A dynamic logic for QASM programs

Carlos Tavares!

High-Assurance Software Laboratory /INESC TEC, Braga, Portugal,
ctavares@inesctec.pt

Abstract. We define a dynamic logic for QASM (Quantum Assembly)
programming language, a language that requires the handling of quan-
tum and probabilistic information. We provide a syntax and a model to
this logic, providing a probabilistic semantics to the classical part. We
exercise it with the quantum coin toss program.

Keywords: quantum logic, quantum programming, dynamic logic

1 Introduction

The programming languages, calculi, and logics, developed in the course of the
past 20 years, for quantum computing have been gaining relevance with the
appearance of the first proof-of-concept quantum computers and quantum pro-
gramming languages. One of such is the Quantum Assembly Language [CBSG17],
the quantum circuit specification language in use in the commercially available
quantum hardware supplied by IBM, the IBM Q platform [ibm18] (a small ex-
ample of the language is depicted in figure 1).

Circuit editor * Circuit composer

Operatons su
10} +add
ate1 1oy

ar1l 10y

at21 10)
ats1 10)

atal 10)

Fig. 1. Example of the definition of a circuit in the QASM language. On the right side
the visual definition of the circuit and on the left side the correspondent QASM code.

Besides the description of unitary quantum circuits, the language encompasses
classical control flow instructions, such as measurements, which possess a prob-
abilistic nature, and if statements. We propose a dynamic logic for this language
exploring two main points of interest: the direct handling of quantum and prob-
abilistic propositions, and a possible axiomatic semantics.

2 Quantum computing

In this section, we introduce quantum computing from a state based perspective
(i.e. by the definition of states, transitions, and acceptance states), as usually
presented in the literature [Deu85]. For a more complete understanding of quan-
tum computing, we recommend the reading of [NC02].

2.1 States

The state space of a quantum system is given by the set of unitary vectors (vec-
tors of norm 1) definable in its respective Hilbert space. The qubit, the quantum
version of the classical bits, consists of a Hilbert space of dimension 2, H?, with
{]0), |1)} as an orthogonal basis. The correspondent state space reads as follows:

) = a|0) + B[1);[al* + |8 = LAY) = [¥), A e C (1)
Quantum systems can be combined, employing the tensor product ®. For a
n-qubit system, the set of possible states reads as follows:

R#? @)
1=0

For systems with more than one qubit, one verifies the existence of non-separable
states, i.e. states that cannot be written as states of individual qubits, as for
instance in the following Bell state: |®) = % (]00) + |11)). The latter is the

mathematical expression of the so-called physical phenomenon of entanglement.

2.2 Transitions (programs)

In quantum mechanics, transitions preserve unitarity of states. Hence, programs
correspond to unitary operators (U.UT = I). For a quantum system with n
qubits the signature of the transition operators reads as follows:

R
In quantum computation practice, a rather less abstract notion is used, the so-

called quantum circuits [Deu89], where unitary operators are approximated by
compositions of primitive unitary operators, such as the H, X, Y, or Z gates.

2.3 Acceptance states

Measurements, (mathematically Proj,, or |¢) (¢]), can be interpreted as a method
that causes the collapse of superposition states to elements of an orthogonal ba-
sis, (e.g. in the qubit case |0) and |1)). An acceptance state is one where the
correct output is obtained upon measurement, with probability! greater than a.

! The probability of obtaining ¢ in a measurement is (s|Proj,s) where s is a state and
(.].) is the internal product of the Hilbert space. In equation (1), |a|? and |3|?, are
2

the probabilities of obtaining |0) and |1), which is 0.5 in both cases: ((%) = 0.5).

3 A dynamic logic for QASM

The QASM programming language is not a pure quantum programming lan-
guage as it involves, measurements, which possess a probabilistic nature, and
classical flow instructions depending on those measurements, requiring the han-
dling of probabilistic and quantum programs. Our approach to this problem is
somehow inspired in the fusion of works of Baltag and Smets [BS04, BBK*14]
for the quantum part and of Kozen [Koz85, Koz81] for the probabilistic part.

