
Refactoring meets Model-Driven Spreadsheet
Evolution

Jácome Cunha∗†, João Paulo Fernandes∗‡, Pedro Martins∗, Rui Pereira∗, and João Saraiva∗
∗ HASLab/INESC TEC & Universidade do Minho, Portugal
† CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal

‡ RELEASE, Universidade da Beira Interior, Portugal

{jacome,jpaulo,prmartins,ruipereira,jas}@di.uminho.pt

Abstract—Software refactoring is a well-known technique that
provides transformations on software artifacts with the aim of
improving their overall quality. In this paper we present a set of
refactorings for ClassSheets, a modeling language that allows
to specify the business logic of a spreadsheet in an object-
oriented fashion. The set of refactorings that we propose allows
us to improve the quality of these spreadsheet models. Moreover,
it is implemented in a setting that guarantees that all model
refactorings are automatically carried to all the corresponding
(spreadsheet) instances, thus providing an automatic evolution of
the data so it is always synchronized with the model.

I. INTRODUCTION

Software refactoring [1] is the process of modifying the
structure of software programs without changing the way they
behave. That is to say that while improvements are expected
on the nonfunctional attributes of a piece of software, its is
mandatory that its associated functional attributes must not be
affected by refactorings.

The set of nonfunctional attributes of a software product
include characteristics such as readability, maintainability and
extensibility, and improvements are achieved, for example, by
transforming it into a new version with: i) reduced complexity,
ii) added expressiveness in either the code or its model (or
both) or iii) diminished overall size (fewer methods, classes or
lines of code), for example.

In practice, a significant set of automated refactorings
is usually available for a concrete programming language.
This reduces the overall programming effort, since due to
the improved quality of refactored code, e.g. its increased
readibility, traditional programming tasks become simpler and
can be implemented faster.

Because of its applicability, code refactoring has been
studied in different contexts, ranging from software source
code [1], [2] or software models [3] to spreadsheets [4]. In this
paper, we propose a series of refactorings for ClassSheets [5],
a modeling language for spreadsheets.

This work is part funded by the ERDF - European Regional Develop-
ment Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020484. The first, and fourth author
were funded by FCT: SFRH/BPD/73358/2010, BI3-2013 PTDC/EIA-CCO/
116796/2010 UMINHO, respectively.

ClassSheets are a high level, object-oriented modeling
language for spreadsheets. Integrating concepts from the Uni-
fied Modeling Language (UML), this language provides a
modular and abstract methodology for dealing with spread-
sheets, and namely to specify and maintain their business
logic. This methodology envisions concrete spreadsheets (or
spreadsheet instances) being automatically derived from, and
maintained together with abstract specifications (or spreadsheet
models) [5], [6]. This environment provides an efficient and
effective model-driven spreadsheet development system. In-
deed, errors can be prevented by carefully reasoning about, and
designing, a concise model, instead of doing so with potentially
large spreadsheets.

Being an essential artifact to a model-driven spreadsheet
engineering environment, ClassSheet models may still suffer
from the traditional problems of poor design and construction
that have been found in other software artifacts. Thus, they
may also benefit from the availability of a set of automated
refactorings that improve their nonfunctional properties.

In this paper, we exploit this possibility: we propose a
series of refactorings for the ClassSheets language. The catalog
that we propose is inspired by the catalogue initially proposed
by Martin Fowler in [1]: our refactorings consist of either i)
refactorings that are straightforwardly derivable from Fowler’s
set or ii) refactorings that are inspired in Fowler’s work, and
in the work of some of his followers.

Our refactorings change the structure of a spreadsheet
model without neither changing their behavior nor the business
logic they implement. The work presented in this paper is
intended to help in the process of constructing and managing
spreadsheet models by the application of the refactorings.

Furthermore, the refactorings that we propose have been
fully implemented under the spreadsheet development frame-
work of [6], [7], [8]. This framework offers a bidirectional
co-evolution setting where changes in an instance are reflected
in the corresponding model and vice-versa. What this means
for the refactorings that we present in this paper is that not
only are we able to systematically refactor spreadsheet models,
but we also perform the same disciplined and automatic
transformations in all the instances it represents.

II. MODEL-DRIVEN SPREADSHEETS

Engels et al. introduced the language ClassSheet [5] to
leverage handling spreadsheets to a more conceptual level.

