
DATAFLASKS: epidemic store
for massive scale systems

Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira
High Assurance Software Laboratory

INESC TEC and UMinho
Braga, Portugal

Email: {fmaia,miguelmatos,rmv,jop,rco}@di.uminho.pt

Etienne Rivière
Université de Neuchâtel

Switzerland
Email: etienne.riviere@unine.ch

Abstract—Very large scale distributed systems provide some
of the most interesting research challenges while at the same
time being increasingly required by nowadays applications. The
escalation in the amount of connected devices and data being pro-
duced and exchanged, demands new data management systems.
Although new data stores are continuously being proposed, they
are not suitable for very large scale environments. The high levels
of churn and constant dynamics found in very large scale systems
demand robust, proactive and unstructured approaches to data
management. In this paper we propose a novel data store solely
based on epidemic (or gossip-based) protocols. It leverages the
capacity of these protocols to provide data persistence guarantees
even in highly dynamic, massive scale systems. We provide
an open source prototype of the data store and correspondent
evaluation.

Keywords—Dependability; Epidemic Protocols; Distributed Sys-
tems; Large Scale Data Stores;

I. INTRODUCTION

Some of the most interesting challenges of our time emerge
from the need to deal with very large scale systems. It is
no longer unpractical to consider Internet-scale systems with
thousands or even millions of nodes. Nevertheless, taking
advantage of these resources is not trivial and scalability
concerns arise. In fact, traditional protocols and system designs
often turn out to be inadequate for these scenarios. This
observation is particularly true for data management systems.

In this paper we address the problem of storing data in
very large scale environments. We present a key-value store,
DATAFLASKS, designed for massive scale systems. These
systems exhibit two key characteristics that motivate our design
and render current approaches ineffective. Firstly, massive
scale systems are characterized by very high instability. With
the increase in system size, faults and churn become the rule
instead of the exception [1]. The second characteristic is the
impossibility of attaining any kind of global knowledge at
a single node. Note that any system that relies on global
knowledge, which grows linearly with system size, cannot
scale.

Recently, we have witnessed a surge of proposals for
new data management systems, which typically are key-
value stores [2]–[5]. When compared to traditional relational
databases, these offer a simplified interface and reduced set
of features. An example is the lack of transactional support.
Having said that, these new management systems proved to

be suitable for a significant number of tasks [6] and, notably,
they are able to scale to deployments of hundreds of nodes.
However, they are not able to perform well beyond those
numbers. In fact, most of the new data management systems
are based on structured peer-to-peer protocols [2]–[5]. In
particular, they use a distributed hash table to organize nodes
and distribute data among them. These protocols assume a
moderately stable system and node churn greatly impacts their
performance [7]. The fact these data stores do not handle
churn effectively, greatly impairs their applicability to very
large scale scenarios.

Instead, in the design of DATAFLASKS we propose the
use of unstructured peer-to-peer protocols [8]. We built
DATAFLASKS as a completely decentralized peer-to-peer sys-
tem where there is no distinction between nodes. Every node
runs the same set of algorithms and there is no hierarchy, struc-
ture or coordination of any kind. In particular, we designed
DATAFLASKS based on a stack of gossip or epidemic protocols
which are known for their scalability and resilience under
highly dynamic environments. They have been successfully
used to build several webscale systems and applications [9]
like overlay construction and maintenance [10], [11], con-
sensus [12], data aggregation [13], distributed slicing [14]–
[17] and live video streaming [18]. One key characteristic of
these protocols is that they rely solely on partial data about
the system. In other words, each node makes progress by
looking only at locally available data without any kind of
global knowledge. The result is a key-value storage system
that is able to scale to several thousands of nodes while, at the
same time, cope with very high levels of node churn.

Contributions: We make three main contributions. Firstly,
we propose a novel gossip-based algorithm for scalable and
decentralized organization of system nodes into groups. This
algorithm is part of the core of the DATAFLASKS providing
data distribution and replication. Secondly, we propose a new
key-value data store built entirely over gossip-based protocols
aimed at highly dynamic environments. Finally, we provide an
open source prototype of DATAFLASKS and evaluation of both
the prototype and the group construction algorithm.

Paper layout: The paper is organized as follows. We
begin by describing the design of our key-value store in
Section II. We present a novel gossip algorithm that is at the
core of DATAFLASKS and sketch a proof of its correctness in
Section III. In Section IV we discuss extensions to the group
construction algorithm that render the store effective in real

systems. In Section V, we describe our implementation and
provide evaluation of our prototype in Section VI. Finally,
related work is presented in Section VII and Section VIII
concludes the paper.

II. SYSTEM DESIGN

Along this section we present the design of DATAFLASKS.
We describe the goals that drove our design and give the
intuition behind how it works. Implementation details of the
various components are left for subsequent sections.

DATAFLASKS is a key-value data store with a commonly
used put and get interface. The put operation receives a key,
an object and a version of the object and writes it to the store.
Each stored object may be retrieved through a get operation
that receives the object key and desired version as input. Every
pair (key,version) is considered unique by the data store. The
main goal of DATAFLASKS is to guarantee data persistence
and availability.

Evidently, various versions of each object are possible for
a single key. However, two concurrent write operations for the
same (key,version) pair may lead to a data store inconsistency.
In our design we assume that such concurrency control is
handled by the client application of the data store. In particular,
DATAFLASKS is designed to serve as a very large scale
persistent layer for applications such as the ones described
in [8], [19]–[22]. Once that concurrency control is addressed
externally, it remains to describe how DATAFLASKS guaran-
tees data persistence and availability. Moreover, how it does so
for a system with several thousands of nodes with high levels
of node churn.

