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Abstract

Satellite altimetry allows the study of sea-level long-term variability on a global and

spatially uniform basis. Here quantile regression is applied to derive robust median

regression trends of mean sea level as well as trends in extreme quantiles from radar

altimetry time series. In contrast with ordinary least squares regression, which only

provides an estimate on the rate of change of the mean of the data distribution,

quantile regression allows the estimation of trends at different quantiles of the data

distribution, yielding a more complete picture of long-term variability. Trends derived

from basin-wide averaged regional mean sea level time series are robust and similar

for all quantiles, indicating that all parts of the data distribution are changing at the

same rate. In contrast, trends are not robust and diverge across quantiles in the case

of  local  time series.  Trends are under-  (over-)  estimated in  the western (eastern)

equatorial  Pacific.  Furthermore, trends in the lowermost quantile (0.05) are larger

than the median trend in the western Pacific, while trends in the uppermost quantile

(0.95) are lower than the median trend in the eastern Pacific. These differences in

trends in extreme mean sea level quantiles are explained by the exceptional effect of

the strong 1997-1998 ENSO event.
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1 Introduction

The  operation  of  consecutive  satellite  radar  altimeters  since  the  early  1990's

provides  a  continuous  data  set  of  sea  surface  heights  with  a  nearly  global  and

spatially uniform coverage, allowing to study in an unprecedented way mean sea-

level variability (Ablain et al. 2015).

The analysis of linear trends in sea level from satellite altimetry records has mainly

focused on the estimation by linear regression of trends in the mean (e.g. Nerem et

al. 2010; Cazenave et al. 2014; Jorda, 2014). However, the long-term variability of

sea level is not necessarily spatially and temporally uniform (e.g. Llovel et al. 2011a,

2011b; Haigh et al. 2014; Dangendorf et al, 2014), and additional information can be

gained by considering linear trends in quantiles of the data distribution in addition to

trends in the mean. The study of extremes from satellite altimetry records is severely

limited by the short period spanned by the measurements, particularly in comparison

with tide gauges on islands and coastal locations, which are traditionally used for the

analysis  of  extreme sea levels.  A recent study (Woodworth and Menéndez, 2015)

addressed  the  changes  in  extreme  sea  levels  from  satellite  altimetry  based  on

monthly averaged observations for a 20-years period (1993-2013). In the present

study trends in extreme quantiles of mean sea level, rather than trends in extremes,

are  analyzed from 10-days  time  series  of  satellite  altimetry  observations  for  the

1993-2014 period using quantile regression. Here the extreme quantiles are defined

as the 5% and 95% quantiles of the data distribution.

The quantile regression approach, initially developed by Koenker and Basset (1978),

and applied since then in a wide range of geophysical  applications (e.g. Barbosa,

2008; Jagger and Elsner, 2009; Monteiro et al. 2012; Wasco, 2014; Mendoza et al.

2015),  allows  to  derive  trends  for  different  quantiles  of  the  data  distribution,

providing a more complete description of long-term variability. While ordinary least

squares regression minimizes the sum of squared residuals, median regression is the

particular case of quantile regression for the 2nd quantile (quantile 0.5) and minimizes

the sum of absolute residuals, while general quantile regression minimizes the sum of

asymmetrically-weighted absolute residuals. In addition to the extension to extreme

quantiles,  the  quantile  regression  framework  yields  a  more  robust  estimation  of

trends even in the central part of the data distribution, in the same sense as the

median is a more robust estimate of central location than the mean.

In this work quantile regression is applied to derive robust median regression trends

as well  as  trends in  extreme mean sea level  quantiles  from sea level  records of

satellite altimetry measurements. The data considered and the applied methodology



are described in section 2. Results in terms of median regression trends and trends in

extreme quantiles are first presented for regionally-averaged sea level in section 3.1,

and then for local sea level in section 3.2. Concluding remarks are given in section 4.

