British Journal of Educational Technology Vol 42 No 4 2011 624-637
doi:10.1111/j.1467-8535.2010.01056.x

Improving teaching and learning of computer programming
through the use of the Second Life virtual world

Micaela Esteves, Benjamim Fonseca, Leonel Morgado and Paulo Martins

Micaela Esteves is a lecturer in computer science at the Polytechnic Institute of Leiria, Portugal. Benjamim Fonseca
is a researcher at CITAB—Centre for the Research and Technology of Agro-Environment and Biological Sciences at
the University of Trds-os-Montes e Alto Douro, Portugal, where he lectures in computer science. Leonel Morgado and
Paulo Martins are both researchers at GECAD—Research Group on Knowledge Engineering and Decision Support,
and lecture at the University of Trds-os-Montes e Alto Douro, Portugal. Address for correspondence: Micaela Esteves,
Polytechnic Institute of Leiria, ESTG, Morro do Lena—Alto do Vieiro 2411-901 Leiria Apartado 4163, Portugal.
Email: micaela@estg.ipleiria.pt

Abstract

The emergence of new technologies such as three-dimensional virtual worlds brings
new opportunities for teaching and learning. We conducted an action research
approach to the analysis of how teaching and learning of computer programming at the
university level could be developed within the Second Life virtual world. Results support
the notion that it is possible to use this environment for better effectiveness in the
learning of programming. The main results are the identification of problems hamper-
ing the teacher’s intervention in this virtual world and the detection of solutions for
those problems that were found effective to the success in using this environment for
teaching/learning computer programming.

Introduction

Technology has become crucial in educational development and for the revolution in learning
systems (Olapiriyakul & Scher, 2006). Technology creates and transforms the learning and teach-
ing processes, which brings new opportunities to the educational system. There has been recog-
nition in the scientific literature about the use of virtual worlds in higher education (Dickey,
2003; de Freitas & Neumann, 2009), and Second Life® (SL) is currently the most mature and
popular multiuser virtual world platform that has been used for this purpose (Warburton, 2009).
However, clear guidelines for practice remain difficult to find (Warburton).

We conducted a study observing students’ apprenticeship in SL and teachers’ experience, with
the aim of analysing how the processes of teaching and learning computer programming occur
within this virtual world. Thus, some questions come up to our mind: What are the problems, for
both teachers and students, in using SL for teaching/learning computer programming? Can these
problems be solved, and how?

By beginning to address whether the difficulties of using SL for teaching programming can be
overcome, the door has been opened for both qualitative and quantitative studies to determine if
SLreally does improve students’ comprehension of basic programming concepts. Hence, the aim
of this paper is to present a framework for teaching/learning of computer programming within
the SL virtual world, to help students improve their programming apprenticeship, based on
rigorous academic research. Essentially, we argue that the advent of teaching/learning of pro-
gramming within SL brings new opportunities for students to improve their performance. Most

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta. Published by Blackwell Publishing, 9600 Garsington Road, Oxford
0X4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

Improving teaching and learning through Second Life ~ 625

conclusions can also be applied to the OpenSimulator environment as it replicates most of SL’s
functionality, lacking only on social aspects, at least for the moment.

This paper is organized as follows: first, our motivation and related work is outlined; then, the
project methodology is described; we follow with the findings and the discussion of the framework
presented; finally, the paper presents suggestions for using SL for teaching and learning of com-
puter programming and concludes with suggestions for future research.

Related work and motivation

Programming is a fundamental skill that all computer science students are required to learn.
However, programming courses are generally regarded as difficult and often have the highest
dropout rates (Gomes, Areias, Henriques & Mendes, 2008; O’Kelly & Gibson, 2006; Robins,
Rountree & Rountreen, 2003). In the scientific literature, many reasons are pointed out for this,
such as the following. Methodology and tools used—traditional teaching methods, normally based
on lectures and specific programming language syntaxes, often fail in what concerns the stu-
dents’ motivation in getting involved in meaningful programming activities (Lahtinen, Mutka &
Jarvinen, 2005; Schulte & Bennedsen, 2006). Programming languages typically used in pro-
gramming classes are professional in nature, such as C, C++, C# and Java; they have extensive and
complex syntaxes, rendering learning difficult for beginners (Jenkins, 2002; Motil & Epstein,
2000). Students’ difficulties with abstract concepts—knowing how to design a solution to a problem,
subdivide it into simpler code able subcomponents, and conceive hypothetical error situations for
testing and finding out mistakes (Esteves, Fonseca, Morgado & Martins, 2008); difficulties in
understanding even the most basic concepts (Lahtinen et al, 2005; Miliszewska & Tan, 2007)
such as variables, data types or memory addresses as these abstract concepts do not have direct
analogies in real life (Lahtinen et al; Miliszewska & Tan); and not knowing how to use the pro-
gramming language correctly to create a program (Lahtinen et al; Winslow, 1996).

The use of animation to show program execution has been used to minimize the students’
difficulties (Soloway, 1986; Stasko, Domingue, Brown & Price, 1998). In the scientific literature,
we can find programs that only show the animation of a specific algorithm (Dershem & Brum-
mund, 1998; Michail, 1996), in which students cannot make any changes, and even tools that
simulate/animate any program made by them (Ben-Bassat Levy, Ben-Ari & Uronen, 2003;
Esteves & Mendes, 2004). One of the most successful program simulation software packages, used
for program visualization, has been Karel the Robot (Pattis, 1981). Karel the Robot is a program-
mable visualization software that uses the same principles as the well-known LOGO language
(Papert, 1980). The robot executes a sequence of commands that the user has written as part of
a program moving about two-dimensional grids. Over the last decade, curricula for computer
science has made a transition to C and then to object-oriented languages. In response, Karel has
undergone several updates, the latest being Karel++ (Bergin, Stehlik, Roberts & Pattis, 1997), a
C++-like version that brought Karel into the object-oriented age.