The basic mechanism behind DATAFLASKS is the follow-
ing. Any node may receive requests for put and get operations.
When a get is received, if the node holds the correspondent
data, i.e. holds the value correspondent to the requested key-
version pair, it replies to the client. In the case of a put
operation, the node can locally decide to store the data or
not. Note that a node is allowed to decide not to store an
object because we assume that a single node is not able to hold
all key-value pairs. In DATAFLASKS, nodes are organized in
groups and each group is responsible for a subset of the data.
Nodes decide to store or discard data according to the group
they belong to. Furthermore, organizing nodes into groups not
only enables data distribution but also data replication. In fact,
the size of the group will determine the replication factor for
the data it holds. When a node stores the data as it lies in
the corresponding group, it also propagates the request to the
other members of the group for replication. Whenever a node
is not able to satisfy a request, such request is epidemically
disseminated to the other nodes.

Figure 1 depicts the basic mechanism of DATAFLASKS as
well as its architecture. Four key components are present:
request handler, store, group construction and communication.
The request handler, as the name implies, is the component that
allows the node to receive requests and process them issuing
instructions to the other components. Each node has a store
component that is responsible for actually persisting data. It ab-
stracts the medium to which data is persisted which may vary
for convenience. As described earlier, our data store relies on a
novel group construction algorithm which is abstracted in the

group construction component. This component is responsible
for maintaining and making available to other components,
information about the group the node belongs to. Finally, the
communication component serves as an abstraction for a set
of services needed by the other components in order to be
able to exchange messages with other nodes in the system. In
particular, it abstracts the request dissemination protocol.

DataFlasks

Client A

Client B

Request Handler

Store Group
Construction

Communication

Fig. 1. Dataflasks Overview Architecture.

The two core challenges of DATAFLASKS are request
dissemination and dividing nodes into groups. In our data store
we rely on epidemic dissemination to route requests and on
a novel gossip protocol for group construction. Epidemic dis-
semination has been the subject of extensive work and usable
protocols exist [23]–[28]. On the contrary, the group construc-
tion protocol was designed specifically for DATAFLASKS and
is the subject of Section III.

III. GROUP CONSTRUCTION

DATAFLASKS nodes must be divided into groups in order
to distribute data and every node must learn to which group
it belongs. In this Section we present an algorithm that is
able to organize several thousands of nodes into groups in
a robust and scalable way. The algorithm receives as an input
the size of the groups to construct. This size is user defined
and, by configuration, every node in the network learns the
same desired group size at start up.

We begin with some remarks that give the intuition behind
the design of the algorithm. Next, we present a simplified
version of the algorithm and sketch a proof of its correctness.
In subsequent sections we show how it can be extended in
order to be faster and more effective.

A. Design

In the design of the protocol it is important to take into
account that its main goal is to divide nodes into groups
for data distribution and replication. In this scenario, each
time a node changes group it needs to perform state transfer
procedures. The design of our group construction algorithm
aims at minimizing these procedures, which are costly.

Algorithm 1: Determining to which group a certain key-
value pair belongs.
1 Method group(key):
2 key hash← hash(key)
3 key position← key hash/hash max value
4 group← dkey position ∗ ngroupse
5 return group

At each node, the algorithm provides an estimation of
the number of groups needed to satisfy the desired group
size (or, in this context, replication factor) and, from those
groups, the group the node belongs to. Data distribution is
done by assigning key-ranges to each group. This is achieved
by determining to which group a certain key belongs following
the procedure of Algorithm 1. We assume the existence of an
hash function (hash in line 2). The hash function maps the
keys with arbitrary range size into a fixed size range, trying to
do so as evenly as possible over the target range. Assuming
the target range is]0,hash max value], it is possible to map
each key to a position in the range]0,1] (lines 2 and 3). With
this mapping, it is straightforward to calculate the group a key
belongs to (line 4). Note that, following this procedure data
is distributed and balanced throughout the various groups and
every node can locally determine if a certain key-value pair
belongs in its data store.

Using this data to group mapping, we designed the algo-
rithm to always consider the number of groups to be a power
of two. Consider Figure 2. Forcing the number of groups
(ngroups) to be a power of two, results in a well defined
set of possible group configurations. Each configuration is
associated with a level number where ngroups = 2level. An
important thing to notice is that the mapping between the key
and group is stable as the level increases. Once each key
is mapped to a]0,1] range, its position is preserved across
different configuration levels as depicted by the black arrow in
Figure 2. The goal of this design is to minimize state transfers
between nodes every time there is an group change. In fact,
when a configuration level is increased, nodes do not need to
transfer any data. Deleting spurious data is even optional and
may be performed only if space is needed. Conversely, when a
level is decreased, state transfers are made only between pairs
of groups distributing and balancing the task.

B. Algorithm

Typically, a gossip protocol works as follows. Every node
knows a set of other nodes in the network, which we call view.
Periodically, each node contacts one ore more nodes in its view
and shares knowledge with them. Through these periodical
exchanges each node is able to gather sufficient information to
progress. Strikingly, many gossip protocols are effective even
if the size of the view only grows logarithmically with the
size of the system. This characteristic renders these protocols
highly scalable. Even so, the node view must be populated.
This problem is addressed by a specific class of protocols,
which are themselves gossip protocols and which implement
a Peer Sampling Service [10], [29]–[31]. These protocols
provide each node with a random stream of peers which is used
to populate the node view. Our group construction protocol

1

1 2

1

1

(...)

Level

0

1

3

(..)

2 2 3 4

2 3 4

Group Configuration

Key Range

5 6 7 8

Fig. 2. Data to group mapping and group levels.

assumes the existence of such a service. In particular, we
consider Cyclon [10] as the Peer Sampling Service.

