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Abstract. Hierarchical Data Format (HDF5) is a popular binary stor-
age solution in high performance computing (HPC) and other scientific
fields. It has bindings for many popular programming languages, includ-
ing C++, which is widely used in the HPC field. Its C++ API requires
mapping of the native C++ data types to types native to the HDF5
API. This task can be error prone, especially when working with com-
plex data structures, which are usually stored using HDF5 compound
data types. Due to the lack of a comprehensive reflection mechanism in
C++, the mapping code for data manipulation has to be hand-written
for each compound type separately. This approach is vulnerable to bugs
and mistakes, which can be eliminated by using an automated code gen-
eration phase. In this paper we present an approach implemented in the
LARA language and supported by the tool Clava, which allows us to
automate the generation of the HDF5 data access code for complex data
structures in C++.
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1 Introduction

Source-to-source transformation is a process during which a program source code
is automatically created or updated according to a given set of inputs. It can be
used for various tasks, such as low-level optimization for a given target platform,
templating, integration and more. In this paper, we demonstrate how we can
overcome the lack of compile-time reflection in C++, by applying user-defined
transformations written in an aspect-oriented domain-specific language.



Reflection is the ability of a computer program to examine and/or modify
its own structure. It usually provides information about the type of a given
object, its inheritance hierarchy, its attributes and more, and can even be used
to manipulate the code itself during run-time. This ability is available in many
interpreted languages, such as Python, Ruby, Lua, Java or C#, usually thanks
to the underlying virtual machine or interpreter.

The current version of the C++ language is C++17. Its features have been
recently added into commonly used compilers such as the GNU GCC or In-
tel C++ Compiler. However, reflection is not among these features yet, though
several proposals has been recently published [8]. Based on the speed of imple-
mentation of the new standards in mainline compilers and their adoption by
programmers, it can be said that C+4 does not have comprehensive support
for compile-time reflection yet. We briefly mention several alternative tools and
approaches to this problem in Section 2.

One of the common use cases for reflection is mapping an object to a persis-
tent data structure, where individual attributes of the object are examined and
stored in a proper way. In the use case presented in this paper, we are storing
a complex data structure representing a traffic navigation routing index in a
HDF5 based binary file. Without proper reflection, we have to manually create
the code that maps the C+—+ structures to the objects in the HDF5 file. This
code implements several time-consuming data processing tasks that are executed
on an HPC cluster, which places severe constraints on the robustness of the code
and the entire process.

In this paper we present a method, based on the LARA language, for auto-
matic generation of the mapping code. Section 3 explains the routing index and
its HDF5-based storage. Section 4 presents the LARA language and its toolset,
which can be used to define the desired code transformations in a robust and
flexible way. Section 5 shows a concrete application of the approach on our data
processing code and its integration in our build process.

2 Related Work

There are several approaches to reflection in the C++ language. One of them is
through extensive use of macros to annotate individual classes and attributes,
a solution that is popular for example among game engines [2]. Its pitfalls are
the inability to use reflection on non-modifiable code (e.g., third-party libraries)
and its reliance on uncommon language constructs. A similar approach can be
implemented using templates, at the cost of an increase in complexity of the
code, compilation times and requirements for its maintenance.

Another approach is based on external tools which parse source code and
have a certain knowledge of the code structure, such as the Meta object com-
piler, which is part of the Qt GUI framework. This tool produces source code
for annotated C++ classes extended with support for accessing run-time infor-
mation and a dynamic property system [5, 13]. This tool, however, provides only
a fixed feature set intended for development in the Qt framework.



Domain-specific languages (DSLs) such as LARA can provide the desired
level of flexibility and robustness for our purposes. The LARA language has been
inspired by AOP approaches, including AspectJ and AspectC++. AspectJ[10]
extends Java in order to provide better modularity for Java programs, and has a
very mature tool support. AspectJ join points are limited to object-oriented con-
cepts, such as classes, method calls and fields, and several works try to comple-
ment AspectJ. AspectC++ [14] is an AOP extension to the C++ programming
language inspired by AspectJ and uses similar concepts, adapted to C++.