Environments such as ALICE (Dann, Cooper & Pausch, 2000), JELIOT (Ben-Bassat Levy et al,
2003), BlueJ (Kolling, Quig, Patterson & Rosenberg, 2003) and RAPTOR (Carlisle, Wilson,
Humphries & Hadfield, 2005) have been used to teach imperative programming in undergradu-
ate introductory computer science courses. All these environments generate concrete visual
representations of a program. However, ALICE is a three-dimensional (3D) interactive graphics
programming environment for Windows that makes it easy to create an animation for telling a
story, playing an interactive game or creating a video to share on the Web (Cooper, Dann &
Pausch, 2000). In ALICE’s interactive interface, students drag and drop graphic tiles to create a
program, where the instructions correspond to standard statements in a production-oriented
programming language, such as Java, C++ or C#. It is also object based by writing simple scripts

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

626 British Journal of Educational Technology Vol 42 No 4 2011

in which its users can control 3D object appearance and behaviour. The benefit of using it is that
it allows students to be involved and at the same time have the ability to develop an intuitive
understanding of basic concepts in a visual feedback environment (Dann, Cooper & Pausch,
2001). Thus, students using ALICE are immediately able to see how their animated programs run
because the highly visual feedback allows them to relate the program ‘piece’ to the animation
action, and this leads to an understanding of the actual functioning of different programming
language constructs (Dann, Cooper & Pausch, 2001).

We find in SL a persistent online 3D virtual world, containing the same characteristics as ALICE,
ie, the possibility of students programming the objects’ behaviour by writing simple scripts, and
receive an immediate visual feedback of how their programs run. In addition to these charac-
teristics, SL allows several users to connect, interact and collaborate simultaneously at the same
time and in the same (virtual) space (see Figure 2). SL enables synchronous collaboration
among students because the system allows two or more avatars to edit the same object and
include their own scripts, which act concurrently on the object (and may exchange messages).
Also, it is possible to share scripts so that students can access and edit the same piece of code
while programming it. Asynchronous collaboration is also supported because the SL world is
persistent: students and teachers may access and leave in-world objects (with scripts) and mes-
sages to the other members (group messages and private messages are supported). When a user
logs in, all his or her messages are shown. On the other hand, he or she can also see some objects
left in the world by others (and edit them, if adequate permissions have been set), and set up or
edit his or her own objects with scripts to interact with those other objects/scripts present in the
world.

At the time of writing, some authors consider SL to be the environment which allows more
experimentation, collaboration and immersion compared with other virtual learning programs
(Salmon, 2009). Collaborative environments can offer important support to students in their
activities for learning programming. According to Newman, Goldman, Brienne, Jackson and
Magzamen (1989), collaboration in problem solving provides not only an appropriate activity but
also promotes reflection, a mechanism that enhances the learning process. Students that work in
groups need to communicate, argue and give opinions to the other group members, encouraging
the kind of reflection that leads to learning.

Another important aspect about SL is that students are integrated in an international community
of programmers, as well as exposed to authentic content and culture (Warburton, 2009).
Bauman (1991) claims that in the change to the modern functionally differentiated society,
individual persons are no longer firmly rooted in one single location or subsystem of society, but
rather must be regarded as socially displaced. The individual needs to establish a stable and
defensible identity to differentiate the self from the outer world, but at the same time needs the
affirmation of social approval. The socialisation and transition to work is immediate, and when
the novices show evidence of professional skills in practice, this leads to legitimate participation
in the professional community (Wenger, 1998). The practical applications of the acquired knowl-
edge in the community, its reflection and exchange are some of the strategies suggested by Fleury
and Oliveira Junior (2001) and Dillenbourg (2000). These results influenced some of the opinions
we have had when we think about using the SL 3D virtual world as an environment to teaching/
learning programming.

Application of the action research (AR) methodology

This research adopted AR methodology, which can be described as a family of research method-
ologies that involve an intervention or change (action) on part of the researcher while research
(or understanding) occurs. AR is a cyclical process that incorporates the four-step processes of

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life ~ 627

2006/2007 2007/2008 2007/2008
March July October November November January March June

5 19
| | | | | | | |

| Pre-exploratory | Reflect / plan | 1st cycle | Reflect / plan | 2nd cycle | Reflect / plan | 3rd cycle |
4th cycle

Figure 1: Timeline for the action research of our study

planning, acting, observing and reflecting on the results generated from a particular project or
body of work (Dick, 1999; Zuber-Skerritt, 2002). This choice was made in view of the two main
advantages of AR (Zuber-Skerritt). Firstly, it allows us to study a problem while introducing
controlled changes, with the aim of discovering how to improve the process of teaching/learning.
Secondly, it also provides the researcher with a large degree of flexibility, something of great
importance when acting within an evolving information technology project concerning a
problem about which little was known beforehand (Zuber-Skerritt).

When there is not enough research literature on the field of study, as in this case, it is necessary,
before the first research cycle, to make a preliminary exploratory experience in order to identify
the basic problems and feed the first planning (Lessard-Hébert, Goyette & Boutin, 1990). The
research process is never completed, but a plateau is reached when the reflection at the end of a
cycle deems that the amount of collected knowledge on the process is significant (Zuber-Skerritt,
2002).

Research strategy

Our research strategy was to focus on the understanding of the teaching-learning process of
computer programming using SL. We employed four cycles in this study, from March 2007 to July
2008. Pre-exploratory research took place during the second semester of the academic year
2006/2007, the first and second cycles of AR during the first semester of 2007/2008, and the
third and fourth cycles in the second semester of that same academic year. Figure 1 presents a
diagram of the full process.