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.34

195

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.34

196

Figure 1a shows a spreadsheet containing information about
a small warehouse for a bar/coffee shop distribution. On the
top half (rows 1 through 6), we have three classes: Product,
Client, and Order. Product (cell range A3:B5 and J3:K5)
contains a product ID, its Name, Unit Price, and amount
in Stock, while expanding vertically (indicated by the ellipsis
on row 5). Client (cell range C1:G2) contains the client’s
Name, along with his/her Address, City, and Country,
and expands horizontally (indicated by the ellipsis on column
I). The Order (cell range C3:H5) is a relationship class which
arises due to the joining of a Product and a Client. This class
contains a Quantity value of the product, an Order Date,
a product Category, a Sold Price formula to calculate
the price, and the warehouse’s ToSellprice (expected
price) for selling all of that product.

The ID in the Client class references their Contact Info,
a class on the bottom half (cell range F8:H11), which has the
client’s Telephone and Email, expanding vertically. The
Seller’s ID in the Order class references the Seller class
(cell range A8:B11) which references the SellInf class (cell
range C8:E11) containing the Name, Cell number, and Home
number of the seller. These last two both expand vertically.

In Figure 1b see an instance of the class from Figure 1a.
Starting from the bottom left corner, in a counter-clockwise
direction, we can see instances for the Seller, SellInf,
ContactInf, Order, two instances of Client (with the
names Tiago and Marco) and four instances of Product.

On top of ClassSheets we have created MDSheet [6], a
framework that provides a bidirectional ClassSheet ecosystem:
the techniques and language described in that work allow
transformations from model to be automatically applied to the
instance and vice-versa, as illustrated in Figure 2.

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Fig. 2: Diagram of our bidirectional transformation system.

Given a spreadsheet conformed to a ClassSheet, the user
can evolve the model through an operation of the set OpM ,
or the instance through an operation of OpD. The performed
operation on the model is then automatically transformed into
the corresponding operation on the data using the to and
from transformations, respectively. A new model and data is
obtained with the new data conforming to the new model.

For transformations of models and instances, OpM and
OpD respectively, we have defined a grammar that represents
the functions operating on each one. To implement refactorings
on models we will use the former, and benefit from the existing
infrastructure: operations on models will reflect themselves on
updates on the instance.

ModelOperation defines the grammar for OpM . The ap-
plication of an update opM : OpM to a model m : Model is
denoted by opM m : Model.

data ModelOperation :Model → Model =
-- add a new column

addColumnM Where Index
-- delete a column

| delColumnM Index
-- add a new row

| addRowM Where Index
-- delete a row

| delRowM Index
-- set a label

| setLabelM (Index , Index) Label
-- set a formula

| setFormulaM (Index , Index) Formula
-- replicate a class

| replicateM ClassName Direction Int Int
-- add a static class

| addClassM ClassName (Index , Index)
(Index , Index)

-- add an expandable class
| addClassExpM ClassName Direction
(Index , Index) (Index , Index)

The first five operations are analogous to the data operations
with the same name. Other operations include setFormulaM
which allows to define a formula on a particular cell. On the
model side, a formula may be represented by an empty cell,
by a default plain value (e.g., an integer or a date) or by
a function application. The operation replicateM allows to
replicate (or duplicate) a class. The last two operations allow
the addition of a new class to a model: addClassM adds a
new static (non-expandable) class and addClassExpM creates
a new expandable class. The Direction parameter specifies if
it expands horizontally or vertically.

For more information on the MDSheet system please refer
to [8]. In the next sections we will define a set of refactoring
for ClassSheets that are based on this existing framework.

III. MODEL-DRIVEN SPREADSHEETS REFACTORING

We use a set of auxiliary functions to express our refactor-
ings, defined next in ModelRefactoring . Such functions return
an ordered list of the operations (model evolution steps) that
must be applied to the models to refactor them. These functions
are written using the ones defined before in ModelOperation.

data ModelRefactoring : Spreadsheet → [ModelOperation] =
-- add a formula

AddShiftForm ClassName Value Index Label Index
-- add an attribute

| AddShiftAtt ClassName Value Index Label Index
-- delete a cell

| DeleteShift ClassName Value Label
-- add a reference

| AddShiftRef ClassName ClassName Index
-- delete a reference

| DeleteShiftRef ClassName ClassName
-- create a new class class

| CreateClass ClassName Direction Index
-- delete a classs

| DeleteClassShift ClassName

All of our refactoring functions return the joining of the
ordered lists from the output of our auxiliary functions. This
concatenated list is used by MDSheet to evolve the ClassSheet
models to their refactored version. However, we omit such

196197

(a) Classes.