3.1 Syntax

As usual in dynamic logic, the syntax is divided into two layers: one of the
programs and one of the formulas. The program’s layer encompasses a frag-
ment of the QASM language, which includes the classical control instructions
(if statements, creation of classical and quantum registers, and measurements of
quantum registers), as well as several standard unitary operations (x, z, h and
cnot gates).

argument = id | id [index
id | id [ind
(test) = (argument) == (natural number)
(7q) = x greg_id [index] | z qreg_id [index] | h qreg_id [index]
| cx qreg_id [index], qreg_id [index] (unitary gates)
| measure qreg_id — creg_id (measurements)
| 737
() = creg id [size] | qreg id [size] (creation of registers)
| if (test) then my (if statements)
| mw

1 | Q | l | pregiste'r

index

€ =
i i

= (b, firesty =9) | P70 | (Mo | @@V |pAe

Figure 1.1. Formulas Layer and Programs Layer

On the formula side, atomic propositions are pairs (p7 Jtesty = g<test>) where p
corresponds to quantum propositions over qubit states and f<test> = ¢ corre-
sponds to equality expressions over the probability distributions definable on the
possible tests over classical variables. On the quantum side 0 and 1 denote that 0
or 1 are true upon measurement with 1 as probability, and the p}<%*'" narrows
a proposition range to a specific register and qubit, as for instance 0f, which
means that qubit 0 of register ¢ has value 0. The P="¢ modality establishes re-
strictions to the probability of propositions for instance P=%%p. The (r) has the
usual meaning of ”the proposition ¢ may hold upon the execution of program
7”7 and the usual minimal set of Boolean connectives is included.

3.2 Semantics

The semantics of this logic is given in terms of a Labelled transition system
[HMS80], defined by a tuple:

M= (G, []: A UA —-290UG x @) (3)

where G is a set of states and [.] a meaning function, from the type of the well-
formed syntactic expressions of propositions (A,) and programs (A;), to the
powerset, and Cartesian product of the set of states, respectively.

3.3 The state space

A state of a program in the QASM language is defined by its classical and
quantum components. Each of such components is divided into one or many in-
dependent registers, each composed of a set of quantum or classical bits, resulting
in the following state space:

H@.. . @H*x...x{0,1} x...x {0,1} x ... (4)
—_—
quantum register classical register

S ¢

On the classic side, we work on a probabilistic setting, due to the existence of
quantum measurements, which work as random assignments. Thus, the set of
possible states corresponds to the distributions definable on the tests? over the
classical variables. Therefore, a distribution is given by a measure [Koz85] from
the set of tests to the probability interval [0, 1]:

Hs : 2¢ — [0, 1]

However, the actual state in this logic is defined the equality operator over two
measures, so an actual state is characterized as a function with signature:

s : 26 x 2¢ = {0,1}

In conclusion the state space of a QASM program is given by the Cartesian
product of the possible states of the independent quantum and classical registers,
denoted Registers, where in the former the set of states is given by the tensor
product of quantum bits, and in the latter by the possible distributions definable
over the configurations of the classical bits.

G= H ® ,H2®regisize % H 220><2C

quantum register€ Registers classical registerc Registers

2 Tests correspond to the o-algebra over the valuation set C. For valuations with a
discrete domain, it corresponds to the powerset 2. Tests form a Boolean algebra.

3.4 Propositions

As seen in section 3.1, propositions correspond to a pair of quantum and classical
propositions, where quantum propositions are of type 2°, the powerset of the
quantum state space, and the probabilistic propositions of the type 2¢*€, the
pairs of fuzzy predicates® definable on the state space 2€*C. Therefore, the type
of the global propositions reads as follows:

p:2° x (26%9)
Definition 1. Semantics for proposition constructors.

We define proj, as the quantum part of a proposition, and proj, as the proba-
bilistic part of the proposition.

i [[1]] = {s| (s|Projis) = 1}. Similarly for [[0]].
[L]) 0.
[pie9""] - The set where the proposition p, restricted to a register and a
specific qubit index, holds.

ii [(p, f = 9)] = {sls € [p] A F(proju(s)) = g(projp(s))} and proji(s) € C.

iii [P270] = {s] (5 | Projprojups) >).
The set of states where quantum proposition component ¢ holds with proba-
bility greater than r.

i [p1 A pa] = {s]s € [projq(r) Nprojo(p2)l As € [projp(er) Nprojy(e2)]}

v [e1 V2] = {s|s € [projq(v1) Uproje(w2)] A s € [projp(er) Uprojp(w2)]}

vi [~@] = {sls & [projep] A s & [projpe]}

i [(m) 9] = {s/3u : (s,u) € [x] Aw €[]}
The set of states where the proposition ¢ holds upon the execution of program
.