In traditional AOP approaches, aspects usually define behavior which is exe-
cuted during runtime, at the specified join points. LARA differs from traditional
AOP in that it uses aspects to describe source code analysis and transformations,
which currently are executed statically, at compile time. Due to this difference
in approach, tools like AspectJ and AspectC++ usually do not consider join
points which are common in LARA, such as local variables, statements, loops,
and conditional constructs.

There are several term rewriting-inspired approaches for code analysis and
transformation, such as Stratego/XT [6] and Rascal [11], which require the user
to provide a complete grammar for the target language. On the other hand,
LARA promotes the usage of existing compiler frameworks (e.g. Clang [1] in the
case of this work) for parsing, analysis and transformations. Another distinct
feature of LARA is that weavers can be built in an incremental fashion, adding
join points, attributes and actions as needed (see Section 4).

3 Hierarchical Data Format for Routing Index

Binary formats offer efficient and fast data storage. However, custom implemen-
tations can be cumbersome and fragile, especially in multi-platform environment.
The Hierarchical Data Format [9] (HDF) provides a binary storage format im-
plementation for storing large volumes of complex data. It has been developed
mainly for storing scientific data, however, since then it has been adopted by
many other industries. The HDF allows easy and consistent sharing of binary
data across various platforms and environments, which is one of its main ad-
vantages. There are two main versions of the HDF format. In this paper, we
exclusively refer to the HDF5 version [9]. HDF5 implements a storage model
which resembles a standard file system hierarchy, with a tree of folders and files.
The basic HDF5 file objects are Groups, Datasets and Attributes. Groups can
hold one or more datasets; both groups and datasets can have attributes asso-
ciated. Each HDF file has one root group. The datasets are used for the actual
storage of multi-dimensional data of a given type.

3.1 Routing Use Case

The HDF5 provides APIs for a large number of major programming languages
such as Python, C/C++, Java or even CLI .NET. Our codebase is written
mainly in C++, hence we refer to the native HDF5 C++ API in this paper.



In our approach for graph data for traffic navigation routing index, individual
road segments, junctions and other elements of a road network are represented
by a set of vertices and oriented edges. The edges have associated a number of
parameters such as length, max. allowed speed or category. Graph representation
of a road network of single country such as the Czech Republic can have millions
of vertices and edges. The vertices and edges in the HDF5 file are divided in
subsets (graph parts) which reside in their corresponding groups. Mapping of
the graph parts to the individual vertices is stored in the NodeMap dataset
located in the root group of the file. The parts can be determined either by
geography or other topological properties of the graph. Each graph part group
then contains the Edges, EdgeData and Nodes datasets. All datasets in our case
are two-dimensional, where rows hold individual records and columns hold their
attributes. References to records in other datasets in our case are represented
by storing an index of the referenced record rather than using the native HDF5
reference mechanism.

The edges reference their metadata stored in the EdgeData dataset. There is
only a limited number of unique values of the edge metadata, hence it is efficient
to store them in a separate dataset. Relationship between nodes and edges is
represented by the edgesIndex column in the Nodes dataset which references
rows in the Edges dataset. The Edges then hold reference to the Nodes via their
ID. Graphical visualisation of the routing index structure is in Figure 1.
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Fig. 1. Routing index layout in a HDF5 file



4 C++4 Code Manipulation

LARA [7][4] is a Domain-Specific Language (DSL) for source-code manipulation
and analysis, inspired by Aspect-Oriented programming (AOP). It has specific
keywords and semantics to query and modify points of interest (i.e., join points)
in the source code, and provides general-purpose computation by supporting ar-
bitrary JavaScript code. Join points provide attributes, for querying information
about that point in the code, and actions, which apply transformations to that
point.

Figure 2 presents LARA code which adds include directives to a file, using a
join point action. Line 1 declares an aspect, the top-level unit in LARA (which is
similar to a function). Line 2 declares the inputs of the aspect, which in this case
is a file join point. By convention, na mes of variables that represent join points
are prefixed with a dollar-sign ($) in LARA. Line 4 uses a select to capture all
the classes definitions that appear in the current program. Lines 5-8 represent
an apply block that performs some work over the join points captured in the
previous select. In this case, it executes a file action ($targetFile.exec) that
adds an include directive to the file, corresponding to the file that belongs to
the given join point (addIncludeJp($class)). This example shows a common
pattern in LARA, which is to select some points in the source code and then act
over them, possibly modifying the source code.