Cyclon works by periodically exchanging messages con-
taining a set of random node references from the network.
These references contain the information needed to contact
the corresponding nodes. For the purpose of simplicity, we
consider that these references are the node identification num-
bers and that knowing a node identification number (id) is
sufficient to be able to contact it. In our protocol we leverage
the existence of the PSS taking advantage of the messages it
exchanges. Each time a PSS message containing a random
set of peers from the network is received, a copy of this
message is delivered to our algorithm. Our protocol reacts to
the reception of such messages and, solely based on them,
converges to the desired groups configuration. We consider that
nodes are completely connected through lossy communication
channels [32].

The simplified version of the group construction algorithm
is presented in Algorithm 2.

The protocol has two parameters. The desired group size
and the current node identification. Every node in the system
runs the same protocol and is initialized with the same group
size (groupsize). The node identification (id) uniquely identi-
fies each node.

Upon initialization every node considers the system as a
single group and that it belongs to that group. To this end it
initializes variables ngroups and group with the value 1. The
former variable stores the number of groups the node estimates
should exist to comply with the desired group size. The
latter stores the estimation of the group the node belongs to.
Additionally, each node has a list variable (localview), initially
empty, where it stores peers that belong in his group. As the
protocol runs, the estimation of ngroups converges towards a
number that divides the system into groups of groupsize nodes.

An important initialization step is generating the node
position (pos). The node position is a number in the interval
]0, 1] generated at node start and that remains constant while
the node is alive. This value allows nodes to distribute them-
selves into groups. The position is calculated using a number

Algorithm 2: Gossip group construction algorithm.

input : groupsize, id

Data: float pos← random()
/* random number in]0, 1] */
Data: ngroups← 1
Data: group← 1
Data: set localview ← {}

1 upon reception of m ← set of (id, pos) from PSS:
/* add new peers to localview */

2 foreach peer in m do
3 if group(peer.pos, ngroups) == group then
4 localview = localview ∪ {peer}/* possibly

rewriting peer */

/* clean localview */
5 foreach peer in localview do
6 if group(peer.pos, ngroups)! = group then
7 localview = localview \ {peer}

/* need to merge or split? */
8 if |localview| < groupsize then

/* Should Merge. */
9 if ngroups > 1 then

10 ngroups← ngroups/2

11 if |localview| > groupsize then
/* Should Split. */

12 ngroups← ngroups ∗ 2
/* recalculate my group */

13 group← group(pos, ngroups)

Algorithm 3: Group calculation method.
1 Method group(position, ngroups):
2 group← dposition ∗ ngroupse
3 return group

generator, which we assume is uniformly random across the
entire network. Note that, with the node position and knowing
the number of groups (ngroups) it is trivial to calculate the
group to which the node belongs. The node position places
the node in a range]0,1]. Consequently, to calculate the node
group it suffices to divide such range into ngroups smaller
ranges and determine in which of those the node position
fits. Moreover, by the uniformity of the number generator,
nodes will be evenly distributed across groups. The node group
calculation is abstracted in line 13 of Algorithm 2 and shown
in Algorithm 3.

DATAFLASKS group construction algorithm works as a
passive thread that waits for messages from the Peer Sampling
Service, which contain references for other nodes in the
network. In DATAFLASKS, node references also include the
node position. Recall that the node position is calculated only
once and remains unchanged while the node is alive. It is thus
safe to disseminate the position alongside the node id.

Upon the reception of a PSS message (line 1), the protocol
performs four tasks. First, for each node reference in the
message it checks if the correspondent node belongs to the
same group (lines 2 to 4). If it does, it adds such reference to
its local view (localview). Second, it checks if every reference
in its local view still belongs to the same group (lines 5 to 7).
This is necessary because nodes may change their estimation

for ngroups. Consider a scenario where a node estimates that
the correct value for ngroups is 2. In that case, half of the
system nodes belong to the same group as the node. However,
if the node refines its estimation to a value of ngroups of 4,
then only a quarter of the system nodes can now belong to its
local view. Following this process, localview holds references
for peers that each node estimates to belong in its group.
Consequently, the size of localview is the group size estimation
at each node. At the third step of the algorithm (lines 8 to 12)
such group size estimation is compared with the groupsize
defined by the user. If the current size of localview is smaller
or greater than groupsize the node refines its estimation of
ngroups in order to correct such violation. For the case it is
greater that desired, ngroups is multiplied by two in order to
lower the group size. We name this operation a split. Inversely,
nodes perform a merge operation when there are insufficient
nodes in the group. Finally, after adjusting ngroups, each node
recalculates the group it belongs to (line 13).

With the continuous arrival of PSS messages the protocol
continuously improves the estimation for ngroups. In the
remainder of the Section, we present a proof of correctness for
the simplified version of the protocol and present simulation
results that show it converges to the correct group configura-
tion.

C. Proof of correctness

The objective of Algorithm 2 is to group an arbitrary large
number of nodes into sets of size groupsize (being groupsize
the desired replication factor). In the following we sketch
the proof that given a stable membership then the algorithm
eventually converges and stabilizes.

Let us assume N nodes, such that N
groupsize = 2level for

some level ≥ 0. These nodes do not fail or leave the system.
Nodes are fully connected by lossy communication channels,
have access to a Peer Sampling Service that provides each
node with a periodical random sample of nodes from the entire
system, and also to a uniform random number generator in the
interval]0,1].

Each node manages a variable ngroups. We show that,
starting with ngroups = 1, each node i will eventually reach
ngroups = N

groupsize and stabilize there. We do so by firstly
1) showing that the algorithm has an upper bound N

groupsize
on the number of groups it can split the system into, then
that, 2) at each node, ngroups cannot be indefinitely smaller
than N

groupsize , and finally that 3) eventually, once ngroups =
N

groupsize , ngroups no longer changes.

