Towards the Online Testing of Distributed and
Heterogeneous Systems with Extended Petr1 Nets

Bruno Lima*' and Jodo Pascoal Faria*'
*INESC TEC,
FEUP campus, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
TFaculty of Engineering, University of Porto,
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

{bruno.lima, jpf} @fe.up.pt

Abstract—The growing dependence of our society on increas-
ingly complex software systems makes software testing ever more
important and challenging. In many domains, such as healthcare
and transportation, several independent systems, forming a
heterogeneous and distributed system of systems, are involved
in the provisioning of end-to-end services to users. However,
existing testing techniques, namely in the model-based testing
field, provide little support for properly testing such systems.

To bridge the gaps identified in the state of the art we intend
to develop a research work where the main goal is to significantly
reduce the cost of testing distributed and heterogeneous systems,
from the standpoint of time, resources and expertise required,
as compared to existing approaches. For that, we propose a pre-
liminary approach and a toolset architecture for automating the
testing of end-to-end services in distributed and heterogeneous
systems. The tester interacts with a visual modeling frontend
to describe key behavioral scenarios, invoke test generation and
execution, and visualize test results and coverage information
back in the model. The visual modeling notation is converted
to a formal notation amenable for runtime interpretation in the
backend. A distributed test monitoring and control infrastructure
is responsible for interacting with the components of the system
under test, as test driver, monitor and stub. At the core of the
toolset, a test execution engine coordinates test execution and
checks the conformance of the observed execution trace with
the expectations derived from the visual model. A real world
example from the Ambient Assisted Living domain is presented
to illustrate the approach.

As future work we intend to develop distributed and incremen-
tal algorithms for online testing of distributed and heterogeneous
systems based on Extended Petri Nets at runtime and validate
them in real world case studies.

Index Terms—Software Testing; Distributed algorithms; UML;
Petri nets;

I. INTRODUCTION

Due to the increasing ubiquity, complexity, criticality and
need for assurance of software based systems [1], testing is a
fundamental lifecycle activity, with a huge economic impact if
not performed adequately [2]. Such trends, combined with the
needs for shorter delivery times and reduced costs, demand
for the continuous improvement of software testing methods
and tools, in order to make testing activities more effective
and efficient.

Nowadays software is not more like simple applications
but has evolved to large and complex system of systems [3].

A system of systems consists of a set of small independent
systems that together form a new system. The system of sys-
tems can be a combination of hardware components (sensors,
actuators, etc.) and software systems used to create big sys-
tems or ecosystems that can offer multiple different services.
Currently, systems of systems capture a great interest from
the software engineering research community. Testing these
distributed and heterogeneous software systems or systems of
systems, running over interconnected mobile and cloud based
platforms, is particularly important and challenging. Some of
the challenges are: the difficulty to test the system as a whole
due to the number and diversity of individual components; the
difficulty to coordinate and synchronize the test participants
and interactions, due to the distributed nature of the system;
the difficulty to test the components individually, because of
the dependencies on other components.

An example of a distributed and heterogeneous system is
the Ambient Assisted Living (AAL) ecosystem that was proto-
typed in the context of the nationwide AAL4ALL project [4].
The AAL4ALL ecosystem comprises a set of interoperable
AAL products and services (sensors, actuators, mobile and
web based applications and services, middleware components,
etc.), produced by different manufacturers using different tech-
nologies and communication protocols (web services, message
queues, etc.). To assure interoperability and the integrity of
the ecosystem, it was developed and piloted a testing and cer-
tification methodology [5], encompassing the specification of
standard interfaces and component categories, the specification
of unit (component) and integration test scenarios, and the
test implementation and execution on candidate components
by independent test laboratories. A major problem faced
during test implementation and execution was related with
test automation, due to the diversity of component types and
communication interfaces, the distributed nature of the system,
and the lack of support tools. Similar difficulties have been
reported in other domains, such as the railway domain [6]. In
fact, we found in the literature limited tool support for au-
tomating the whole process of specification-based (or model-
based) testing of distributed and heterogeneous systems, as
will be explained in Section II.