(b) Instances.

Fig. 1: An example of classes and the respective instances for a warehouse goods distribution.

joining to simplify the algorithms shown. To note, all the shift
functions automatically organize and shift surrounding cells.

We will now present a set of refactorings for ClassSheets,
how they apply to the models of Figure 1a, and how they can
be implemented in MDSheet. For each of them, we discuss
when and why they would be needed, how to refactor, and
express the refactoring function.

A. Move Formula

When/Why: We move formulas when they are more in-
terested in and used by attributes of another class than the
class on which they are defined. This is a phenomenon called
Feature Envy [9].

If we closely analyze the ToSellPrice formula (shown
in Figure 1a, with the red frame marked with an I), we can see
that not only does it suffer from Feature Envy, but semantically
it makes more sense being in the Product class since it is
defined using attributes from such class and not from the class
Order (where it is now defined).

Refactoring: Fowler typically suggests putting a method in
the class which contains most of the data used by it. This too
can be applied to model-driven spreadsheets. We can move the
ToSellPrice formula from the Order class to the Product
class. This can be seen in Figure 3, in column L, since the
formula has now the same background color as the other
attributes in Product (namely UnitPrice and Stock).

This refactoring has the potential to improve the represen-
tation and understandability of the spreadsheet [9], [10], as the
formula is now closer to the attributes it uses, and semantically
in the correct class.

Evolution: The following steps describe the Move Formula
refactoring:

Refactor - MoveFormula

Input: fromClass, value, label, toClass, posValue, posLabel
Output: [ModelOperation]

DELETESHIFT(fromClass, value, label)
ADDSHIFTFORM(toClass, value, posValue, label, posLabel)

To execute the Move Formula refactor on Figure 1a to
obtain Figure 3 we would run:

MOVEFORMULA(Order, ToSellPrice, ToSellPrice, Product, L4, L3)

MoveFormula takes information from the class
Order, namely the value ToSellPrice and the label
ToSellPrice and moves them to the class Product, to
the positions L3 and L4 respectively.

B. Move Attribute

When/Why: Another common refactoring for model-
driven spreadsheets is Move Attribute. A simple reason to
use it would be moving an attribute in a class to visually

197198

enhance the readability, or move attributes between classes due
to information evolution.

Another reason would be in a relational class when we
detect that the instanced value of an attribute varies between
one of the outer classes, and does not with the other. This
means that the attribute might be in the wrong place, and
should be placed in the class which directly affects the at-
tribute. This problem can also be found in relational databases
due to incorrect normalization [11], [12]. We can see a sample
of this occur in Figure 1b - II on the Category attribute.

Refactoring: Here we choose the attribute we wish to
change places, and choose what class and location in that class
we want to change it to. Looking at Figure 1a - II, we would
move the Category attribute into the Product class, and
obtain Figure 3 as our new class.

Fig. 3: Move Formula and Move Attribute refactor on ToSell-
Price and Category respectively

Evolution: The following steps describe the Move At-
tribute refactoring:

Refactor - MoveAttribute

Input: fromClass, value, label, toClass, posValue, posLabel
Output: [ModelOperation]

DELETESHIFT(fromClass, value, label)
ADDSHIFTATT(toClass, value, posValue, label, posLabel)

To execute the Move Attribute refactor on Figure 1a to
obtain Figure 3 we would run:

MOVEATTRIBUTE(Order, Category, Category, Product, I4, I3)

MoveAttribute moves the value Category and
the label Category from the class Order to the class
Product, more precisely to the positions I4 and I3.

C. Extract Class

When/Why: Models can grow overtime due to new at-
tributes. This growth eventually causes the model to become
too complicated and hard to understand. Where we once had
a class with a clear purpose, we now have a class doing the
work of two.

Since readability in a spreadsheet is important, the moment
we have a subset of information which is often times neglected,
it might be a good idea to extract this subset, placing it aside.
For example, imagine that the users of our spreadsheet example
do not tend to use the Address, City, and Country
attributes, as shown in Figure 1a - III. As these are a subset of
client information, and make reading the Client class difficult,
it is a good candidate for Extract Class.