In the following, consider that for each level l, j is a
neighbor of i if it belongs to the same group of i at l. From
the group calculation group ← dposition ∗ ngroupse (line 2
of Algorithm 3) if a node j is a neighbor of i at level l then
it is a neighbor of i for every level k where k < l.

1) The algorithm has an upper bound N
groupsize on the

number of groups it can split the system into. Assume not,
that is, eventually ngroups > N

groupsize .

Let 2g = N
groupsize . Once ngroups > N

groupsize then the
node is at least at level g + 1. It means that the node has
performed a split at level g, which means that |localview| >

groupsize at level g. However, this is not possible since for
2g groups with N nodes there are at most groupsize nodes
per group. A contradiction.

2) At each node, ngroups cannot be indefinitely smaller
than N

groupsize . Again, for a contradiction, assume that
ngroups < N

groupsize is always true.

As ngroups < N
groupsize then i must be at some level

k < g. Because any neighbor of i at level k is also a neighbor
of i at any level j < k, then by the PSS properties all neighbors
of i at level k will be eventually addded to i’s localview. These
nodes will not be removed from i’s localview (lines 5 to 7)
while i is at any level j ≤ k. Since the neighbors of i at any
level k < g is larger that groupsize, i’s localview at level
k will eventually grow larger than groupsize and i splits. At
level g − 1 i eventually splits and ngroups = N

groupsize . A
contradiction.

3) Eventually, once ngroups = N
groupsize , ngroups no

longer changes.

Let 2g = N
groupsize . Because any neighbor of i at level

g is also a neighbor of i at any level k < g, then by the
PSS properties all neighbors of i at level g will be eventually
added to is localview. These nodes will not be removed from
i’s localview (lines 5 to 7) while i is at any level k ≤ g.

Once, by 2) i reaches level g and all its neighbors at level
g belong to localview then i no longer merges (lines 8 to 10).
And by 1), i never reaches any level larger than g. Therefore
ngroups no longer changes and the node stabilizes.

D. Convergence

In order to validate the convergence of our algorithm we
ran a simulation1. In this simulation we considered 10.240
nodes and a Peer Sampling Service that delivered messages
with random references of nodes. Additionally, uniformly
distributed position values were generated for every node and
groupsize defined to 10. For this simulation in particular the
correct number of groups (ngroups) is 1024.

At each simulation cycle a single PSS message was deliv-
ered to each node to be processed. The size of the PSS message
influences directly the speed of convergence of the protocol.
Typically, the message size increases logarithmically with the
system size [24]. We considered PSS messages containing 20,
30, 40, 50 or 100 node references2. In Figure 3 we depict the
results of the simulations. The plot shows the percentage of
nodes that hold a wrong estimation for ngroups per cycle.

From the results we can verify that the protocol converges
to the desired configuration. It is also possible to see that, as
expected, increasing the PSS message size improves the per-
formance of the protocol. Nevertheless, note that it converges
even for very small message sizes with respect to the size of
the system.

1Code used for simulations is available at github.com/fmaia/dataflasks sim
2Note that the protocol converges even with smaller message sizes however,

considering the system size, smaller messages lead to slow convergence.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 i
n

 t
h

e
 w

ro
n

g
 g

ro
u

p

Cycles

Message size
20
30
40
50

100

Fig. 3. Convergence of 10.240 nodes running the simplified version of the
group construction algorithm.

E. Limitations

In this simplified version, the algorithm has also two
important limitations. On one hand, if the desired group size
does not exactly divide the number of nodes in the system
in such way ngroups is a power of two, the algorithm does
not stabilize. For instance, if in simulation of Figure 3 the
number of nodes was 10.240 plus one the system would not
stabilize completely. One group would detect an extra node in
the system would not stabilize for any estimation of the number
of groups. On the other hand, nothing is said about how it deals
with churn. These two simplifications allow us to convey the
main intuition behind the protocol in a straightforward way.
Extensions to the basic protocol are proposed in Section IV to
solve both limitations.

IV. EXTENSIONS

So far, the presented algorithm applies to a hypothetical
system absolutely stable and with a round number of nodes. In
practice however, the algorithm most probably never stabilizes
but instead adapts to the dynamics of the membership. In this
Section, we describe extensions to the algorithm of Section III
in order to overcome the limitations identified previously. The
first extension allows the protocol to support arbitrary system
sizes. Next, we describe how the protocol can be extended to
be able to handle churn.

A. Handling arbitrary system sizes

As highlighted previously, the simplified algorithm pre-
sented in Section III is very sensitive with respect to the defined
group size. The algorithm stabilizes if and only if there exists
a power of two, ngroups, that exactly divides the system size
in groups of groupsize nodes. The fact is that aiming at an
exact group size (lines 8 to 12 in Algorithm 2) is restrictive.
Moreover, for the type of systems we are considering knowing
the exact size of the system is unfeasible. In order to tackle
this limitation, we extend the algorithm in order to allow the
definition of minimum and maximum group size thresholds.
This simple enhancement allows the protocol to converge in
real case scenarios. Algorithm 4 depicts the changes needed
to add this extension.

github.com/fmaia/dataflasks_sim

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 i
n
 t
h
e
 w

ro
n
g
 g

ro
u
p

Cycles

Message size
20
30
40
50

100

(a) Simulation of the flexible group size mechanism with 10.240 nodes.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 i
n
 t
h
e
 w

ro
n
g
 g

ro
u
p

Cycles

Message size
20
30
40
50

100

(b) Simulation of the flexible group size mechanism with 15.000 nodes.

Fig. 4. Group construction convergence extended with flexible group size.

Algorithm 4: Extended group construction algorithm.

input : min groupize, max groupsize, id

1 (...)

2 upon reception of m ← set of (id, pos) from PSS:
3 (...)