2. Data and methods

Satellite  altimetry  data  for  the  period  1993-2014  are  obtained  from  the  Radar

Altimeter Database System (RADS) for Topex (cycle 11 to cycle 364), Jason-1 (cycle

22 to cycle 258), and Jason-2 (cycle 20 to cycle 237) missions. Furthermore, regional

mean sea level time series resulting from basin-wide averaging of RADS data are

obtained from the  NOAA Laboratory  for  Satellite  Altimetry  for  the  North  Atlantic,

Atlantic,  Pacific  and  Indian  Ocean  basins  (Leuliette  and  Scharroo,  2010).  Only

altimetry measurements between 66 °S and 66 °N have been included. All standard

instrumental  and geophysical  corrections (Chelton et al.  2000) are applied to the

satellite  altimetry  measurements,  including the inverse barometer correction.  Sea

level anomalies are computed using the CLS01 mean sea surface (Hernandez and

Schaeffer, 2000). Glacial isostatic adjustment (GIA) effects on the geoid are not taken

into account. 

The satellite altimetry data are gridded to a 1 degree by 1 degree grid using the

rads2grd  routine  (Scharroo,  2012),  which  simply  spatially  averages  (without  any

smoothing  or  interpolation)   the  along-track  sea level  anomalies  collected  into  1

degree  by  1  degree  cells.   Time  series  at  each  grid  cell  are  derived  taking  the

average  time  over  the  10-days  period  of  each  cycle  as  the  reference  time.  No

temporal averaging is performed on the altimetry observations, and only time series

with at most 50 missing values (out of a total of 809 cycles) are considered in the

analysis.

As a data pre-processing step, seasonal signals are removed by sinusoidal regression.

Satellite altimetry observations include a ~60-days non-geophysical signal resulting

from  the  aliasing  of  tides,  orbit  and  radiometer  at  the  ~10-day  repeat  cycle

(Bessières et al. 2013). Here this periodic signal is not explicitly filtered, since the

focus of the present study is on non-periodic variability. However, a 30-days running

median filter  is  applied for robust smoothing and elimination of  eventual  isolated

outliers (Härdle and Steiger, 1995). The use of a running median instead of a running

mean ensures a more robust filtering, less affected by off-lying values, and the use of

a short window of only 3 observations  ensures minimal smoothing and consequent

preservation  of  the  temporal  features  of  the  time  series  and  of  its  correlation

structure.

Quantile  regression  has  become  a  mature  and  useful  complementary  tool  to



conventional ordinary least squares linear regression analysis (Koenker, 2005). On

the  one  hand,  median  regression  as  opposed  to  modelling  of  the  mean  in  the

traditional framework is considerably more robust to the presence of outliers in the

data.  On  the  other  hand,  quantile  regression  provides  additional  information  by

allowing to derive trends in the tails of a data distribution, in addition to the center.

Because it  makes no distributional  assumption about the error term in the linear

model,  quantile  regression  offers  considerable  model  robustness  and  flexibility.  A

common  misconception  is  that  a  simple  segmentation  of  the  unconditional

distribution of the response variable followed by least squares fits for the subsets

would be akin to quantile regression. However, such a segmentation approach might

lead to incorrect results when, for example, the data include outliers (Koenker and

Hallock,  2001).  Quantile  regression in  contrast  uses  all of  the data,  even for  the

extreme quantiles. In this work a constrained version of  quantile regression using

spline-based constraints is applied (Bondell et al. 2010) in order to guarantee that

linear  quantile  curves  for  different  quantiles  do  not  cross,  leading  to  invalid

distributions (e.g. He, 1997). Technical details on the quantile regression method can

be  found  in  Koenker  (2000),  Koenker  and  Hallock  (2001),  Koenker  (2005),  and

references therein, here a brief overview is presented.