II. STATE-OF-THE-ART
A. Model-based testing

Model-based testing (MBT) techniques and tools have at-
tracted increasing interest from academia and industry, because
of their potential to increase the effectiveness and efficiency of
the test process, by means of the automatic generation of test
cases (test sequences, input test data, and expected outputs)
from behavioral models of the system under test (SUT) [7].

However, MBT approaches found in the literature suffer
from several limitations [8]. The most common practical
limitation is the lack of integrated support for the whole
test process. This is a big obstacle for the adoption of these
approaches in practice by industry, because of the effort
required to create or adapt tools to implement some parts of
the test process. Other limitations are the difficulty to bridge
the gap between the model and the implementation, and the
difficulty to control the test case explosion problem (i.e., the
combinatorial explosion in the number of test cases generated
from models).

MBT can be done offline or online (also called adaptive
or on-the-fly). Offline testing means that test cases are first
generated and subsequently executed [9], while in online
testing test generation and execution are performed together
so that the test generator can react to how the SUT behaves
[10]. The use of online testing is necessary if the SUT is non-
deterministic, because the test generator can see which path
the SUT has taken, and follow the same path in the model
[11].

We focus our research work on the online testing of dis-
tributed and heterogeneous systems (instead of offline testing),
to cope with non-determinism in the implementation or in the
specification. We also propose a toolset architecture to support
the whole test process in an integrated fashion.

B. Models

MBT approaches use a high variety of models. In general,
one can distinguish state based and scenario based approaches
[12]. State based approaches use abstract state machines [13],
UML state machines [14], input-output automata [15] or
similar behavioral models for describing all possible behaviors
of the system or its components. Scenario-based approaches
use UML sequence diagrams (SDs), message sequence charts
(MSC) [16] or similar behavioral models for describing in-
teractions between components of the system or interactions
between the system and the environment that occur in spe-
cific contexts, representing key system behaviors. State-based
models are best suited for capturing system design decisions
and are usually more detailed, whilst scenario-based models
are best suited for capturing system requirements [12] and are
usually less detailed.

We focus our research work on the scenario-based testing
of distributed and heterogeneous systems (instead of state-
based testing), because scenario-based models are more con-
venient for describing and visualizing the interactions that
occur between the components and actors of a distributed

system [17] in key scenarios. Scenario-based models also help
partially avoiding the test case explosion problem. To facilitate
industrial adoption, we opted for using UML sequence dia-
grams (SDs) [18][19], with a minimum number of restrictions
and extensions, as the input behavioral models. However,
UML SDs are not well suited for incremental execution
at runtime (as required by an online testing strategy); for
that, we opted to use extended Petri Nets [20], for efficient
incremental execution and conformance checking, as in our
previous work for object-oriented systems [21]. However, in
that work only the interaction between objects in a standalone
java program were tested, with limited support for parallelism
and concurrency. In the current work, we intend to extend
that approach for distributed and heterogeneous systems. The
extended Petri nets used in our previous work were Event-
Driven Colored Petri Nets. In the current work, we intend to
add time constraints, so the extended Petri nets will be Timed
Event-Driven Colored Petri Nets (TEDCPN). Translation rules
from UML SDs (namely time constraints) to TEDCPNs will
have to be defined.

C. Distributed testing architectures

One difficulty in testing distributed systems is that their
distributed nature imposes theoretical limitations on the con-
formance faults that can be detected by the test components,
depending on the test architecture used [22], [23]. Two basic
test architectures have been proposed in the past to test
distributed systems: a purely distributed test architecture with
independent local testers communicating synchronously with
the components of the SUT [24]; a purely centralized test
architecture, in which a single centralized tester interacts asyn-
chronously with the components of the SUT. More recently,
Hierons [23] proposed a hybrid framework that combine local
testers and a centralized tester. He proved that this archi-
tecture is more powerful than the distributed and centralized
approaches, i.e., it has a higher fault detection capability. How-
ever, his work is only concerned with conformance relations
between execution traces and specifications based on input-
output automata, without addressing algorithms for distributed
and incremental online test generation and execution.