/* need to merge or split? */
4 if |locaview| < min groupsize then

/* Should Merge. */
5 if ngroups > 1 then
6 ngroups← ngroups/2

7 if |localview| > max groupsize then
/* Should Split. */

8 ngroups← ngroups ∗ 2
9 (...)

In order to validate that the proposed extension does not
impair the convergence of the protocol we conducted two
simulations. In the first simulation, the conditions were similar
to those of Section III for a system with 10,240 nodes and
configured min groupsize = 5 and max groupsize = 15.
As can be observed in Figure 4(a) the protocol converges
preserving the desired behavior of the simplified version. Strik-
ingly, the algorithm converges even faster when configured
with this extension. This is due to the fact that splitting and
merging decisions are delayed due to the threshold flexibility.
Such delay allows the node to preserve more node references in
its local view per cycle. These references allow better splitting
and merging decisions speeding up the convergence process.

We then ran a second simulation. In this simulation we used
the same configurations of the previous one but, this time, for
a system with 15,000 nodes. As observable in Figure 4(b), the
protocol still converges to the desired configuration.

It is important to note that the maximum replication factor
value must be at least double of the minimum. As the number
of groups is always a power of two, choosing the replication
thresholds this way avoids frontier cases where the system may
enter a cycle of consecutive merge and split operations.

B. Handling churn

In order for the group construction algorithm to be useful it
needs to be able to handle system dynamics. Nodes that leave
the system must be eventually removed from every node’s view
while nodes entering the system must be incorporated. As
stated previously, the group construction algorithm assumes
the existence of a Peer Sampling Service. By design, the
Peer Sampling Service is able to handle system dynamics.
Nodes that leave the system are eventually removed from
every sample the PSS delivers. Joining nodes, eventually, are
sampled with the same probability as any other node in the
system.

Having said this, the problem of handling nodes joining the
system is immediately solved. New nodes are eventually sam-
pled by the PSS and incorporated into the group construction
algorithm. However, as it is, the group construction algorithm
is unable to handle node departure. In fact, even if not
subsequently sampled by the PSS, departure nodes for which
there is a reference stored in a node view are never forgotten
if they belong to the same group as the node. This limitation
can be overcome introducing an aging mechanism for node
references. Each node reference is now tagged with an age
property. When a node reference is delivered by the PSS it is
tagged with age 0. Each time a new PSS message is delivered,
every node sees its age increased by 1. With this extension, it
is now possible to define a maximum age threshold to allow
node references to be forgotten when obsolete. Note that, if a
node leaves the system eventually ceases to be sampled by the
PSS. Consequently, every of its node references stored in any
of the active nodes will inevitably age beyond the age threshold
and eventually be forgotten. As a result, the protocol is now
able to handle node departure.

Nevertheless, it is necessary to define an adequate maxi-
mum age threshold. Intuitively, such threshold must be higher
than the number of cycles required to refresh a reference to a
valid node. Note that, if this was not the case, valid references
would be continuously removed impairing the convergence of
the algorithm. In practice this means defining the age threshold
superior to the time the PSS needs to sample a certain node

reference. Unfortunately, this is too slow. As the system size
grows, the probability of a certain node to be sampled by
the PSS in each cycle decreases. Consequently, the number of
cycles needed to make sure a certain node is sampled becomes
unmanageably high.

In DATAFLASKS, we tackle this limitation by adding an
active thread to the group construction algorithm. Periodically,
each node produces a node reference to itself with age 0. It
then sends such reference, alongside with all the references
in the local view, to all the nodes it estimates to be in the
same group. This simple mechanism, allows refreshing node
references. Note that, once a node has left the system, every
reference to it that may exist in the system will stop being
refreshed. Eventually, it is removed from every node’s local
view as desirable. The active thread may be seen as an heart
beat mechanism. An important thing to notice is that, although
this mechanism is not required for convergence, it improves
significantly the algorithm’s speed of convergence. As nodes
exchange references with nodes from the same group period-
ically, nodes receive useful references without waiting for the
PSS to sample them all. Note that, as described in [33], the
Peer Sampling Service randomness properties are essential but,
typically, not sufficient to achieve good convergence results.

Figure 5, depicts the results for a simulation of the group
construction algorithm with the all the extensions described
so far. The simulation was configured with 15,000 nodes,
min groupsize = 5, max groupsize = 15 and different
view sizes. Additionally, the maximum age threshold was
defined to 30 and the active thread is launched every 15 cycles.
As observable, the algorithm still converges to the desired
organization and is now much faster.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 i
n

 t
h

e
 w

ro
n

g
 g

ro
u

p

Cycles

Message size
20
30
40
50

100

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

Fig. 5. Convergence of 15.000 nodes running the extended version of the
group construction algorithm.

It remains to access the actual ability of the algorithm
to reconfigure itself when there is a massive departure or
entrance of nodes. Note that, with the extension considered
for handling arbitrary system sizes, moderate system dynamics
are inherently handled. In order to force system reconfiguration
it is necessary that the number of nodes entering or leaving
the system be sufficient to force a split or merge operation
respectively. In Figure 6, we depict the results for two simula-
tions. Figure 6(a) presents the results for an experiment where

7,500 nodes are added to a stable system of 7,500 nodes.
Such membership change is made at cycle 500. The line in
the Figure represents the percentage of nodes with a wrong
estimation for the number of groups. Note that the expected
estimation changes at cycle 500. In this case, the configuration
dictates that initially the correct number of groups is 512. With
the addition of another 7,500 nodes, the number of groups
is expected to be 1,024. Consequently, until cycle 500, the
line depicts the percentage of nodes that do not estimate the
number of groups to be 512, after such cycle it depicts the
percentage of nodes that do not estimate it to be 1,024. As it
is observable, after the abrupt addition of nodes the algorithm
is able to converge to the new configuration.