4.1 Clava

Unlike most source-to-source approaches, LARA was designed to be independent
on the target language, which allows the LARA framework to be reused for
several languages [12]. This was achieved by decoupling the specification of the
points of interest from the LARA language. To use LARA code to transform a
specific language (e.g., C++ in this case), we need to build a tool (called weaver)
which connects the language specification to the target code representation, e.g.,
an Abstract Syntax Tree (AST).

aspectdef AddClassInclude
input $targetFile end

select class end

apply
// Add an include to $targetFile for the file where class is declarated
$targetFile. addIncludeJp ($class);
end
end

Fig. 2. A simple LARA aspect that inserts, in a given file, an include directive for
every class that appears in the source code.



Figure 3 shows Clava [3], a C/C++ weaver we developed that uses the LARA
framework to enable C++ code manipulation®. Clava is mostly implemented in
Java, and internally uses a binary based on Clang [1] to dump information about
C/C++ programs. This information is then parsed and used to build a custom
AST, which the weaver client uses in the queries, modifications and source-
code generation specified in LARA code (which is interpreted by the LARA
framework).
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Fig. 3. Block diagram of the tool Clava.

#include <H5Cpp.h>

struct NodePosition {
int nodeld;
int partNumber;
int nodeIndex;

};
class NodePositionType {
public:
static H5::CompType GetCompType () {
H5::CompType itype( (Routing::NodePosition));

itype.insertMember ("nodelId",

(Routing::NodePosition, nodelId), H5::PredType::NATIVE_INT32);
itype.insertMember ("partNumber",

(Routing::NodePosition, partNumber), H5::PredType::NATIVE_INT32);
itype.insertMember ("nodelIndex",

(Routing::NodePosition, nodeIndex), Hb5::PredType::NATIVE_INT32);

itype;
}
};
Fig. 4. Generated compound type code for the NodePosition structure
5 Use Case

In this section we present and explain the LARA code developed to automatically
generate type mapping functions from classes and structs (henceforth referred

3 an online demo version is available at http://specs.fe.up.pt/tools/clava



to as records) present in the source code. The presented version generates a new
class for each record found in the code, and this class has a single static method
that returns a ComypType object, which can then be passed to the HDF5 API
calls when that particular record is accessed. In the example in Figure 4, for
demonstration purposes, we include the code in the same file as the original
record. However, in the code presented in this section we create new files for
the generated code, to avoid adding a dependency to HDF5 in every source-file
that wants to use the record (note that both cases can be expressed in LARA).
Currently, the type-mapping code is generated for all classes and structures in
the given source files, but the code can be easily adapted to filter unwanted
records (e.g., by providing a list of class/struct names, or files).

5.1 LARA for HDF5

Figure 5 presents the use relationships for the aspect Hdf5Types, which generates
HDF5 interface code for C++ records. It uses a LARA aspect, RecordToHdf5,
which generates the implementation code for a single record, and two code defi-
nitions, a LARA mechanism for writing parameterizable escaped code (see Fig-
ure 7). The aspect RecordToHdf5 uses a JavaScript function, toHdf5.
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Fig. 5. use relationships for the aspect Hdf5Types.

Figure 6 shows the code for a working version of the Hdf5Types aspect. As
input, it receives a path to the base destination folder of the generated code,
and a namespace for the generated functions, with optional default values for
the inputs (line 2).

Lines 5-6 use a Factory provided by Clava (i.e., AstFactory) that allows the
creation of new AST nodes, that can then be inserted in the code tree. The
AstFactory always returns join points, which can be handled the same way as
the join points created by select statements. In this case, two join points of
type file are created, one for the header file (Comp Type.h) and another for the
implementation file (Comp Type.cpp).

Lines 8-11 select the program join point and add the newly created files with
the action addFile. Line 15 selects all the records in the source code that are
either of kind class or of kind struct, which are then iterated over in the
apply block in lines 16-27. This block creates the declarations for the header
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and the implementation file using the code definitions in Figure 7 (lines 20 and
25, respectively). It also adds to the implementation file an include directive for
the current record (line 23), creates the code for the body of the implementation
function by calling the aspect RecordToHdf5 (line 24) and inserts the code of
the function in the implementation file (line 26).