The quantile function of a random variable Y is the inverse of its distribution function

(FY) providing, like the distribution function, a complete description of the statistical

properties of the variable. Likewise for a quantile τ the conditional quantile function

of Y given an explanatory variable X, QY(τΙX),  fully captures the relationship between

Y and X, and is the inverse of the corresponding conditional distribution function,

QY(τΙX)=FY
-1(τΙX).  Classical  ordinary  least  squares  regression  is  based  on  the

conditional mean function, the mean of the response variable Y conditional on the

explanatory variable X, denoted by E[YΙX], and the minimization of the residuals ∑i(yi-

E[YΙX=xi])2.  Here  the  conventional  estimation  approach  based  on  the  QR

decomposition method is  applied for  ordinary  least  squares regression.   Similarly

quantile  regression  is  based  on  the  minimization  of  the  sum  of  asymmetrically

weighted absolute residuals ∑iρ(τ)(yi-QY(τΙX)), where ρ(τ) is the tilted absolute value

function (Koenker and Hallock, 2001).  Here the optimization is  performed using a

modified version of the simplex algorithm of  Barrodale and Roberts (1974), which is

described in Koenker and D’Orey (1994).

Quantile regression, as ordinary linear regression, typically assumes independent and

identically distributed errors. The effect of serial dependence on quantile regression

is  the same as for  ordinary regression,  with  inference based on the conventional

variance-covariance matrix becoming invalid. Given that geoscience time series in



general and sea level time series in particular are typically autocorrelated, including

both short-range and long-range temporal dependence (e.g. Barbosa et al. 2008), the

assessment of uncertainty needs to take serial correlation into consideration. 

Despite the many recent developments in quantile regression for time series data

(e.g. Xiao, 2012) the parametrization of the covariance to fully capture the temporal

dependence  of  real  world  time  series  remains  a  challenging  task.  Thus  a  non-

parametric  approach  based  on  statistical  bootstrapping  is  taken  here  for  the

assessment of the uncertainty of quantile trend estimates, as illustrated in Barbosa

et al. (2011). Maximum entropy bootstrapping (Vinod and López-de-Lacalle, 2009) is

a  particularly  useful  resampling  technique  for  non-stationary  time  series  since  it

allows to retain the shape and temporal variability of the original time series in the

bootstrap  replicates.  Here  all  uncertainty  estimates  are  derived from the  median

absolute deviation (MAD) of slope values computed from a set of 500 time series

replicates generated by maximum entropy bootstrap. Error bars are represented as

the slope values from the original time series plus/minus MAD values from time series

replicates.

Sea level trends from satellite altimetry can be significantly influenced by the specific

processing of radar measurements (e.g. Fernandes et al. 2006; Ablain et al. 2015),

particularly corrections such as the wet troposphere correction and orbit parameters.

The uncertainty in sea level trends at the regional scale can be of the order of 2-3

mm/year (Ablain et al. 2015), the largest source of uncertainty being the orbit error

(Couhert et al.  2015).  In the present study only the statistical  uncertainty on the

trend estimate is considered. 

Statistical  tests  are  applied  for  inference  on  the  trends  estimated  by  quantile

regression. The Wald test is applied to compare slopes derived by the ordinary least

squares linear regression and by median regression (Fox and Weisberg, 2011). An F-

test as described in Basset and Koenker (1982), is applied to infer whether trends in

extreme lower (0.05) and upper (0.95) quantiles are significantly different from the

median trend (quantile 0.5). Results of statistical tests are presented in terms of the

corresponding  p-value,  which  is  the  the  probability  of  getting  a  similar  or  more

extreme  result given that the hypothesis under consideration is true. The smaller the

p-value the stronger the evidence in favor of the alternative hypothesis.

The data analysis is performed with the R software (R Core Team, 2015) and maps

are produced with the GMT software (Wessel et al. 2013).

3. Results



First basin-wide trends in sea level quantiles are considered (section 3.1), then local

trends at the global scale and corresponding maps are presented (section 3.2).