Given its advantages, we base our research work on the
hybrid test architecture proposed by Hierons [23].

III. RESEARCH OBJECTIVES AND METHODOLOGICAL
APPROACH

A. Research hypothesis

Our research hypothesis (that we expect to prove at the end
of the research work) is:

Using an online model-based testing approach, with
UML SDs as input models and Extended Petri
Nets at runtime, on top of a hybrid test execution
architecture, it is possible to fully automate the
testing of distributed and heterogeneous systems, at
the integration, unit and system level, in an effective,
efficient and accessible way.

By ’fully automate’ we mean that the only manual activity
needed should be the creation of the model required as input
for automatic test case generation and execution, together with
mapping information between the model and the implementa-
tion (e.g., location of system components), without the need
to develop test components specific for each SUT. Besides
that, all phases of the test process should be supported in an
integrated fashion. This will be achieved by:

« the automatic translation of the input behavioral models
(UML SDs) to the formal models needed at runtime
(Extended Petri Nets, or more specifically, Timed Event-
Driven Colored Petri Nets);

o the automatic test input generation (generation of test
inputs to the SUT) and conformance checking (checking
actual SUT responses against expected ones) based on
executable models and mapping information at runtime;

« the provision of ’local testers’ (responsible for interacting
directly with the SUT components) specific for each
platform;

« the automatic reporting of test results (conformance errors
and coverage information) back in the input model (with
colors and annotations).

By ’effective’ we mean an approach with a high fault
detection and localization capability. This will be achieved as
follows:

« by adopting a hybrid test architecture allowing the detec-
tion of a higher number of errors as compared to purely
distributed or centralized architectures [23];

« by monitoring and checking (against the specification) the
interactions between components in the SUT, besides the
interactions between the SUT and the environment;

« by using an incremental conformance checking algorithm,
that allows capturing the execution state of the SUT as
soon as a failure occurs, and hence facilitate subsequent
fault diagnosis;

« by following an online, adaptive, test generation strategy,
that allows testing non-deterministic SUT behaviors;

« by testing temporal constraints.

By ’efficient” we mean efficient test execution. This will be

achieved as follows:

o by using a distributed conformance checking algorithm,
that minimizes communication overheads during test ex-
ecution,;

e by using a runtime model that allows a more efficient
model execution and conformance checking.

By ’accessible’ we mean an approach accessible for testers

in industry. This will be achieved as follows:

« by using a user-friendly input notation, following industry
standards;

o by following a scenario-based approach, that usually
requires less detailed input models and closer to the
requirements than state-based approaches.

Regarding the test levels, we intend to focus on integration
testing of end-to-end services, but supporting also system

testing (in which internal interactions between components of
the system need not be monitored) and unit testing (in which
system components are tested in isolation). In our envisioned
approach, the same input model can be used to perform tests at
different levels (unit, integration, and system testing), simply
by changing the selection of observable and controllable
events in the input model. For unit testing purposes, all the
messages in the model will be considered controllable (i.e., to
be generated by the test harnessed) except for the messages
departing from the component under test.

B. Sub-objectives and research questions

To prove the research hypothesis, the following sub-

objectives will be pursued:

o define translation rules from the input model (UML SDs)
to the runtime model (Extended Petri Nets, e.g., Timed
Event-Driven Colored Petri Nets);

o define a distributed and incremental algorithm for confor-
mance checking of the observed execution trace against
the expectations set by the runtime model;

o define a distributed and incremental algorithm for test
input generation based on the current execution status
and coverage level of the runtime model,

o define rules for translating the test results (conformance
errors and coverage information) back to annotations the
input model,;

o develop a toolset prototype and conduct experiments in
real world case studies.

To achieve the sub-objectives we aim at responding to the

following research questions:

o RQ1: Which extensions of Petri Nets should be used?

