reduction results were different. This suggests that the value of 
the reserve direction forecast is not marginal and differs with 
the EV fleet characteristics and with the forecasted/realized 
market prices. 

V. CONCLUSIONS

In this paper, a general framework for the participation of 
EV aggregator in the electricity market sessions is described. 
The day-ahead optimization model and operational 
management algorithms inserted in this framework for the 
supporting the participation in the balancing reserve market are 
described.  

The impact of different reserve direction forecasts (i.e., 
from different models) was assessed in this paper, considering 
the quality of the reserve provision (measured by the 
percentage of reserve not supplied - RNS) and total costs. The 
robustness tests conducted over the algorithms showed that 
reserve direction forecast errors do not have a high influence in 
the pRNS values, but their influence in the total cost is 
significant. A poor forecast can result in a lower percentage of 
dispatched reserve power and in higher energy imbalance 
costs. 

Finally, although the topic of this paper was EV, the 
proposed algorithms can also be adapted for other types of 
flexible loads, such as thermoelectric loads. 

APPENDIX

Table V presents the average accuracy [24] of four basic 
(or heuristic) binary forecasting models in the 30 test samples. 

TABLE V 
ACCURACY OF FOUR DIFFERENT BASIC (OR HEURISTIC) BINARY FORECAST 

MODELS. 

 GLM 
Naive 

pred. 

Random 

pred. 

All 

Upward 

All 

Downward 

Up. Accuracy [%] 59.9% 59.3% 49.9% 53.7% n.a. 

Down. Accuracy 

[%] 
63.8% 59.6% 49.9% n.a. 58.9% 
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