In an analogous experiment, 50% of the nodes were
removed from a 15,000 node stabilized system. The results
are depicted in Figure 6(b). In this case, until cycle 500 the
plot depicts the percentage of nodes that have a number of
groups estimation different from the 1,024. After cycle 500,
it depicts the percentage of estimations that are not 512. In
fact, the removal of 50% of the system nodes forces the
algorithm to perform a merge operation in order to preserve the
replication factor above the minimal threshold value. Similarly
to the previous experiment, the algorithm is able to converge
as desired.

V. IMPLEMENTATION

Having validated the core components of DATAFLASKS it
remains to show it preserves data persistence. For this purpose
we implemented a complete DATAFLASKS prototype in Java3.
Additionally, we implemented a DATAFLASKS binding to
the Yahoo! Cloud Serving Benchmark (YCSB) [34]. Along
this Section we discuss some implementation details of the
prototype and the YCSB binding.

Our Java implementation roughly follows the architecture
depicted in Figure 1. Nodes communicate through UDP sock-
ets and the current prototype assumes all nodes to be in the
same network. Such assumption allows the nodes to contact
each other knowing only their IP addresses. Problems arising
from removing this assumption are out of the scope of the
present paper.

The group construction component includes the algorithm
described in Section III with all the extensions of Section IV
and a version of the Cyclon algorithm [10] serving as Peer
Sampling Service. The prototype also includes a boot compo-
nent that initiates the Cyclon protocol. Even though this is a
simplification, it doesn’t affect the behavior of DATAFLASKS .
It replaces the node joining procedure described in [10] by
providing initial random sets of peers to populate the node’s
initial view.

The store component is currently an in-memory store. Our
prototype is modular and the store can be replaced with a disk
based one, however, because in our evaluation we consider
that when a node fails all data is lost, an in-memory store is
adequate.

For data dissemination, the current implementation of
DATAFLASKS uses a combination of two mechanisms. Firstly,

3The DATAFLASKS prototype is open source and available at github.com/
fmaia/dataflasks

github.com/fmaia/dataflasks
github.com/fmaia/dataflasks

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 i
n
 t
h
e
 w

ro
n
g
 g

ro
u
p

Cycles

(a) Simulation of 7,500 nodes. Number of nodes doubled at cycle 500.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 i
n
 t
h
e
 w

ro
n
g
 g

ro
u
p

Cycles

(b) Simulation of 15,000 nodes. At cycle 500, 7,500 nodes are removed from
the simulation.

Fig. 6. Simulations of the group construction algorithm subject to churn.

each request is disseminated in an infect and die model [24].
To this end, each node forwards each request to the peers
in their Cyclon view. The size of the view is considered to
be large enough to provide good dissemination properties as
described in [24]. Note that, requests are not required to reach
all nodes in the system. It is sufficient to ensure it reaches some
nodes of each group. Moreover, once a request reaches a node
belonging to the group of interest, such node disseminates it
to the nodes in its group. Secondly, to ensure data reaches
all nodes that must replicate it, DATAFLASKS uses an anti-
entropy mechanism [23]. This mechanism allows nodes to
periodically restore possibly missing data replicas.

Finally, we note the following important aspect of the
YCSB binding. The YCSB system must be able to discover
DATAFLASKS nodes in order to issue data requests. This
functionality is provided by a Load Balancer component in
our prototype. Currently, this component provides YCSB with
random nodes sampled from the system. This is sufficient
for our proof of concept but many optimizations may be
implemented in this component. The most simple one would
be caching. Once a node has satisfied a request for a certain
key, i.e. belongs to a certain group, it may be stored with
such information. Subsequent requests can then be judiciously
routed to appropriate nodes.

VI. EVALUATION

Having described our DATAFLASKS prototype, in this
Section we present a set of experiments to validate persistence
guarantees of our system. Our prototype is written in Java code
and not binded to any specific simulation framework. However,
we do not have sufficient machines at our disposal for the scale
we target. Consequently, we used the Minha framework [35].
This framework emulates various Java Virtual Machines on top
of a single one which makes it possible to run multiple hosts
on a single machine. In our case we used a machine with
an AMD Opteron 6172 (24 core at 2.1GHz) and 128GB of
memory. As a result, we are able to evaluate DATAFLASKS in
a very large scale environment while, at the same time, provide

a Java prototype that is actually ready for deployment in a real
scenario.

In our experiments we ran 1000 nodes and populated
DATAFLASKS with 200.000 data objects. DATAFLASKS was
run with the extended group construction algorithm. We con-
figured the Peer Sampling Service to exchange messages every
2 seconds and the active group construction mechanism every
15 seconds. Additionally, the anti-entropy mechanism was
configured to run at intervals of 30 seconds.

We subjected the system to different levels of churn and
recorded the number of replicas per key each 10 seconds.
Churn is implemented by removing a node and adding a
fresh one preserving the position distribution of the nodes
removed. We assume that churn is uniform across the entire
system, which in a very large scale scenario means that nodes
leaving and entering are uniformly distributed by all groups.
Consequently, in our experiments, subjecting the system to
10% of churn means subjecting each group to 10% of churn.
Moreover, churn is applied each 60 seconds for 5 minutes. The
results of the experiments are depicted in Figure 7.

 0

 5

 10

 15

 20

 25

 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
re

p
lic

a
s

Time (s)

1% of churn
10% of churn
15% of churn
20% of churn
25% of churn

Fig. 7. DATAFLASKS behavior for different levels of churn.

As it is observable, during the churn phase, the average
number of replicas is not constant as it is impaired by the
departure of nodes. However, DATAFLASKS is able to repair
the number of replicas even for churn as high as 25%.