+ RQ2: How to translate temporal constraints from UML
SD to such extended Petri Nets?

e RQ3: How to partition the Petri Net for distributed
execution?

e RQ4: How to choose the next test action in a distributed
environment?

o RQS5: How to translate the results back to the UML SD?

C. Methodology
This work will follow the Engineering method[25]:
Engineers develop and test a solution to a hypothe-
sis. Based upon the results of the test, they improve
the solution until it requires no further improvement.
Validation will be performed by case studies.

IV. PAST WORK AND PRELIMINARY RESULTS

Until this moment it was conducted research work regarding
the state of the art analysis, the state of the practice analysis,
and the conception of the overall solution.

Regarding the state of the art analysis, it was conducted
a systematic analysis of works on model based testing and
distributed systems testing.

Regarding the state of the practice analysis, we conducted
a survey on “Testing Distributed and Heterogeneous Systems
— State of the practice” (available at https://goo.gl/GExS2w),

that was distributed to the participants of two industry-oriented
conferences in the software testing area (TESTING Portugal
2015 and UCAAT 2015 - ETSI User Conference on Advanced
Automated Testing) and was responded by 147 persons. The
main goal of this work is to explore the testing of DHS from
the point of view of industry practitioners, in order to assess
the current state of the practice and identify opportunities
and priorities for research and innovation initiatives. More
precisely, we aim at responding to the following research
questions:

e SRQ1: How relevant are DHS in the software testing
practice?

o SRQ2: What are the most important features to be tested
in DHS?

e SRQ3: What is the current status of test automation and
tool sourcing for testing DHS?

o SRQ4: What are the most desired features in test automa-
tion solutions for DHS?

The survey allowed us to confirm the high relevance of
DHS in software testing practice, confirm and prioritize the
relevance of testing features characteristics of DHS, confirm
the existence of a significant gap between the current and the
desired status of test automation for DHS, and confirm and
prioritize the relevance of test automation features for DHS.
A complete analysis of the survey results can be found in [26].

Regarding the conception of the overall solution, we con-
ceived a preliminary approach and a toolset architecture (see
Figure 1) for automating the testing of end-to-end services in
distributed and heterogeneous systems.

In the envisioned approach, the tester interacts with a
visual modeling frontend to describe key behavioral scenarios
based on UML sequence diagrams, invoke test generation
and execution, and visualize test results and coverage in-
formation back in the model (see Figure 2). The visual
modeling notation is converted to a formal notation amenable
for runtime interpretation in the backend based on extended
Petri Nets (see Figure 3). A distributed test monitoring and
control infrastructure is responsible for interacting with the
components of the system under test, as test driver, monitor
and stub. At the core of the toolset, a test execution engine
coordinates test execution and checks the conformance of the
observed execution trace with the expectations derived from
the visual model. This approach was fully described in [17].

V. FUTURE WORK AND EXPECTED RESULTS

As future work we intend to perform the following activi-

ties:

o Define translation rules: Define the translation rules for
conversion between the visual modeling notation (UML
SDs) and the formal modeling notation (Extended Petri
Nets);

o Algorithms design: Define and formally specify dis-
tributed and incremental algorithms for online testing
of distributed and heterogeneous systems (namely, for
conformance checking and test input generation);

Visual Modeling Environment

Modeling Tool

!
l—»

Mapping Tool

d

Translation Tool

A

Distributed [Test Generation and Execution Engine

Test Coordinator

LT 2

|
\

I Local State n I

Local Tester 1 LTN

| localState1 | LocalState2 |

A
A A

System Under Test

A A v

. Eg Component Eg Eg .
Under CcuT
“<—> Test 1 «— 2 CUT”““

Fig. 1. Proposed toolset architecture

o Algorithms validation: Verify and validate the above
algorithms using formal verification and validation and
testing techniques;

o Practial implementation: Implement a prototype nec-
essary for automating the proposed approach, using the
algorithms previously defined;

o Final validation: Validate the solution approach and
toolset prototype with respect to the research hypothesis
previously described (section III-A) in real world case
studies, one of which in the Ambient Assisted Living
domain.