Data collection design

Data collection was planned at the beginning of the research. We used several data sources for
triangulation and reducing bias in our analysis, summarized in Table 1. In this study, the
researcher was the main instrument of the observation and action. This participant observation
was an attempt to discover the meaning, dynamics and processes involved in the events. Through
this method, some reflections on the lessons undertaken were done. The observation of these
lessons focused on

* how students and teacher interact with each other and with the environment;
« the virtual classroom activities;

« the use of the SL interface; and

« challenges, constraints and possibilities of teaching and learning within the SL.

Furthermore, questionnaires were also developed, aimed at establishing intuitive ideas about how
the participants understood the difficulties and potential of tasks. These questionnaires were not
only important indicators of how students saw the learning process in-world but also contributed
to a better understanding, on the part of the investigator, of the issues related with the students’
motivation and performance, the students’ difficulties in learning to program objects, and the
impact of the community and the teaching process.

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

628 British Journal of Educational Technology Vol 42 No 4 2011

Table 1: Data sources

Data sources Explanation

Daily session reports The teacher-researcher at the end of each session wrote a report with
the key points of the each session.

Virtual classroom images Captured as screenshots by the teacher, when witnessing key points
during classes.

Questionnaires At the beginning, middle and end of the process, with open-ended

questions, on the learning/teaching methods and the students’ views
about the project they had developed and their learning in this

environment.
Student and teacher All communication between teacher-researcher and students, which was
communication: text based, was entirely recorded and saved at each session, as a tool
participatory observation to provide context at a later time for students’ doubts and opinions.

Participants

Our participants were computer science students from the University of Tras-os-Montes e Alto
Douro (UTAD), in Vila Real, Portugal, and from the Higher School of Technology and Manage-
ment (ESTG—Portuguese-language acronym) of the Polytechnic Institute of Leiria, Portugal.
These students took part in the research process while developing elective alternative assign-
ments on the following compulsory subjects: Laboratorio de Informatica I of the first curricular
year (Laboratory. I); Laboratorio de Informatica II (Laboratory. II) and III (Laboratory. III) of the
second curricular year (at UTAD); and Projecto I (at ESTG). In all the cases, these subjects had as
their main goal to allow students to develop a semester-long project in order to improve their
programming skills. Other students, taking the same subjects, were developing assignments
using other programming languages and environments. In these cases, there were no prescribed
lectures.

We had three different types of students: beginners (Group A); students with some knowledge of
programming (Groups B1 and B2); and students with relevant experience in programming
semester-long projects (Group C). The students from group A, at UTAD, were enrolled in the
second semester of the first curricular year. Although they were at the initial stage of learning
how to program, they had been exposed in the previous semester to its introductory aspects in
about 30% of two subjects. The project developed in SL was the students first contact with a
semester-long programming project (ie, not just a class assignment). In Groups B1 and B2, the
students were more advanced in learning how to program: some were at the UTAD, enrolled in
the second year, first semester, and had already studied introductory aspects of the C program-
ming language in the previous semester and developed a semester-long command-line project in
C. While they were participating in this research, they were also taking a different course on
object-oriented programming in C++. Others were at the ESTG, where they were enrolled in a
postsecondary technical course (CET—Portuguese-language acronym) and had previously
studied C programming for one semester. In group C, the students were from UTAD, enrolled in
the second year, second semester, and thus, at a more advanced stage of learning how to
program: they had completed courses in C and C++ programming and developed a semester-long
command-line project in C++. Although these students still required teacher support, they had
some autonomy in using and studying programming.

In this study, five students from Group A and four from Group C, both from UTAD, participated in
the preliminary exploratory research phase. In the first and second AR cycles, the students were
only from Groups B1 and B2 (10 students from UTAD and six from ESTG). In the third and fourth
cycles, there were nine students from Group A.

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life 629

Procedure

We used SLitself as a programming environment. We proposed students for their participation in
this research to develop a project inside SL using its scripting language, Linden Scripting Lan-
guage (LSL), which has C-style syntax and keywords. The 3D objects created in SL can receive
several LSL scripts that are executed concurrently. Each script has its internal state machine:
program flow is sequential, uses common methods from imperative/procedural programming,
such as procedures and flow-control primitives, but structured by triggering events and respond-
ing to them (events are triggered through either environment interactions or programmatic
components).

An identical project description was presented to all students enrolled in the course: after that
some volunteered to participate in this research. From this point on, they formed pairs and
developed their projects inside SL, collaborating with each other. Teachers and students met
remotely, in-world, SL, once a week, for about 2 hours, to keep track of students’ progress,
exchange ideas and make suggestions. Figure 2 illustrates one of the sessions in SL, with the
teacher’s avatar in the centre and two students’ avatars developing their work. Face-to-face
meetings in the physical world did not take place in this process because the teacher-researcher
was in Leiria and the students were in Vila Real, 270 km apart. Only once a month did they meet
to talk about the project in Vila Real. In all the occasions, students had some difficulties about the
code they had implemented, and they shared it with the teacher. Consequently, they observed it
together and at the same time found out what was wrong and followed the teachers’ indications/
instructions. In this way, students could correct the code and proceed.

SL enables voice-based or text-based communication through public or private channels.
However, voice-based communication requires that students and teacher are in a physical context
with little environmental noise and where they can talk freely without disturbing other people
nearby. For this experiment, such context could not be ensured at all times: students often used
wireless connections in classrooms where other colleagues could be developing other (non-SL)

Figure 2: An example of a session in Second Life

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

630 British Journal of Educational Technology Vol 42 No 4 2011

projects or even in college halls/corridors or bars; only sometimes did they work from the relative
tranquillity of their homes. This led us to focus on using text-based communications for their
greater freedom of physical context for educational activities. Text-based communication retains
a history that can be read and reread, even if the physical context of a student/teacher causes
distractions (a phone ringing, people passing by, etc.). All text-based communication that occurs
through the public channel can be seen by everyone who is within 20 m of virtual world space,
whereas in a private channel the communication is just between two people. The students often
communicated with the teacher through a private channel.