Refactoring: We first need to choose which subset of
information we want to extract to a new class and create this
new class with a new name. The previous attributes would be
removed from the old class, and placed into the new class along
with an ID attribute. Finally, the ID attribute is then referenced
from the old class. This would be applied to produce Figure 4
from Figure 1a - III.

Fig. 4: Extract Class refactor on Address, City, and Country

Evolution: The following steps describe the Extract Class
refactoring:

Refactor - Extract Class

Input: fromClass, newClass, newClassExp, newClassPos,
list = [(value, label)]

Output: [ModelOperation]
CREATECLASS(newClass, newClassExp, newClassPos)
ADDSHIFTATT(newClass, ‘id=0’,‘ID’)
ADDSHIFTREF(fromClass, newClass)
for all (value, label) : list do

DELETESHIFT(fromClass, value, label)
if value = formula then

ADDSHIFTFORM(newClass, value, label)
else

ADDSHIFTATT(newClass, value, label)
end if

end for

To execute the Extract Class refactor on Figure 1a to obtain
Figure 4 we would run:

EXTRACTCLASS(Client,ClientInf,Vertical,B8,
[(Address,address),(City,city),(Country,country)])

ExtractClass takes the class Client and creates the
new class ClientInf. The new class grows vertically and
starts on the position B8. The last argument is a list of pairs
(value,label) that will be extracted to the new class.

D. Inline Class

When/Why: Inline Class is the reverse of Extract Class.
Inline Class would be used in the cases where a class has
insufficient justification of existing, due to not pulling its own
weight, simply not doing much, or even having often consulted
information. In these cases, we would remove the class, and
join it with its outer-class or those which reference it.

198199

Refactoring: When we decide to use this refactor, we
would choose the pointless class to apply this to. The attributes
which existed in this pointless class would be transfered
over to the referencing classes, replacing the referencing ID
attribute, and eliminating the class in question. We can see this
refactoring applied in Figure 1a - IV to obtain Figure 5.

Fig. 5: Inline Class refactor on the ContactInf class

Evolution: The following steps describe the Inline Class
refactoring:

Refactor - Inline Class

Input: className
Output: [ModelOperation]

for all referencingClass : Spreadsheet do
DELETESHIFTREF(referencingClass, className)
for all (value, label) : className do

if value = formula then
ADDSHIFTFORM(referencingClass, value, label)

else
ADDSHIFTATT(referencingClass, value, label)

end if
end for

end for
DELETECLASSSHIFT(className)

To execute the Inline Class refactor on Figure 1a to obtain
Figure 5 we would run Inlineclass, which only has to
receive as argument the name of the class ContactInf. This
can be seen next:

INLINECLASS(ContactInf)

E. Remove Middle-Man

When/Why: A middle-man smell is defined as a class
which acts as a delegator between other classes. This class does
not usually contain enough responsibility, logic, or purpose
other than the simple delegation of operations/information.
Along with being insufficiently usefull, containing middle-
mans usually complicate the structure and understanding of
a spreadsheet.

Fig. 6: Remove Middle-Man refactor.

Refactoring: When a middle-man exists it should be
removed, and the classes connected to each other directly.

Looking at Figure 1a - V, we would remove the Seller
class, which is doing absolutely nothing other than connecting
to the SellInf class. We would then connect the Order class
directly to the SellInf class, as shown in Figure 6.

Evolution: The following steps describe the Remove
Middle-Man refactoring:

Refactor - Remove Middle-Man

Input: className
Output: [ModelOperation]

for all referencingClass : Spreadsheet do
DELETESHIFTREF(referencingClass, className)
for all referencedClass : className do

ADDSHIFTREF(referencingClass,referencedClass)
for all (value, label) : className do

if value = formula then
ADDSHIFTFORM(referencedClass, value, label)

else
ADDSHIFTATT(referencedClass, value, label)

end if
end for

end for
end for
DELETESHIFTCLASS(className)

To execute the Remove Middle-Man refactor on Figure 1a
to obtain Figure 6 we would run:

REMOVEMIDDLEMAN(Seller)

F. Refactored Example

Figure 7a shows a refactored ClassSheet. We were able
to remove one useless class, and organize the data to be
semantically correct. The refactorings also made it easier for
the user to read and use the spreadsheet more efficiently by
joining attributes closer to their formulas, and placing often
used attributes in classes easier to access (e.g. joining the
Client’s email and phone into the Client class). Figure 7b
shows the co-evolved instance, conforming to the model.