The expected results of our work are:

o Translation rules from UML SDs to extended Petri Nets

« Distributed and incremental algorithms for conformance
checking and test input generation

« Toolset prototype

o Experimental results

VI. CONCLUSIONS

It was presented a research plan and initial research results
for automated scenario-based testing of distributed and hetero-
geneous systems to overcome the limitations that exist in the
state of the art for testing these systems.

sd Sequence Diagram

X

Care Receiver

Fall Detecticn
AFF

AALMO

Personal
Assistance Record

AALAALL Portal

XX

Care Provider 1 Care Provider 2

fall_signal{}

m

: request{confirm_fall, {yes, no}, yes, & sec)

answer(x)

oot/

[x = yes]

user answered "yes' or didn't answer within & seconds %

fall_infa{) |

|
[
[
I |
fall_infe() |
fall_infa{) I:Il;‘
: U fall_notiff)
[EI;I
i
[
T

Parameters: x: {yes, no} Iﬁ

Fig. 2. UML sequence diagram representing the interactions in a fall detection scenario. The diagram is already painted after a failed test execution
the fall detection application did not send an emergency call [17].

in which

PO

2fall_info

start O

| I T S r=====- I A U 2 (I N it B W 2 R ﬁ 77777
i Care I\ F] ' ' o P i
| Receiver Fall AALMQ \Personal 'AALAALL 1Care i Care i
| eceiver 1 Detection APP . Assistance :Pw‘/u/ ' Provider ! Provider 2 !
! Jfall signa ' 7fall_signal ! iRecord 1 '
! ‘ 1 !
| 1 L >

i ‘ | = ;
! 2conf_fall 1conf_fall \ 1
| lans 3 Zanswer(x) i ! en i
§ 0,5sec] | [0,5sec] s secoel |/ e Jemerseney e !
] - S < > |
| X X i
! 1 X es fl |
1 : Y / “2fall_infQ |
| : yes no // : !
i ! fall_info & gency_cay i :
: 1 - 1 !

Fig. 3. TEDCPN derived from the SD of Figure 2. The net is marked in a final state of a failed test execution in which the fall detection application did not

xy

Variables: x € {yes, no}

send an emergency call [17].

Legend: !'m - send m; ?m - receive m; !m - controllable event

ACKNOWLEDGMENT

This research work was performed in scope of the project
NanoSTIMA. Project “NanoSTIMA: Macro-to-Nano Human
Sensing: Towards Integrated Multimodal Health Monitoring
and Analytics/NORTE-01-0145-FEDER-000016" is financed
by the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development
Fund (ERDF).

[1]

[2]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. Boehm, “Some Future Software Engineering Opportunities and
Challenges,” in The Future of Software Engineering, S. Nanz, Ed.
Springer Berlin Heidelberg, 2011, pp. 1-32. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15187-3_1

G. Tassey, “The Economic Impacts of Inadequate Infrastructure for
Software Testing,” National Institute of Standards and Technology, Tech.
Rep., 2002.

DoD, “Systems Engineering Guide for Systems of Systems,” Office of
the Deputy Under Secretary of Defense for Acquisition and Technology,
Systems and Software Engineering Version 1.0, Tech. Rep., 2008.
AAL4ALL, “Ambient Assisted Living For All,” http://www.aal4all.org,
2015.

J. P. Faria, B. Lima, T. B. Sousa, and A. Martins, “A Testing and Cer-
tification Methodology for an Open Ambient-Assisted Living Ecosys-
tem,” International Journal of E-Health and Medical Communications
(IJEHMC), vol. 5, no. 4, pp. 90-107, 2014.

C. Torens and L. Ebrecht, “RemoteTest: A Framework for Testing
Distributed Systems,” in Software Engineering Advances (ICSEA), 2010
Fifth International Conference on, Aug 2010, pp. 441-446.