Lines 30-32 finish the header file by adding an include to the HDF5 CPP
library, creating the namespace and inserting the code created in the apply
block into the file. Lines 35-36 finish the implementation file by adding two
necessary includes.

aspectdef HAf5Types
input srcFolder = "./", namespace = "HDF5Types" end

var filepath = srcFolder + "/lara-generated"; // Folder for the generated files
var $compTypeC = AstFactory.file("CompType.cpp", filepath); // Create files for
var $compTypeH = AstFactory.file("CompType.h", filepath); // the generated code

select program end // Add files to the program.

apply

$program.exec addFile($compTypeC); $program.exec addFile ($compTypeH);
end

var hDeclarationsCode = "";

select file.record{kind === "class", kind === "struct"} end // Iterate over records
apply
var className = $record.name + "Type"; var typeName = "itype";

/* CompType.h file */
hDeclarationsCode += HDeclaration($file.name, className);

/* CompType.cpp file */
$compTypeC.exec addIncludeJp($record); // Add include to the record file
call result : RecordToHdf5($record, typeName); // C/C++ type to HDF5 type
var cxxFunction = CImplementation(namespace, className, code);
$compTypeC.exec insertAfter (AstFactory.declLiteral (cxxFunction));
end

/* CompType.h file */

$compTypeH.exec addInclude ("H5Cpp.h", true); // Add include to HDF5 CPP library
hDeclarationsCode = ’namespace ’+namespace +’ {’ + hDeclarationsCode + "1}";
$compTypeH.exec insertAfter (AstFactory.declLiteral (hDeclarationsCode));

/* CompType.cpp file */
$compTypeC.cxec addInclude("CompType.h", false); // Add includes for
$compTypeC. addInclude ("H5CompType.h", true); // for CompTypes

end

Fig. 6. LARA code for the aspect Hdf5Types.

Figure 8 shows the code for the LARA aspect RecordToHdf5, called in the
previous aspect. RecordToHdf5 iterates over all the fields in the record given
as input (line 7), ignores all fields that are constant (line 9) or not public (line
10) and creates the code for the specific type of the field using the JavaScript
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codedef HDeclaration(filename, className) %{
// [[filename]]
class [[className]] {

public:

static H5::CompType GetCompType ();
};
}% end

codedef CImplementation(namespace, className, body) %{
H5::CompType [[namespacell::[[className]]l::GetCompType () {
[[bodyll

return itype;

}
}% end

Fig.7. Code definitions HDeclaration and CImplementation, used in aspect
Hdf5Types.

function toHAf5, ignoring cases that are not supported (lines 13-14). Features
that appear for the first time in this example are the use of the attribute type
(lines 5, 9 and 13), an attribute common to all join points in Clava and that
returns a special kind of join point that represents a C/C++ type; and the use
of inlined escaped code in the lines 15-17 (i.e., %{...}%)

aspectdef RecordToHdf5
input $record, typeName end
output code end

var recordType = $record.type.code;
code = "H5::CompType "+ typeName +"(sizeof ("+recordType+"));\n";
select $record.field end
apply
if (§field.type.constant) continue; // Ignore constant fields
if (!$field.isPublic) continue; // Ignore private and protected fields

fieldName = $field.name;

var HDF5Type = toHdf5($field.type);

if (HDF5Type === undefined) continue; // Warning message omitted
var offset = Y{offsetof ([[recordTypell, [[fieldNamell)}¥%;

var params = }{"[[fieldName]]l",[[offset]], [[HDF5Typelll}%;

code += }{[[typeName]].insertMember ([[params]]);}% + "\n";
end

end

Fig. 8. LARA code for the aspect RecordToHdf5.

The Clang compiler has a very rich AST with detailed information, not only
about the source code itself, but also about the types used in the code, which
are also represented as an AST. Clava takes advantage of this information and



gives access to this AST for types by providing a join point type, which can be
accessed from any join point using the attribute type.