VII. RELATED WORK

Early work on epidemic protocols was applied to replicated
database management [23]. Such work is intrinsically related
with ours as DATAFLASKS is built solely based on epidemic
/ gossip protocols. However, our epidemic store is designed to
cope with high levels of churn and massive scale systems. Full
replication of [23] impedes its applicability to these scenarios.

PAST [36] and OceanStore [37] are large scale storage
systems that resemble our DATAFLASKS store for the use
of a peer-to-peer, self-organizing overlay network for routing
and data discovery. PAST provides a simpler, similar to ours,
data model while OceanStore provides some transactional
guarantees. Both clearly differ from DATAFLASKS by using
structured overlays (Pastry [38] and Tapestry [39] respec-
tively). Our data store is solely based on unstructured peer-
to-peer protocols.

Classical relational database management systems offer
strong data consistency models that require coordination pro-
tocols for distribution. These protocols are known to scale only
to a few dozens of nodes [40]. Following this observation
distributed storage systems have been the focus of intense
research work where data consistency is relaxed privileging
scalability properties. Several large scale storage systems were
proposed offering these relaxed consistency models which are
similar to the key-value data model used in DATAFLASKS.
Bigtable [5], Dynamo [3], Cassandra [2] and PNuts [4] are
the most prominent examples of these data stores. Although
these data stores are suitable for a number of tasks and are
able to scale to hundreds of nodes they still rely, similarly to
PAST and OceanStore, on a Distributed Hash Table (DHT)
such as Chord [41] or variants. The exception being Bigtable
which in turn requires a set of master nodes, which is still
impractical in very large scale scenarios. Relying on structured
overlays impairs their ability to cope with high levels of churn,
which are characteristic of DATAFLASKS target environments.
In fact, [7] shows that current implementations of DHTs
struggle for churn rates observable in real peer-to-peer systems.
Furthermore, such work notes that reactive response to churn
is insufficient and proposes a periodic, proactive approach for
dealing with system dynamics. We argue that using proactive
unstructured overlays is the suitable approach in these high
churn, highly dynamic scenarios. Additionally, [42] shows that
proactive approaches to data replication allow systems to avoid
undesirable network spikes that reactive approaches can create
after detecting some failure.

In this paper we propose a group construction algorithm.
A class of gossip-based protocols that similarly allow to group
nodes into groups is distributed slicing [14]–[17]. Slicing
protocols could be used for data distribution and replication in
DATAFLASKS. However, with these protocols it is not possible
to control directly the group size. It is possible to define the
group size as a proportion of the total system size but this
is impractical. Note that, in the target scenario, knowing the
total system size is unattainable. This renders controlling of the
replication factor virtually impossible using slicing techniques.

VIII. DISCUSSION

In this paper we presented DATAFLASKS, an epidemic
data store for very large scale environments. In order to
build DATAFLASKS we designed a new gossip-based protocol,
completely decentralized, that autonomously organizes several
thousands of nodes into groups. Moreover, it organizes nodes
into groups of parameterizable size without the need to have
nodes knowing this size. The protocol is designed to integrate
with DATAFLASKS minimizing data transfer between nodes
when replication levels need to be repaired. Additionally, we
sketch a proof of correctness of the algorithm as well as
simulation results that validate its convergence properties.

With the group construction algorithm validated we eval-
uate DATAFLASKS as a whole. We provide a complete
DATAFLASKS open source prototype, which can be run both
on top of the Minha framework [35] as well as in a real
environment. Experiments with DATAFLASKS show that data
persistence is guaranteed even in the presence of high levels of
churn. We argue that our results support a proactive approach
to data replication in very large scale scenarios.

DATAFLASKS opens some interesting research paths for
future work. Firstly, any client application of our data store
relies on a load balancer component for node discovery.
The implementation of this load balancer is an interesting
challenge. In fact, the load balancer should provide the client
with judiciously chosen nodes to increase the performance
of the data store. However it needs to do so still relying
only on partial knowledge of the system raising some design
challenges. Specially taking into account highly dynamic sys-
tems. Secondly, DATAFLASKS relies on a number of config-
uration parameters. Researching autonomous configuration of
the data store is a research path worth pursuing. Finally, on
the practical side, it is important to evaluate the performance
of DATAFLASKS when compared with other key-value stores.

ACKNOWLEDGMENT

This work is partially financed by the ERDF - Euro-
pean Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness), by
National Funds through the FCT - Fundação para a Ciência e
a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) with grant SFRH/BD/71476/2010 and by Project Smart-
grids - NORTE-07-0124-FEDER-000056, co-financed by the
North Portugal Regional Operational Programme (ON.2 – O
Novo Norte), under the National Strategic Reference Frame-
work (NSRF), through the European Regional Development
Fund (ERDF).

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in Proceedings of the
5th USENIX Conference on File and Storage Technologies. USENIX,
2007.

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” in ACM SIGOPS Operating Systems Review. ACM,
2010.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in The ACM Symposium on
Operating Systems Principles. ACM, 2007.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” in The International Journal
on Very Large Data Bases. Springer Verlag, 2008.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a
distributed storage system for structured data,” in The Symposium on
Operating Systems Design and Implementation. USENIX, 2006.

[6] N. Leavitt, “Will NoSQL databases live up to their promise?” in
Computer. IEEE, 2010.

[7] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a DHT,” in Proceedings of the Annual Conference on USENIX Annual
Technical Conference. USENIX, 2004.

[8] F. Maia, M. Matos, R. Vilaca, J. Pereira, R. Oliveira, and E. Riviere,
“Dataflasks: An epidemic dependable key-value substrate,” in The
International Workshop on Dependability of Clouds, Data Centers and
Virtual Machine Technology. IEEE, 2013.