Findings

The project was done within a specific organization. We now turn to analytic generalization of
that AR to build a practical framework linked to existent literature that explains how this virtual
world can be used to teach and learn programming. A more detailed explanation of all research
phases can be found in Esteves et al (2008, 2009). Our findings and framework are summarised
in Table 2 and discussed ahead.

Table 2: Framework for teaching/learning computer programming inside Second Life

Elements Procedures

Communication ~ Public channel—for general explanations.
Private channel—for private explanations.

Project The project should be complex enough that the cooperation from all members of the
group will be necessary. It must have a strong visual behaviour and should be
adapted to the level of knowledge that students have.

Methodology Project-based learning.

Use of an outside platform (eg, Moodle or another learning management system) as a
repository of learning materials.
Support interaction with the SL user community.

Classroom Identify classroom areas for each group to work.
(workspace) Provide sample objects with simple programs for students to use as a reference.
Lectures The teacher should be physically present in the first class to explain the SL interface.
Teacher should prepare beforehand short phrases, ready to copy and paste when
necessary.

SL, Second Life.

Findings

Our concern throughout the development of this study was to find out what the implications were
for teachers teaching through SL; what problems teachers and students face, whether these
problems can be fixed, whether motivation would be present. That is, not only finding if SL could
be used but also how it could be used. As described in the previous sections, the preliminary
exploratory research and subsequent AR cycles allowed us to better understand the problem and
gather information on how to teach in SL and help students learn. We identified three important
issues: communication between students and teacher, students’ process of learning, and the
teaching process itself.

Communication

The first issue was communication: how the teacher could explain subjects and clarify students’
doubts within SL. In our research, voice communication was not used, but rather text-based
communication, as explained earlier. Our first approach to text-based communication was to use
the public channel for explaining subjects and clearing students’ doubts. However, we quickly

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life ~ 631

observed that this meant all the messages appeared on the screen at the same time, in intertwined
conversations. Consequently, it was difficult to follow a line of reasoning or conversation—to the
point of sometimes mistaking the source of a specific statement (even though each statement was
accompanied by the name of who wrote it). We then tried the approach of using a private channel
to clear students’ doubts and use the public channel only for the teacher to explain subjects or call
attention of all students for a particular matter. The students’ evaluation was that they appreci-
ated this way of communicating because they felt they had a private teacher to whom they could
present their doubts without feeling embarrassed to be lagging in relation to the others. From the
teacher’s perspective, the use of a private channel to explain the students’ doubts was an impor-
tant issue because she could develop a sense of trust and safety within the electronic community.
In the absence of this trust, learners would feel uncomfortable and constrained in posting their
thoughts and comments (Anderson, 2004). However, this approach originally led to delayed
feedback time because the students would not be aware that the teacher was responding to
someone else’s queries. Research on assessment in distance education has shown that rapid
feedback is important for both understanding and motivation to complete courses (Rekkedal,
1983); therefore, we needed to solve this issue. Yet there was no escaping the fact that the teacher
had to provide attention to several groups at the same time. In order to give students an immediate
response during the lectures, a simple solution was found: the teacher could keep several common
sentences ready for copy-pasting, to provide this feedback without shuttling back-and-forth
between different private communications: eg, a few sentences such as ‘OK, just a moment, I'm
talking to your colleague ...’ or ‘there is not a semi-colon at the end of the instruction Hence,
the students would not be waiting so long for the teacher to provide some feedback to their doubts.

The students’ process of learning

Project

The project was the starting point for the students’ learning process. Hence, one of the issues that
concerned the teacher was the type of project that could be more adequate for the teaching/
learning process inside SL. During this research, the researcher tried two types of projects:

* Visual—involving the building of one or several 3D objects, such as a dog, a robot, a car or a
motor-racing track, and the development of several scripts in a program, with the aim of
achieving the behaviour that each object had to execute.

» Nonvisual—a project that consisted only in text data processing, meaning that the objects
respond to text commands from avatars and reply in the same manner, or store data from
in-world events in lists of strings.

Our trials confirmed the literature (Kiili, 2005; van Dam, 2005) about the benefits of visualiza-
tion to certain aspects of problem-solving performance in novices, as well as to the level of
engagement and motivation that students gain from constructing and presenting their own
visualizations. With the visual projects, the students had an obvious feedback regarding the
correctness of their program: it would suffice to look at the behaviour of the object. For example,
the robot should follow its owner’s orders. We verified that using a nonvisual project did not have
a good impact on the students’ performance because they were focused primarily on nonvisible
techniques such as data structures and string processing, benefiting from the SL environment just
for enhanced context and not as a source of feedback for programming behaviour. It would not be
unusual for a student to assume that a script was right just because it was outputting apparently
correct data, for instance, whereas erroneous robot behaviour was a cause for much more
concern for students. Mostly, throughout the nonvisual project, students did not learn properly
and struggled with themselves, not understanding why they had to do such a kind of project
inside this environment. The teacher spent her time trying to motivate them, without results. As
Duch (2001) mentioned, effective problems should engage the students’ interest and motivate

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

632 British Journal of Educational Technology Vol 42 No 4 2011

them to probe for deeper understanding of the concepts being introduced. Learning demands
both the fun of playing with ideas and the hardness of refining and reworking these ideas, and
that both complementary parts are needed for learning (Barrett, 2005). The fun transpired to be
what Papert (1996) termed ‘hard fun’, in that it is both challenging and interesting, and this
implies ‘hard’.