M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
Survey on Model-based Testing Approaches: A Systematic Review,”
in Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22Nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, ser. WEASELTech *07.
New York, NY, USA: ACM, 2007, pp. 31-36. [Online]. Available:
http://doi.acm.org/10.1145/1353673.1353681

S. Schulz, J. Honkola, and A. Huima, “Towards model-based testing with
architecture models,” in Engineering of Computer-Based Systems, 2007.
ECBS’07. 14th Annual IEEE International Conference and Workshops
on the. 1EEE, 2007, pp. 495-502.

M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-uppaal: Online model-
based testing of real-time systems,” in Automated Software Engineering,
2004. Proceedings. 19th International Conference on. 1EEE, 2004, pp.
396-397.

M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Software Testing, Verification and
Reliability, vol. 22, no. 5, pp. 297-312, 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.456

W. Grieskamp, Formal Approaches to Software Testing and Runtime
Verification: First Combined International Workshops, FATES 2006 and
RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised Selected
Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, ch.
Multi-paradigmatic Model-Based Testing, pp. 1-19. [Online]. Available:
http://dx.doi.org/10.1007/11940197_1
Microsoft, “Spec Explorer,”
us/projects/specexplorer/, May 2016.
A. Huima, “Implementing conformiq qtronic,” in Testing of Software
and Communicating Systems. Springer, 2007, pp. 1-12.

Q. Tani and A. Petrenko, “Input/output automata’,” in Testing of Com-
municating Systems: Proceedings of the IFIP TC6 1l1th International
Workshop on Testing of Communicating Systems (IWTCS’98) August
31-September 2, 1998, Tomsk, Russia, vol. 3. Springer, 2013, p. 83.
W. Damm and D. Harel, “Lscs: Breathing life into message sequence
charts,” Formal methods in system design, vol. 19, no. 1, pp. 45-80,
2001.

http://research.microsoft.com/en-

(17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Lima and J. P. Faria, Software Technologies: 10th International
Joint Conference, ICSOFT 2015, Colmar, France, July 20-22, 2015,
Revised Selected Papers. Cham: Springer International Publishing,
2016, ch. Automated Testing of Distributed and Heterogeneous Systems
Based on UML Sequence Diagrams, pp. 380-396. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-30142-6_21

OMG, “OMG Unified Modeling Language ™ (OMG UML), Super-
structure,” Object Management Group, Tech. Rep., 2011.

H.-G. Gross, Component-Based Software Testing with UML. Springer
Berlin Heidelberg, 2005.

K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use. Springer Science & Business Media, 2013, vol. 1.

J. P. Faria and A. C. R. Paiva, “A toolset for conformance testing
against UML sequence diagrams based on event-driven colored Petri
nets,” International Journal on Software Tools for Technology Transfer,
pp- 1-20, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10009-
014-0354-x

R. M. Hierons, M. G. Merayo, and M. Niifiez, “Scenarios-based
testing of systems with distributed ports,” Software: Practice and
Experience, vol. 41, no. 10, pp. 999-1026, 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.1062

R. M. Hierons, “Combining Centralised and Distributed Testing,” ACM
Trans. Softw. Eng. Methodol., vol. 24, no. 1, pp. 5:1-5:29, Oct. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2661296

A. Ulrich and H. Konig, “Architectures for Testing Distributed
Systems,” in Testing of Communicating Systems, ser. IFIP — The
International Federation for Information Processing, G. Csopaki,
S. Dibuz, and K. Tarnay, Eds. Springer US, 1999, vol. 21, pp. 93-108.
[Online]. Available: http://dx.doi.org/10.1007/978-0-387-35567-2_7

M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, no. 5, pp. 23-31, 1998.

B. Lima and J. P. Faria, “Testing distributed and heterogeneous sys-
tems: State of the practice,” in Proceedings of the 10th International
Conference on Software Engineering and Applications, 2016.