Comparing the original instance to the refactored one,
we have 14 less data cells, a reduction of 15%, due to
the elimination of redundant data. This reduction increases
proportionally in relation to the data in the instance. For
example, if we were to add one more client, we would have
22 less cells (17% reduction), and with two new clients 30
less cells (18% reduction). We can easily see that the larger
our instance, the more impactful our refactorings. Applying a
spreadsheet bad smell detector [13] also shows a reduction in
bad smells between the original and refactored instance.

IV. RELATED WORK

Previous works have focused on refactoring spreadsheets
formulas. Of special mention is [4], where the authors suggest
a set of transformations to formulas using an Excel plugin. The
fundamental difference to our work is that the refactorings we
propose are applied to the spreadsheet model, which being
more concise, makes the reasoning easier. WYSIWYG [14],
[15] is a tool for spreadsheet testing that helps users to find
bugs and problems in spreadsheets. Contrary to our approach,
this tool requires user input to find faults and works only
individually on instances of spreadsheets.

Hermans et al. [9], [16] have various works on spreadsheet
smells. They sometimes refer refactorings for the smells they
introduce, but they focus on detection, not correction. Their
work is complementary to ours, as they focus on detecting
spreadsheet problems and ours on solving them.

199200

(a) Classes after refactoring.

(b) Instances after refactoring.

Fig. 7: The classes and the respective instances after refactoring the ClassSheet and having the instance automatically co-refactor

V. CONCLUSIONS AND FUTURE WORK

This paper presents a set of refactorings for ClassSheets,
providing better models, which are easier to understand and
to reason about. The refactorings have been implemented in a
tool, ensuring the automated application of model refactorings,
and their propagation to the corresponding instances, ensuring
model/instance synchronization.

While already having shown that the refactorings improve
the quality of the models, we want to further validate this,
with the help of quality assessment metrics [17] and through
empirical studies with professionals who use models daily.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Aug. 1999.

[2] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, 2004.

[3] H. T. Einarsson and H. Neukirchen, “An approach and tool for syn-
chronous refactoring of UML diagrams and models using model-to-
model transformations,” in Proc. of the Fifth Workshop on Refactoring
Tools, ser. WRT ’12. ACM, 2012.

[4] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,”
in Proc. of the 2012 IEEE International Conference on Software
Maintenance (ICSM), ser. ICSM ’12. IEEE Computer Society, 2012.

[5] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proc. of
the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005.

[6] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
framework for model-driven spreadsheet engineering,” in Proc. of the
International Conference on Software Engineering. IEEE, 2012.

[7] ——, “A bidirectional model-driven spreadsheet environment,” in Proc.
of the 2012 International Conference on Software Engineering. IEEE
Press, 2012.

[8] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional transformation of model-driven spreadsheets,” in Theory
and Practice of Model Transformations. Springer, 2012.

[9] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proc. of the 2012 Interna-
tional Conference on Software Engineering. IEEE Press, 2012.

[10] D. Conway and C. Ragsdale, “Modeling optimization problems in the
unstructured world of spreadsheets,” Omega, vol. 25, no. 3, 1997.

[11] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[12] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in Proc. of the 2009 ACM SIGPLAN Workshop
on Partial Evaluation and Program manipulation, 2009.

[13] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, and J. Saraiva,
“Smellsheet detective: A tool for detecting bad smells in spreadsheets.”
in Visual Languages and Human-Centric Computing. IEEE, 2012.

[14] M. Fisher II, M. Cao, G. Rothermel, D. Brown, C. Cook, and M. Bur-
nett, “Integrating automated test case generation into the WYSIWYT
spreadsheet testing methodology,” Oregon State University, Corvallis,
OR, USA, Tech. Rep., Feb. 2002.

[15] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G.
Green, and G. Rothermel, “WYSIWYT testing in the spreadsheet
paradigm: An empirical evaluation,” in Proc. of the 22Nd International
Conference on Software Engineering, ser. ICSE ’00. ACM, 2000.

[16] M. Pinzger, F. Hermans, and A. van Deursen, “Detecting code smells
in spreadsheet formulas,” in Proc. of the 2012 IEEE International
Conference on Software Maintenance, ser. ICSM ’12. IEEE CS, 2012.

[17] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Complexity
metrics for classsheet models,” in Computational Science and Its
Applications–ICCSA 2013. Springer, 2013.

200201