The JavaScript function toHdf5 (Figure 9) uses the attributes of the join
point type extensively to generate the code for the HDF5 interface. The function
starts by desugaring the type (line 8). Clang supports type sugaring, which
means that if, for instance, we define in C/C++ a custom type typedef int
foo and declare a variable foo a, a will appear in the AST as having the type
foo, and not int. The attribute desugar returns the desugared version of the
corresponding type (or the type itself, if it is already desugared).

Next, there are several special cases which need to be handled. For instance,
C++ enumerations can customize the underlying integer type. If the type is
an enumeration, the function is called recursively for the integer type of the
enumeration (lines 10-12). Other example is the case of vector types, which
appear in the AST as a TemplateSpecializationType (i.e., any type template
that has been specialized, such has vector<int>). In this case, the function is
also called recursively, this time for the specialization type.

After handling the special cases, the function uses the attribute code to
obtain the code representation of the type and consult the table HDF5Types,
which maps C/C++ types to the corresponding HDF5 types.

Table 1 shows several code metrics®. The code for the aspect totals 84 lines
of code (LoC), including LARA code, Javascript code and code definitions, and
generated around 100 lines of code for this use case (note that the aspect code
is generic, and can be used for other use cases). If the generated code had to be
written by hand, it would represent about 24 % of the LoC of this use case.

5.2 CMake Integration

Since Clava is a Java program, a Java runtime is the only system dependency re-
quired to execute the LARA aspect. Clava uses Clang underneath, and packages
custom pre-compiled binaries for Windows, Ubuntu and CentOS platforms. The
integration is done by defining a custom build step via add_custom_command()
which produces the generated files and adds them as dependencies to the exe-
cutable targets defined in CMakeLists. This integration allows a seamless use of
this LARA toolset within a single build process.

Table 1. Code metrics for the use case.

Use Case \ LARA
#files|#records|#fields|LoC|Aspects LoC|Generated LoC
15 10 47 308 84 98

4 LoC for LARA aspects where counted by hand. LoC for C++ code uses the L-SLOC
value provided by LocMetrics (http://www.locmetrics.com/).



var HDF5Types = {}; // Table with mapping between C/C++ and HDF5 types

HDF6Types ["int"] = "NATIVE_INT";
HDF5Types ["float"] = "NATIVE_FLOAT";
HDF5Types ["uint16_t"] = "NATIVE_UINT16";

// Other mappings

function toHdf5($type) {
$type = $type.desugar; // Desugar type

if ($type.kind === "EnumType") { // Special case: enum

return toHdf5($type.integerType);
}
if ($type.kind === "TemplateSpecializationType" && // Special case: vector
$type.templateName === "vector") {

var templateType = ’&’ + toHdf5($type.firstArgType);

return ’Hb5::VarLenType(’+templateType+’)’;
}

// Other special cases

var HDF5Type = HDF5Types[$type.codel;
if (HDF5Type === undefined) return undefined; // Warning message omitted

return ’H5::PredType::’ + HDF5Type; // Base HDF5Type

Fig. 9. JavaScript code for the function toHdf5.

6 Conclusion

In this paper, we presented a possible solution to missing support for compile-
time reflection in C++. Our solution is based on the domain-specific language
LARA, which is used to write source-to-source transformations, and the tool
Clava, which executes the LARA code over C/C++ programs. We have demon-
strated its usage by generating a native C++ API for the HDF5 library, without
modifications in the original source code. The generated code is used to store a
traffic navigation routing index for processing on HPC infrastructure. Our use
case is complex both in terms of structural complexity and data volume, and we
needed to implement a robust and flexible approach to generate the data access
code and integrate it into our build process. In Section 5.2 we introduced a ba-
sic approach for integration of the code generation process in CMake, by using
custom build commands. The Clava tool is called during the build configuration
to produce the type mapping code between C++ and HDF5 API.

Ongoing work includes adding support for custom compound types (e.g.,
fields that are user-defined classes/structs) and LARA and Clava support for
custom #pragma constructs in the code, that can be used to mark arbitrary
blocks of code to be processed by the LARA aspects. This approach can be used
to apply a large number of custom optimizations (e.g., in the context of HPC
systems) or to generate a concrete implementation of the data access layer on
top of an existing abstract data storage library.
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