Students’ difficulties

A particular important aspect in the learning of programming is the students’ reaction to the
compilation and execution errors (Esteves & Mendes, 2004; Lahtinen et al, 2005), which are
inevitable in the learning process. In relation to the compilation errors, the methodology used by
the teacher was writing comments in the students’ code, explaining how and why the errors
occurred, which helped the students to avoid the mistakes and understand them.

In the execution errors, we observed two types of situations: students who did not understand the
project and the others whose main difficulty was understand the predefined function of LSL
language. In the first case, they had difficulty in structuring their thought because they did not
understand what was asked of them—and consequently, execution errors occurred because
students had not implemented a correct algorithm. In this study, the students had to submit to the
teacher the algorithm for the project in the second week of work, and from this point they
developed their project. The use of problem-based learning (PBL) methodology helped students
overcome these difficulties; once within PBL, the problem acts as the catalyst that initiates the
learning process (Duch, 2001). Furthermore, the students had to elaborate on their initial ideas
and critically evaluate what they knew and did not know. Finally, they had to formulate their
learning issues for self-directed study. After about 1 week, the students met again to report and
synthesize their findings in relation to the problem. The contribution of the teacher as a tutor in
this discussion is important because she challenged the students to clarify their own ideas,
inciting students to elaborate on the subject matter, questioning ideas, looking for inconsistencies
and considering alternatives. In the second one, we concluded, after several interactions, that the
causes for the errors were the difficulty in understanding the English language used in the
reference sources. For that reason, we decided to translate into Portuguese the available online
references for the main functions, and include examples.

However, some of the students of Group B1, who already had contact with programming using
the C language, presented many faults in understanding basic programming concepts, namely
cycle instructions (ie, when to use them and how) and using functions (ie, if given a function
definition, they did not know how to use it—ie, how to call a function). A point to stress is that
these students did not recognise their faults. They said ‘T know the C language, I do not have
difficulties in C’, but then they were not able to put that knowledge into practice when developing
the project. In relation to these difficulties, Winslow (1996) mentioned that novice programmers
neglect strategies, are limited to surface knowledge of the subject, and that knowledge is fragile.
Fragile knowledge is described as something that a student knows but fails to use when necessary.
According to O'Kelly and Gibson (2006), the use of the PBL methodology encourages a deep
understanding of the material, rather than surface learning, because it is the students who are
actively ‘doing’.

Students’ motivation

The majority of students who participated in this study already had a previous bad experience in
learning programming. Some of them were in the third curricular year and had failed to obtain
approval in programming courses; others did not like to learn it and because of that wanted to try
a new form of learning. This reveals some dissatisfaction in the way that students learn how to
program. Lethbridge, Diaz-Hererra, LeBlanc & Thompson (2007) refers that the number of stu-
dents in computing disciplines have decreased in the USA since 2000, and points out some

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life ~ 633

reasons for that, such as young people are so immersed in computers that they do not see the
excitement to them anymore; and the stereotype of the ‘nerd’ coding all night with no social
contact, making the students avoid these areas. With SL, we observed the opposite: students are
not without social contact when programming and they are excited. Two events had impact on
students’ engagement: we had a student that received a proposal by an avatar in SL to buy his
programming assignment, not as a violation of the student’s conduct but as a sanctioned
exchange of virtual commodities; another received a professional proposal to provide SL pro-
gramming services for a company.

The teaching process

It is clear that the functions of a teacher are multifaceted as the teacher performs several func-
tions when he or she teaches in the SL environment. His or her functions begin before the lectures
commence as the teacher acts as an instructional designer, plans and prepares the lectures,
facilitates the discourse and provides direct instruction when required. The teacher’s function
includes nontraditional activities such as preparing the virtual classroom or space, ie, defining
areas in the classroom for each group of students to help the teacher identify what each group is
doing on the project. Also, he or she has to prepare the classes’ supplies and some visual materials,
and program objects’ behaviour so that novice students can observe and change these same
objects. Thus, novice students may understand better the concepts being introduced. According
to Miliszewska and Tan (2007), learning by examples is an excellent way for novices to overcome
their difficulties. The teacher’s work was also more intense and stressful than in a traditional class
because of the need to include fine details in his or her advance preparation by writing out
everything he or she wants to teach/say. Hence, the teacher had not only to predict the students’
potential difficulties and the possible questions that could arise but also to prepare in advance the
text of his or her response to those difficulties/questions in order to be able to provide quick
feedback to the students.

In our research work, we concluded that the teacher’s physical presence, in the first class, is
important for the students to understand the SL interface as it facilitates the students’ handling of
the SL environment and program editor. Obviously, this was a result of the students’ lack of
familiarization with the SL interface, and possibly, may not be all that relevant if students have
previous SL experience.

In this research, we also found that it would be useful to have a mechanism that could inform the
teacher, by email or another outside system, about what students had done throughout the week,
the difficulties they had felt and attempts to overcome them. Discovering the students’ difficulties
during the self-study would allow a better guidance from the teacher. A tight integration of
SL-based activities with a learning management system (LMS) would be a possible path to this (eg,
as proposed by Antunes, Morgado, Martins & Fonseca, 2008).

The overall framework for teaching and learning computer programming inside SL, based on the
research summarized earlier, is presented in Table 2.