2015

Tasks

[2016
puraton [11][12[1 [2[3]a[s[e[7][8]9 10

2017
umf12[1]2]3[a[s5[e]7][8]9][9]10

2018
ufn2[1]2]3[a[s5]e]7

[8] 910

1. State of the art analysis and conception of the
approach

1.1 State of the art analysis

1.2 State of the practice analysis 5 months
1.3 D_efine overall .approach (process, 6 months
architecture, notations)
2. Algorithms design and validation
2.1 Define and validate the translation rules 6 months
2.2 Define and validate the algorithms for
incremental and distributed conformance 7 months
checking
2.3 Define and validate algorithms for online,

. . . 8 months
adaptive, test input generation
3. Implementation, validation and thesis
writing
3.1 Implement the prototype 5 months
3.2 Validate the toolset in real case studies 4 months
3.3 Analyze the results 2 months
3.4 Write the PhD dissertation 10 months

nm

EIIE

Conference article|

Conference or journal article
Conference article|

Conference article

Conference article|

Journal article

Journal article

PhD dissertation|

Towards the Online Testing of Distributed and
Heterogeneous Systems Based on Extended Petr1 Nets

i

INESC

ASSOCIATE LABORATORY
PORTUGAL

Bruno Lima and Joao Pascoal Faria

{bruno.lima, jpf} @fe.up.pt

[APORTO

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

-~

Hypothesis

Using a scenario-oriented model-based adaptive (online) testing approach, with extended Petri Nets at runtime, on
top of a hybrid test execution architecture, it is possible to fully automate the testing of distributed and
heterogeneous systems, at the integration, unit and system level, in an effective, efficient and accessible way.

~

J

_
g Main Ideas h

Two different modeling notations (front-end/back-end)
Automatic translation between both notations
Usage of an online, adaptive, test generation strategy

Automatic error reporting in visual model

Fall Detection AALMQ Personal AALS4ALL Portal
APP Assistance Record
Care Receiver Care Provider 1 Care Provider 2

! fall_signal() T T T T | |
I — | | | | |
L|J | [| : :

t(confirm_fall, X | [|
i’? est(confirm_fall, {yes, no}, yes, 5 sec) \ \ | | |
| [[: :

swer(x) I | |
_______________ =| | | | | I
1 I 1 |
! opt [| [!
| L/ | | | |
I [x = yes] | user answered "yes' or didn't answer within 5 seconds | | | I
! T | | | |
| T T T T T
| par / | emergency_csll() | | |
| t t t + =rt
| | | | TR

______________________ s A

|] | | il T
| fall_info() | | | | |
| | | | |

L [|
| | L f | | | |
H | fall_info) | [|
| | fall_info() |:‘r] | | |
: : ! = I_I fall_notif) _ | :
I | = | 0 I
| L L L 1 I
| [| [[| |
! ' ! '

,,,,,,,,

TAAL4ALL
! Portal

! 2cont_fall : conf_fall

e—

Research Questions

RQ1 - Which extensions of Petri Nets should be used?
RQ?2 - How to translate temporal constraints from UML SDs to Petri Nets?

RQ3 - How to partition the Petri Net for distributed execution?

RQ4 - How to choose the next test action in a distributed environment?

-~

N\

Prototype Architecture

Visual Modeling Environment

Modeling Tool

! A

Visual Behavioral Model

Mapping Tool Translation Tool

A

Distributed [Test Generation and Execution Engine

Test Results
[Test Coordinator
Global State

/ !

LT 2

Formal Runtime Model

\ LTN

Local State n

A o

Local Tester 1

| LocalState1 || LocalState2 |

A

System Under Test

v v v

(i} 1
S)

il
1 CuT,

A
imim|

Usage of a hybrid test architecture

J

-

KRQS - How to translate the results back to the UML SD?

J

N\

Validation A

Validation will be performed by case studies, namely in the
Ambient Assisted Living and Health domains

J

N\

Translation Rules between UML Sequence Diagrams and Petri Nets

Expected Results A

Distributed Test Generation and Execution Algorithms

Tool Prototype

J

Project "NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016" is financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development

Fund (ERDF).

NORTE2020

PROGRAMA OPERACIONAL REGIONAL DO NORTE

i

PORTUGAL

2020

UNIAO EUROPEIA

Fundo Europeu
de Desenvolvimento Regional

http://fe.up.pt