3.5 Program semantics
Programs in this logic correspond to deterministic relations between states:

[]: A =G xG (5)

This function denotes an accessibility relation, i.e. directed valid transitions be-
tween pairs of states (source to output), under the action of a given program.

3 A fuzzy predicate corresponds to a measurable function [Koz85] from the set of
states to the probability interval [0, 1], in this case, C — [0, 1]. The fuzzy predicate is
characteristic of a test.

Definition 2. Semantics for programs (accessibility relation)

pE 25 - any quantum proposition

o € 2°%C _ any probabilistic proposition (fitesty = 9)

(n) Creation of registers (upon a register is created its value is necessarily 0,

both for quantum and the probabilistic parts):
[ereg reg_id [size]] = {(s,u)|s € [(p, Lreg_ia)] Aw € [(D, freg ia=0(w) = 1)]}
Lareg reg_id fsize]] = {(s,)]s € [(Lyeg sao)] Au € [(05°%5 1. 0)T)

Pairs of states where L holds in the source state and 0 in the output state.

(h) Hadamard operator:
[h reg_id [index]] =

{(s,u)]s € [[((PT:’”P) AQ;SZ;;d,@]] Vs e [[((Pr:”ip) A 1769-d a)]]

=index

Au € [[(P?”:pi*Ob(p/\Qreg*id) A Pr:pi*o.f)(p/\ 17,6977;(1),0&)]]}

index =index

U {(s,u)|s c [[(PT‘::D'L*Oﬁ(p/\QTeQ*id) A P’I":pi*O'S(pAlreg*id),OZ)]]/\

index index
(we [((Prop) A G5 @) v e [(Prop) A Lsg o)D)

Puairs of states defined by either 0 or 1 on the source state and a superposition

of 0 and 1 in the output state, or vice-versa.

(z) X operator:
[reg_id [indes)] = {(s,u)ls € [(p A Lo @)l A e [(p A Q5" a)]
vsel(pntiiid o)l nue [(pALsit o)l

Puairs of states where 0 holds in the source state and 1 in the output state,

or vice-versa (same effect as a classical not gate).

(m) Measure:

[measure greg_id — creg id]

2size

= {(s,u)\s € [[/\ P:piia ,Dcregiid(/'\ fcregiidzzi)]]

Au € [[(\/z, /\ fereg_id==i(u) == Pz)]]}

Puairs of states where the probability distribution of the valuations of a set

of qubits in the source state, is the same as the verified in a set of classical
bits in the output state, where Dereg ;a4 denotes a distribution compatible

upon measurement with /\fcregiid::i({d|meas od = f} where o is the

?

Lebesgue integral)

(;) Sequence
[mr1;m2] = {(s,u)|3t(s,1) € [m] A (¢, u) € [m=]}

4 An example: A quantum coin tossing program

This section, illustrates the logic through the proof of correctness of a simple
quantum program for quantum coin tossing (prepare a qubit in a superposition
state and measure it, obtaining 0 or 1 with equal probability), which translates
into the following QASM program:

OPENQASM 2.0;

include "qelibl.inc";
qreg ql1];

creg cl[1];

h q[0];

measure q[0] -> c[0];

The correctness of such program implies the following post-condition:

(Q(q) V lg, f(c[o]::1>($) =05A f(c[O]::O) (l‘) = 0.5) with z € C (6)

where 0 V 1 denotes the quantum qubit ¢ has either, mutually exclusively, the
values 0 or 1, and C = {0,1}. The fact that post-condition (6) holds upon
the execution of the program qreg q[1]; creg c[1]; h q[0]; measure q[0] — ¢[0] is
expressed through the following formula:

(qreg q[1]; creg c[1]; h q[0]; measure q[0] — ¢[0])
(08 v 18, fiejoj==1) (@) = 0.5) A (08 V 1§, fefoj==0y (x) = 0.5) with z € C

This is proved by the rules of section 2:

Proof.