Implications for learning and teaching

The results of this research have implications for both learning and teaching processes. The first
implication is related to the benefits of using a proper project to motivate the students. It is well
accepted that effective problems engage the students’ interest and motivate them to probe for
deeper understanding of the concepts being introduced (O’Kelly & Gibson, 2006). It is also known
that the students’ initial reactions to a subject or topic are critical to them gaining an interest
(O'Kelly & Gibson). Consequently, it is important that the novice students are introduced to
programming inside SL in an appropriate manner. The model developed in this research suggests
the use of a project with a strong visual behaviour and adapted to students’ prior level of

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

634 British Journal of Educational Technology Vol 42 No 4 2011

knowledge. According to Poikela (2004), the nature of knowledge is contextual, as a resource
and catalyst of learning. It is not only a conceptual, symbolic or formal fact, but it is embedded as
potential in objects, artefacts, human activity or in the structure of an organisation (Poikela).

The model also highlights the use of PBL methodology. PBL gathers and integrates many ele-
ments regarded as essential in effective, high-quality learning, such as self-directed or autono-
mous learning, critical and reflective thinking skills, and the integration of disciplines (Poikela,
2004). Within PBL, the focus is shifted from teaching to learning, and this shift, in conjunction
with a good project, provides each student with the freedom to think for themselves, activate their
prior knowledge and acquire new knowledge in an explorative and creative way. The model
further emphasizes the importance of teacher support to students’ doubts. Thus, the teacher
must be aware of those issues and provide a supportive feedback in writing proper comments on
the students’ code. It also encourages the students to explore the solution to their problems by
themselves, engage in self-reflection and group reflection activities, and collaborate with their
colleagues. As Dahlgren, Hult, Dahlgren, Segertad and Johansson (2005) refer, the interaction
with peers is important for learning as one of the features put forward in many self-called
student-centred pedagogical approaches within higher education. Furthermore, the use of small
tutorial groups as the basic working form stresses the importance of interaction and communi-
cation for the learning process.

Anderson, Rourke, Archer and Garrison (2001) delineated three critical roles that a teacher
performs in the process of creating an effective teaching presence in online learning. The first of
these roles is the design and organisation of the learning experience that takes place both before
the establishment of the learning community and during its operation. Second, teaching involves
devising and implementing activities to encourage discourse between and among students,
between the teacher and the student, and between individual students and groups of students
and content resources (Anderson, 2002). The third, the teaching role goes beyond that of mod-
erating the learning experiences when the teacher adds subject matter expertise through a
variety of forms of direct instruction.

This research showed the importance for students’ motivation the integration in a community
which recognises their work. According to Wenger, Snyder and McDermott (2002), a community
of practice is a good way to promote learning and good practices not only because it develops
knowledge in a living and experimental way but also because it helps participants reach solutions
to possible problems, with significant connections leading individuals to higher creative levels
than they could reach on their own. Moreover, this study showed that the students” attitude for
learning inside this environment was, in general, connected to their commitment in completing
the project, making more attractive objects than their colleagues. They worked outside of the
class time, collaborating for long hours with each other and with the teacher. As another impor-
tant aspect, they considered the teacher as a work colleague with whom they could talk to, play
and work. The most surprising and delightful aspect was observed when the students, by their
own initiative, created other programs just for fun and had pride in showing what they had done.
In our experience as teachers of computer programming, we have also observed this kind of
behaviour in our students involved in traditional settings, but it typically is not widespread; ie, in
traditional settings only a few students do this ‘programming for fun’, not the majority. As
Twining (2009) referred, virtual worlds seem to provide the ideal vehicle for providing people
with such ‘lived experiences’, of radically different models of education. They allow users to do
things which would be difficult or impossible to do in the physical world. We acquired from this
experience that it is important for learning that students study in a meaningful place for them,
and where they can let their imagination fly. As Isaacson (2007) refers, ‘A society’s competitive
advantage will come not from how well its schools teach the multiplication and periodic tables, but from
how well they stimulate imagination and creativity.’

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life ~ 635

This research provides a first step on how the teaching/learning of programming can be achieved
inside SL. Thus, it contributes to the theory-deficient area of the use of virtual worlds (and SL in
particular) in computer science higher education, and provides the first framework (see Table 2)
for such use.

Final thoughts and further research

A thought we expressed earlier was the importance of integrating virtual world activities with an
LMS. We believe this integration could be even further than what we expressed earlier by allowing
the teacher to follow the students’ progresses/efforts and help them in a more effective and direct
way, even when not inside the virtual world. To achieve this, it would be necessary to develop
automatic mechanisms to track the students’ progress within the activities taking place in SL,
when the teacher is not present, possibly respond automatically to some queries (for instance,
queries for further material for an assignment that is dependent on completing a previous step),
and provide contact with the teacher through various media (for instance, using a system like the
one described by Valério et al, 2009). However, that is a different development and research path.
From the knowledge acquired with this research, we believe that the most relevant issue is that it
is now possible to plan a research approach to find out if novice students learn computer pro-
gramming better inside SL than through traditional classes. The reason for this is that it is now
possible to base such a comparative research effort on specific teaching/learning environment—
the one provided by the framework herein. This is not to say that it should be the only framework,
not at all: we simply mean to state that a framework of coherent teaching/learning model is
necessary for a comparison to be able to know beforehand what it is comparing. Specifically, it
would be interesting to conduct such comparisons to verify not only the domain of programming
techniques but also whether the acquired understanding is deeper, particularly by analysing if
students can transfer their knowledge to other situations. Results from such research would also
be significant to revise and improve this framework or devise novel frameworks for teaching/
learning computer programming within virtual worlds. We intend to pursue such research
efforts, and also to analyse other variables, such as the impact of learning in such environments
on the students’ motivation and—hopefully—improve the retention rates of first-year students in
computer programming courses.

References

Anderson, T. (2002). Getting the mix right: an updated and theoretical rationale for interaction. ITFORUM, Paper
#63. Retrieved March 5, 2009, from http://it.coe.uga.edu/itforum/paper63/paper63.htm

Anderson, T. (2004). Teaching in an online learning context. In T. Anderson & F. Elloumi (Eds), Theory and
practice of online learning (pp. 1-14). Athabasca: Athabasca University.