3.1. Regional sea level

The quantile regression analysis is illustrated in detail for the regional mean sea level

time series for the Atlantic, Pacific and Indian Ocean basins. Fig. 1 shows the regional

mean sea level time series and the corresponding median (quantile 0.5) and extreme

(quantiles 0.05 and 0.95) quantile trends. Except for the North Atlantic, very similar

slopes are obtained for ordinary and median regression, as well as for the extreme

quantiles. In contrast, the North Atlantic exhibits significant differences between the

central  and the most extreme quantiles.  The Wald test confirms that  the median

slope is significantly higher than the ordinary least squares slope (p-value 5E-06), and

the F-test indicates that for the North Atlantic both lower and upper extreme trends

are significantly lower than the median slope for a 95% confidence level (p-values 8E-

07 and 4E-09, respectively).

For a more complete description of trends in regional mean sea level, quantile trends

are computed for all quantiles from quantile 0.05 to quantile 0.95 in steps of 0.05

(quantiles 0.05, 0.1, 0.15, 0.2,…) and displayed in Fig. 2. The slopes for each quantile

are  represented  by  circles  (°)  and  the  corresponding  uncertainty  by  the  super-

imposed vertical line. For comparison the error bars for the slope value obtained by

ordinary least squares regression are also displayed as horizontal dashed lines (same

value across all quantiles). The results confirm that basin-wide trends are very stable

and robust,  since a very similar  slope value is  obtained across all  quantiles.  The

spatial  averaging reduces local  effects producing a more homogeneous long-term

variability signal. Again the exception is the North Atlantic, with slopes for the lower

and upper quantiles distinct from the slopes for the central quantiles, reflecting the

large fluctuations exhibited by the time series (Fig. 1(b)). 

3.2. Local sea level

Median  regression  trends  from  local  (1º grid)  satellite  altimetry  time  series  are

displayed in Fig. 3(a). The spatial pattern is very similar to the one obtained using

ordinary least squares regression (not shown), and consistent with published maps of

satellite altimetry trends (e.g. Cazenave and Llovel, 2010; Zhang and Church, 2012;

Fukumori and Wang, 2013). However, statistically significant differences are obtained

when  comparing  the  slopes  from median  and  ordinary  least  square   regression.

Figure 3(b) shows the difference of slopes (median - ordinary). Differences which are

not statistically significant for a confidence level of 95% as indicated by the Wald test

are set as zero. The map shows that  the differences are small,  typically below 2



mm/year, but spatially consistent, the largest differences occurring in the equatorial

Pacific  and in  high-variability  areas  associated  with  current  systems.  The median

slopes are higher in the eastern Pacific and lower than the ordinary least squares

slopes in the western equatorial Pacific. 

Trends for the extreme quantiles are compared with the median trends by computing

the  difference  between  the  corresponding  slopes  as  displayed  in  Fig.  4.  Again,

differences which are not statistically significant for a confidence level  of 95% as

indicated by the F-test are set as zero.

In Fig. 4(a) the differences tend to be positive, corresponding to quantile 0.05 slopes

higher than the median slope. The largest differences are associated with western

boundary current systems (Kuroshio, Gulf Stream). In the western equatorial Pacific

the lower quantile trends are systematically higher than the trends in the central part

of the distribution. In contrast Fig. 4(b) shows that differences tend to be negative,

corresponding to quantile 0.95 slopes lower than the median slope. As for the lower

quantile  trends the largest  differences are associated with high-variability  regions

and major currents. In the eastern equatorial Pacific the upper quantile slopes are

significantly lower than the median slopes. 

4. Discussion and conclusions

Both median and ordinary regression trends describe the long-term variability in the

central part of the data distribution, and should be the same in the case of a perfectly

symmetric distribution. However, median regression is more robust to non-symmetric

distributions and to the presence of eventual outliers. Thus the comparison of median

and  ordinary  regression  trends  provides  a  measure  of  symmetry  of  the  data

distribution and of the robustness of the derived slopes. 