[{areg q[1]; creg c[1]; h q[0]; measure q[0] — c[0])
(0§ v 18, frepo==1) (@) = 0.5 A ficfoj==0y () = 0.5)]

{s|Fu : (s,u) € [areg q[1]; creg c[1]; h q[0]; measure q[0] — c[0]]

Au € [(08 V18, freo==1) (projp(u)) = 0.5 A fiejgj=—0) (projp(u)) = 0.5)]}

with proj,(u) € C

= (use of the (;) rule)

{s|Fu : 3t : (s,t) € [qreg q[1]; creg c[1];h q[0]] A (¢, u) € [measure q[0] — ¢[0]]
Au € [(0F V1§, frepo==1) (projp(u)) == 0.5 A frejo)==0) (projy(u)) = 0.5)]}

= (use of the (m) rule)

{s[Fu:3t: (s,t) € [areg q[1]; creg c[1];h q[0]]
At € [(P=0P08, P=0P1E, De(fefoj==0) A frejoj==1)))]
Au € [(0§ V15, frejo==1) (projp(u)) == 0.5 A fiejoj==0) (Projp(u)) = 0.5)]}

= (use of (;) and (h). u can be eliminated because u € [...] is true)

{s|3t : 3" : (s,t') € [qreg q[1]; creg c[1]]

A (t € [(0F, De(frepoy==0y A frepoy==1))] V¥ € [(18, De(fcfoj==0) A Frefoj==1y)])
At e [(P=°08, P="°18, De(fejoj==0y A felo)==1y)]}

= (use of (;) and (nreg) rules. t can be eliminated because ¢ € [...] is true)

{s|3t" : 3" : (s,") € [qreg q[1]] A" € [(0F, L.)]

A (€ [(08, De(frefoi==0) A fretoi==1))1 V' € [(1E, De(fictoi==0) A fretoi==1))1)}

= (use of (;) and (nreg). t’ can be eliminated because ¢’ € [...] is true)

{s]: 3" : s € [(LL, LY A" € [(0F, L]}

= (t” can be eliminated because t" € [...] is true)

{s|s € [(L9, L°)]} where s is valid state, finishing the proof. O

5 Conclusions

The paper defined a dynamic logic for a fragment of QASM, combining existent
works on dynamic logics for quantum and probabilistic programs and we proved
the correctness of a quantum coin toss. However, the logic is still work in progress,
being necessary the extension to other examples.

Acknowledgements The author wishes to thank Luis Barbosa and Leandro Gomes,
for the useful discussions during the course of this work. The author was funded
by an individual grant of reference SFRH/BD/116367/2016, conceded by the
FCT - Fundagao para a Ciéncia e Tecnologia under the POCH programme and
MCTES national funds. This work was also supported by the KLEE project(POCI-
01-0145-FEDER-030947-PTDC/CCI-COM/30947/2017), funded by ERDF by
the Operational Programme for Competitiveness and Internationalisation, COM-
PETE2020 Programme and by National Funds through the Portuguese funding
agency, FCT.

References

[BBK*14] Alexandru Baltag, Jort Bergfeld, Kohei Kishida, Joshua Sack, Sonja Smets,

[BS04]

[CBSG17]

[Deu85]

[Deu89]

[HMS0)]

[ibm18]

[Koz81]

[Koz85]

[NC02]

and Shengyang Zhong. Plgp & company: Decidable logics for quantum
algorithms. International Journal of Theoretical Physics, 53(10):3628-3647,
2014.

Alexandru Baltag and Sonja Smets. The logic of quantum pro-
grams. Proceedings of the 2nd International Workshop on Quan-
tum Programming Languages, pages 39-56, 2004. Available in

https://www.mathstat.dal.ca/ selinger/qpl2004/proceedings.html.

Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta.
Open quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.
David Deutsch. Quantum theory, the church—turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818):97-117, 1985.

David Elieser Deutsch. Quantum computational networks. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences,
425(1868):73-90, 1989.

Matthew Hennessy and Robin Milner. On observing nondeterminism
and concurrency. In Jaco de Bakker and Jan van Leeuwen, editors, Au-
tomata, Languages and Programming, pages 299-309, Berlin, Heidelberg,
1980. Springer Berlin Heidelberg.

Ibm q - quantum computing, Jun 2018. Available in:
https://www.research.ibm.com/ibm-q/.

Dexter Kozen. Semantics of probabilistic programs. Journal of computer
and system sciences, 22(3):328-350, 1981.

Dexter Kozen. A probabilistic pdl. Journal of Computer and System Sci-
ences, 30(2):162-178, 1985.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