Anderson, T., Rourke, L., Archer, W. & Garrison, R. (2001). Assessing teaching presence in computer
conferencing transcripts. Journal of the Asynchronous Learning Network, 5, 2. Retrieved March 5, 2009,
from http://www.aln.org/publications/jaln/v5n2/v5n2_anderson.asp

Antunes, R., Morgado, L., Martins, P. & Fonseca, B. (2008). Managing 3D virtual classrooms. Learning
Technology, 10, 1, 3-5.

Barrett, T. (2005). Who said learning couldn’t be enjoyable, playful and fun?—The voice of PBL students. In
E. Poikela & S. Poikela (Eds), PBL in context—Dbridging work and education (pp. 159-175). Filand: Tampere
University Press.

Bauman, Z. (1991). Modernity and ambivalence. Oxford: Blackwell Publishers Ltd.

Ben-Bassat Levy, R., Ben-Ari, M. & Uronen, P. (2003). The Jeliot 2000 program animation system. Comput-
ers & Education, 40, 1-15.

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (1997). Karel++, a gentle introduction to the art of object-oriented
programming. New York: John Wiley & Sons.

Carlisle, M. C., Wilson, T. A., Humphries,]J. W. & Hadfield, S. M. (2005). RAPTOR: a visual programming
environment for teaching algorithmic problem solving. In Proceedings of the 36th SIGCSE Technical Sym-
posium on Computer Science Education (St. Louis, MO, February 23-27, 2005). SIGCSE '05 (pp. 176-180).
New York: ACM.

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

636 British Journal of Educational Technology Vol 42 No 4 2011

Cooper, S., Dann, W. & Pausch, R. (2000). Alice: A 3-D tool for introductory programming concepts. In J. G.
Meinke (Ed.), Proceedings of the Fifth Annual CCSC Northeastern Conference on the Journal of Computing in
Small Colleges, Ramapo College of New Jersey, Mahwah, NJ (pp. 107-116). New York, NY, USA: Consor-
tium for Computing Sciences in Colleges.

Dahlgren, M., Hult, H., Dahlgren, L., Segertad, H. & Johansson, K. (2005). The transition from
higher education to work life, the outcomes of a PBL programme and a conventional programme.
In E. Poikela & S. Poikela (Eds), PBL in context—Dbridging work and education (pp. 23—44). Filand: Tampere
University Press.

van Dam, A. (2005). Visualization research problems in next-generation educational software. IEEE Com-
puter Graphics and Applications, 25, 5, 88-92.

Dann, W., Cooper, S. & Pausch, R. (2000). Making the connection: programming with animated small world.
In Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE conference on Innovation and Technology in Computer
Science Education. Helsinki, Finland, July 11-13, 2000. ITiCSE 00 (pp. 41-44). New York: ACM Press.

Dann, W,, Cooper, S. & Pausch, R. (2001). Using visualization to teach novices recursion. Proceedings of the
6th Annual Conference on Innovation and Technology in Computer Science Education. SIGCSE Bull. 33, 3 (Sep.
2001), (pp. 109-112). Canterbury: ACM. DOI=http://doi.acm.org/10.1145/507758.377507

Dershem, H. L. & Brummund, P. (1998). Tools for Web-based sorting animation. In Proceedings of the
Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education. Atlanta, GA, February
26-March 1, 1998.

Dick, B. (1999). Rigour without numbers: the potential of dialectical processes as qualitative research tools (3rd
ed.). Brisbane, QLD: Interchange.

Dickey, M. D. (2003). Teaching in 3D: pedagogical affordances and constraints of 3D virtual worlds for
synchronous distance learning. Distance Education, 24, 1, 105-121.

Dillenbourg, P. (2000). Learning in the new millennium: building new education strategies for schools. Workshop
on Virtual Learning Environments. Retrieved 2 7-Jun-2000, from http://tecfa.unige.ch/tecfa/publicat/dil-
papers-2/Dil.7.5.18.pdf

Duch, B. (2001). Writing problems for deeper understanding. In B. Duch, S. E. Groh & D. E. Allen (Eds), The
power of problem-based learning: a practical ‘how to’ for teaching undergraduate courses in any discipline (pp.
47-53). Sterling, VA: Stylus Publishing.

Esteves, M., Fonseca, B., Morgado, L. & Martins, P. (2008). Contextualization of programming learning: a
virtual environment study. In Proceedings of the 38th ASEE/IEEE Frontiers in Education Conference, October
22-25, 2008, Saratoga Springs, NY (pp. 17-22). Washington, DC: IEEE.

Esteves, M., Fonseca, B., Morgado, L. & Martins, P. (2009). Using Second Life for problem based learning in
computer science programming. Journal of Virtual Worlds Research, 2, 1. Retrieved 2009-04-08, from
https://journals.tdl.org/jvwr/article/view/419/462

Esteves, M. & Mendes, A. (2004). A simulation tool to help learning of object oriented programming basics.
In Proceedings of the 34th ASEE/IEEE Frontiers in Education Conference (pp. 20-23). Savannah, GA,
October 2004.

Fleury, M. & Oliveira Junior, M. (2001). Gestdo do Conhecimento Estratégico—Integrando Aprendizagem. Sao
Paulo: Conhecimento e Competéncias. Editora Atlas.

de Freitas, S. & Neumann, T. (2009). The use of ‘exploratory learning’ for supporting immersive learning.
Computers & Education, 52, 2, 343-345.

Gomes, A., Areias, C. M., Henriques, J. & Mendes, A. (2008). Aprendizagem de programacédo de computa-
dores: dificuldades e ferramentas de suporte. Revista Portuguesa De Pedagogia, 42, 2, 161-179.