In  the  case  of  basin-wide  averaged  altimetry  measurements,  the  median  and

ordinary slopes are very similar (Table 1) confirming that the trends derived for the

Atlantic, Pacific and Indian Ocean basins are very robust. The difference is larger in

the case of the North Atlantic, the median regression slope being significantly higher

than the ordinary least squares regression slope. Furthermore for the North Atlantic

the slopes  for  the smallest  and largest  quantiles  are significantly  lower  than the

median slope. The regional mean sea level time series for the North Atlantic (Fig.

1(b)) exhibits strong oscillations, in particular a marked drop in 2010-2012  that can

explain the downward bias of quantile slopes for the more extreme quantiles. These

features seem to be associated with large scale climate variability and the state of

the North Atlantic Oscillation (NAO), which is known to affect sea-level variability in

the North Atlantic (e.g. Jevrejeva et al. 2005; Woodworth et al. 2007; Tsimplis & Shaw,



2008; Bastos et al. 2013). In particular the lower sea level values in 2010-2012 (Fig.

1(b)) seem to be linked with the strong negative phase of the NAO index for that

period.

In  the  case  of  local  altimetry  time  series  the  differences  between  median  and

ordinary regression trends are larger than for regional mean sea level. In the eastern

equatorial Pacific the ordinary regression slopes are underestimated when compared

with the more robust (and therefore taken as reference) median slopes, while in the

western Pacific the ordinary regression slopes are overestimated. These results are

explained by the strong impact of the 1997-1998 ENSO event in the equatorial Pacific

sea level (e.g. Nerem et al. 1999; Cazenave et al. 2012). The impact of the event in

the ordinary regression slopes is enhanced by its location in the initial part of the sea

level time series, as illustrated for an individual time series in Fig. 6(a). In the eastern

Pacific the strong peak in the initial part of the record pulls up the first part of the

time series when compared to the second half of the record leading to a reduction in

the ordinary regression slope estimate. Conversely, in the western equatorial Pacific

the strong trough in the beginning of the records pulls down the observations in the

beginning of the record, inducing an apparent increasing trend, as illustrated in Fig.

6(b). The quantile regression slopes are more robust to the influence of the 1997-

1998 ENSO event in the sea level time series (in the same sense as the median is

less affected by non-symmetry than the mean) and therefore the median trends are

not as under (over) estimated in the eastern (western) Pacific. 

In terms of trends in extreme quantiles, the largest differences to central trends are

typically larger than 3 mm/year and are also concentrated in the equatorial Pacific,

reflecting the influence of the 1997-1998 ENSO event. In the eastern Pacific, the sea

level time series are characterized by a strong peak in the beginning of the record.

The peak influences the trend estimates for the upper quantiles, pulling-up the initial

part of the time series compared to the last part of the record, and leading to an

upper quantile slope estimate lower than the median slope. The lower quantile trends

are not affected by the peak, thus in the eastern Pacific the lower quantile trends are

similar to the corresponding median trends. The opposite mechanism is in place for

the western equatorial Pacific. The sea level time series are characterized by a strong

trough in the initial part, which leaves unaffected upper quantile slopes but pulls-

down the initial part of the record leading to a lower quantile trend higher than the

corresponding median trend.

Except for the strong influence of the 1997-1998 ENSO event, the quantile regression

analysis  of  the  satellite  altimetry  time  series  shows  that  the  trend  patterns  are

robust.  Furthermore,  similar  slopes are obtained across  all  quantiles,  indicating  a



similar change in all parts of the data distribution. 

The   2-3  mm/yr  current  uncertainty  on  regional  sea  level  trends   from satellite

altimetry (Ablain et al. 2015) is mainly associated with the satellite measurement of

sea level, including the orbit determination and geophysical corrections needed to

convert  the  radar  measurement  to  an  height  estimate.  While  the  differences  in

central trends uncovered in the present study are within this 2-3 mm/yr uncertainty,

they are  associated  only  with  the  trend estimation  itself,  and result  simply  from

applying two different approaches (ordinary least squares or median regression) to

exactly the same altimetry observations, derived using the same orbit and altimeter

parameters.  Furthermore, the differences between ordinary and median regression

estimates are well outside the statistical uncertainty for the corresponding slopes.