[9] E. Rivière and S. Voulgaris, “Gossip-based networking for internet-
scale distributed systems,” in Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2011.

[10] S. Voulgaris, D. Gavidia, and M. V. Steen, “CYCLON: Inexpensive
membership management for unstructured p2p overlays,” in Journal of
Network and Systems Management. Springer, 2005.

[11] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Scamp: Peer-to-peer
lightweight membership service for large-scale group communication,”
in International COST264 Workshop on Networked Group Communi-
cation. Springer Verlag, 2001.

[12] F. Maia, M. Matos, J. Pereira, and R. Oliveira, “Worldwide consensus,”
in IFIP International Conference on Distributed Applications and
Interoperable Systems. Springer Verlag, 2011.

[13] P. Jesus, C. Baquero, and P. S. Almeida, “Fault-tolerant aggregation
for dynamic networks,” in IEEE Symposium on Reliable Distributed
Systems. IEEE, 2010.

[14] A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Ray-
nal, “Distributed Slicing in Dynamic Systems,” in The International
Conference on Distributed Computing Systems. IEEE, 2007.

[15] V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R. van
Renesse, “Sliver, A fast distributed slicing algorithm,” in Symposium
on Principles of Distributed Computing. ACM, 2008.

[16] F. Maia, M. Matos, E. Rivière, and R. Oliveira, “Slead: low-memory
steady distributed systems slicing,” in IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer Verlag,
2012.

[17] ——, “Slicing as a distributed systems primitive.” in 6th Latin-
American Symposium on Dependable Computing. IEEE, 2013.

[18] M. Matos, V. Schiavoni, E. Rivière, P. Felber, and R. Oliveira,
“LayStream: composing standard gossip protocols for live video stream-
ing,” in The International Conference on Peer-to-Peer Computing.
IEEE, 2014.

[19] R. Vilaça, R. Oliveira, and J. Pereira, “A correlation-aware data
placement strategy for key-value stores,” in 11th IFIP International
Conference on Distributed Applications and Interoperable Systems.
Springer Verlag, 2011.

[20] R. Vilaça, F. Cruz, and R. Oliveira, “On the expressiveness and trade-
offs of large scale tuple stores,” in The International Symposium on
Distributed Objects, Middleware, and Applications. Springer Verlag,
2010.

[21] R. Vilaça and R. Oliveira, “Clouder: a flexible large scale decentral-
ized object store: architecture overview,” in Proceedings of the Third
Workshop on Dependable Distributed Data Management. ACM, 2009.

[22] M. Matos, R. Vilaça, J. Pereira, and R. Oliveira, “An epidemic approach
to dependable key-value substrates,” in The International Workshop on
Dependability of Clouds, Data Centers and Virtual Machine Technol-
ogy. IEEE, 2011.

[23] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson, “Epidemic
algorithms for replicated database maintenance,” in Proceedings of the
sixth annual ACM Symposium on Principles of distributed computing.
ACM, 1987.

[24] P. Eugster, R. Guerraoui, A. Kermarrec, and L. Massoulié, “From
epidemics to distributed computing,” in Computer. IEEE, 2004.

[25] A.-M. Kermarrec and M. Van Steen, “Gossiping in distributed systems,”
in ACM SIGOPS Operating Systems Review. ACM, 2007.

[26] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov,
and A.-M. Kermarrec, “Lightweight probabilistic broadcast,” in Acm
Transactions on Computer Systems. ACM, 2003.

[27] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic
reliable dissemination in large-scale systems,” in IEEE Transactions
on Parallel Distributed Systems. IEEE, 2003.

[28] P. Felber, A.-M. Kermarrec, L. Leonini, E. Rivière, and S. Voulgaris,
“Pulp: An adaptive gossip-based dissemination protocol for multi-
source message streams,” in Peer-to-Peer Networking and Applications.
Springer US, 2012.

[29] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” in Transactions on Computer
Systems. ACM, 2007.

[30] M. Jelasity, R. Guerraoui, A. Kermarrec, and M. van Steen, “The
peer sampling service: Experimental evaluation of unstructured gossip-
based implementations,” in Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Springer Verlag, 2004.

[31] S. Voulgaris, M. Jelasity, and M. van Steen, “A robust and scalable peer-
to-peer gossiping protocol,” in Proceedings of the Second international
conference on Agents and Peer-to-Peer Computing. Springer Verlag,
2005.

[32] R. Guerraoui, R. Oliveira, and A. Schiper, “Stubborn Communication
Channels,” EPFL, Tech. Rep., 1998.

[33] S. Voulgaris and M. van Steen, “Vicinity: A pinch of randomness brings
out the structure,” in Middleware. ACM/IFIP/USENIX, 2013.

[34] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud Computing. ACM, 2010.

[35] N. A. Carvalho, J. a. Bordalo, F. Campos, and J. Pereira, “Experimental
evaluation of distributed middleware with a virtualized java environ-
ment,” in Proceedings of the 6th Workshop on Middleware for Service
Oriented Computing. ACM, 2011.

[36] P. Druschel and A. Rowstron, “Past: a large-scale, persistent peer-to-
peer storage utility,” in Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems. IEEE, 2001.

[37] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent stor-
age,” in SIGPLAN Notices. ACM, 2000.

[38] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg. ACM, 2001.

[39] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” in Journal on Selected Areas in Communications. IEEE,
2006.

[40] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in ACM SIGMOD International Conference
on Management of Data. ACM, 1996.

[41] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,” in Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and protocols for
computer communications. ACM, 2001.

[42] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon, R. Mor-
ris, M. F. Kaashoek, and J. Kubiatowicz, “Proactive replication for data
durability,” in The International Workshop on Peer-to-Peer Systems.
USENIX, 2006.