Isaacson, W. (2007). Einstein: His Life and Universe. Walter Isaacson (Edt.). Simon & Schuster Paperbacks,
Rockefeller Center. New York.

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of 3rd Annual LTSN_ICS Confer-
ence, Loughborough University, UK, August 27-29, 2002 (pp. 53-58). York: The Higher Education
Academy.

Kiili, K. (2005). Digital game-based learning: towards an experiential gaming model. Internet and Higher
Education, 8, 13-24.

Kolling, M., Quig, B., Patterson, A. & Rosenberg, J. (2003). The Blue J system and its pedagogy. Journal of
Computer Science Education, 13, 249-269.

Lahtinen, E., Mutka, K. A. & Jarvinen, H. M. (2005). A study of the difficulties of novice programmers.
In Proceedings of the 10th Annual SIGSCE Conference on Innovation and Technology in Computer Science
Education (ITICSE 2005). Monte da Caparica, Portugal, June 27-29, 2005 (pp. 14-18). New York: ACM
Press.

Lessard-Hébert, M., Goyette, G. & Boutin, G. (1990). Recherche Qualitative: Fondements et Pratiques. Montréal:
Agence d’ARC.

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

Improving teaching and learning through Second Life ~ 637

Lethbridge, T. C., Diaz-Herrera, J., LeBlanc, R.]J. & Thompson, J. B. (2007). Improving software practice
through education: Challenges and future trends. In 2007 Future of Software Engineering, May 23-25,
2007 (pp. 12-28). International Conference on Software Engineering. Washington, DC: IEEE Computer
Society.

Michail, A. (1996). Teaching Binary Tree Algorithms through Visual Programming. In Proceedings of the
1996 IEEE Symposium on Visual Languages (VI'96) (pp. 38—45). (September 03-06, 1996). IEEE Com-
puter Society, Washington, DC, USA.

Miliszewska, I. & Tan, G. (2007). Befriending computer programming: a proposed approach to teaching
introductory programming. Journal of Issues in Informing Science & Information Technology, 4, 277-289.

Motil, J. & Epstein, D. (2000). JJ: a language designed for beginners (less is more). Retrieved July 16, 2008, from
http://www.ecs.csun.edu/jmotil/TeachingWith]J.pdf

Newman, D., Goldman, S. V, Brienne, D., Jackson, I. & Magzamen, S. (1989). Computer mediation of
collaborative science investigations. Journal of Educational Computing Research, 5, 2, 151-166.

O’Kelly, J. & Gibson, J. P. (2006). RoboCode & problem-based learning: a non-prescriptive approach to
teaching programming. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (Bologna, Italy, June 26-28, 2006) (pp. 217-221). ITICSE ‘06. New York:
ACM.

Olapiriyakul, K. & Scher, J. M. (2006). A guide to establishing hybrid learning courses: employing informa-
tion technology to create a new learning experience, and a case study. The Internet and Higher Education,
9, 287-301.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.

Papert, S. (1996). The connected family: bridging the digital generation gap. Atlanta, GA: Longstreet Press.

Pattis, R. (1981). Karel the robot. New York: Wiley.

Poikela, E. (2004). Developing criteria for knowing and learning at work: towards context-based assessment.
Journal of Workplace Learning, 16, 5, 267-274.

Rekkedal, T. (1983). The written assignments in correspondence education. Effects of reducing turn-around
time. Distance Education, 4, 231-250.

Robins, A., Rountree, J. & Rountreen, N. (2003). Learning and teaching programming: a review and
discussion. Computer Science Education, 13, 2, 137-172.

Salmon, G. (2009). The future of Second Life and learning. British Journal of Educational Technology, 40, 3,
526-538.

Schulte, C. & Bennedsen, J. (2006). What do teachers teach in introductory programming? In Proceedings of
the Second International Workshop on Computing Education Research, Canterbury, UK, September 9-10,
2006 (pp. 17-28). ICER ‘06. New York: ACM.

Soloway, E. M. (1986). Learning to program = learning to construct mechanisms and explanations. Com-
munications of the ACM, 29, 850-858.

Stasko, J. T., Domingue, J., Brown, M. & Price, B. (Eds) (1998). Software visualization, programming as a
multimedia experience. Cambridge, MA: MIT Press.

Twining, P. (2009). Exploring the educational potential of virtual worlds—some reflections from the SPP.
British Journal of Educational Technology, 40, 3, 496-514.

Valério, S., Pereira,]., Morgado, L., Mestre, P,, Serddio, C. & Carvalho, F. (2009). Second Life information desk
system using instant messaging and short messaging service technologies. In G. Rebolledo-Mendez, F.
Liarokapis & S. Freitas (Eds), IEEE First International Conference—Games and Virtual Worlds for Serious
Applications, Coventry, UK, March 23-24, 2009 (pp. 125-132). Los Alamitos, CA: IEEE Computer Society.

Warburton, S. (2009). Second Life in higher education: assessing the potential for and the barriers to
deploying virtual worlds in learning and teaching. British Journal of Educational Technology, 40, 3, 414—
426.

Wenger, E. (1998). Communities of practice. Learning, meaning and identity. Cambridge, UK: Cambridge Uni-
versity Press.

Wenger, E. C., Snyder, W. M. & McDermott, R. (2002). Cultivating communities of practice: a practitioner’s guide
to building knowledge organizations. Cambridge, Massachusetts, USA: Harvard Business School Press.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. SIGCSE Bulletin, 28, 17-22.

Zuber-Skerritt, 0. (2002). A model for designing action learning and action research programs. The Learning
Organization, 9, 4, 143-149.

© 2010 The Authors. British Journal of Educational Technology © 2010 Becta.