Here  uncertainty  is  assessed  by statistical  bootstrapping  and corresponding  time

series oversampling, which leads to small uncertainties.

These differences in ordinary and median regression trends do not imply that one

method is better than the other, rather that the methods reflect different aspects of

the time series, particularly concerning inter-annual variability and extreme events.

The comparison of slopes from ordinary least squares and median regression allows a

quantitative assessment of the influence of inter-annual variability and extremes on

the trend estimates.  The results show a strong influence of the 1997-1998 ENSO

event on trends in the equatorial Pacific. The ordinary regression trends reflect long-

term  variability  incorporating  and  even  amplifying,  due  to  its  location  in  the

beginning of the time series, the effect of the ENSO event in the long-term estimates,

while  median  regression  trends  reflect  long-term  variability  downplaying  that

extreme event influence.

Because of  the exceptional effect on sea level  of  the 1997-1998 ENSO event,  its

influence on ordinary trend estimates for the equatorial Pacific persists even as the

length of the satellite altimetry record increases, since it has the same effect in the

sea  level  time  series  as  an  outlier  observation  would  have.   Therefore   the

computation of trends by median regression is preferable in the equatorial Pacific, as

well as in areas associated with current systems, since the median trends are less

affected  by  the  very  high  variability  typical  in  sea  level  time  series  from these

regions,  allowing  to  reduce  the  influence  of  inter-annual  variability  and  extreme

events on the trend estimates

While the present study focuses only on trends from satellite altimetry records, the

influence of interannual variability on trend estimates is also a relevant issue in the

case of tide gauges, since regional sea levels from tide gauges display substantial



variability and divergent patterns, despite the much longer time series (Jevrejeva et

al. 2014).

The time required for the accurate determination of regional sea level trends from

satellite altimetry was estimated to vary geographically between 5 and 100 years

(Hughes and Williams, 2010) due to oceanic variability. These estimates do not take

into account  any systematic altimetric measurement system errors (Fu and Haines,

2013) and are influenced by sporadic extreme phenomena such as the 1997-1998

ENSO event, reinforcing the importance of the length of sea level time series for the

accurate estimation of linear trends, particularly in the equatorial Pacific.
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Ordinary least squares
(mm/year)

Median regression 
(mm/year)

Atlantic Ocean 2.69 ± 0.045 2.64 ± 0.046 

North Atlantic 1.79 ± 0.033 2.08 ± 0.048 

Pacific Ocean 2.57 ± 0.046 2.62 ± 0.057

Indian Ocean 3.68 ± 0.056 3.70 ± 0.062 

Table 1: Trends (mm/year)  from regional mean sea level time series. Uncertainties

are derived by bootstrapping for both ordinary least squares regression and median

regression.
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Figure 1: Regional mean sea level time series plots and trend lines for quantiles
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Figure 2: Quantile regression slopes for regional mean sea level: (a) Atlantic Ocean,
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and (b) 164 °E 2 °S (western Pacific). 
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Figure 2: Quantile regression slopes for regional mean sea level: (a) Atlantic Ocean,

(b) North Atlantic, (c) Pacific Ocean and (d) Indian Ocean. The slopes are represented

by open circles (°) and the corresponding uncertainty by the super-imposed vertical
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Figure 3: Median regression trends: (a) slopes and (b) difference relative to ordinary

least squares regression (median - ordinary).



Figure 4: Difference between trends for extreme quantiles and the median trend

(quantile – median) for (a) quantile 0.05 and (b) quantile 0.95 .



Figure 5: Local time series of sea level anomalies at (a) 97 °W 0 °N (eastern Pacific)

and (b) 164 °E 2 °S (western Pacific). 


