
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Energy Procedia 00 (2017) 000–000

www.elsevier.com/locate/procedia

1876-6102 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the Scientific Committee of The 15th International Symposium on District Heating and Cooling.

The 15th International Symposium on District Heating and Cooling

Assessing the feasibility of using the heat demand-outdoor 
temperature function for a long-term district heat demand forecast

I. Andrića,b,c*, A. Pinaa, P. Ferrãoa, J. Fournierb., B. Lacarrièrec, O. Le Correc

aIN+ Center for Innovation, Technology and Policy Research - Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
bVeolia Recherche & Innovation, 291 Avenue Dreyfous Daniel, 78520 Limay, France

cDépartement Systèmes Énergétiques et Environnement - IMT Atlantique, 4 rue Alfred Kastler, 44300 Nantes, France

Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The environmental concerns are having a significant impact on the operation of power systems. The traditional Unit Commitment 
problem (UCP), which minimizes the total production costs is inadequate when environmental emissions need to be considered 
in the operation of power plants. This paper proposes a metaheuristic approach combined with a non-dominated sorting 
procedure to find solutions for the multi-objective UCP. The metaheuristic proposed, a Biased Random Key Genetic Algorithm, 
is a variant of the random-key genetic algorithm, since bias is introduced in the parent selection procedure, as well as in the 
crossover strategy. 
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1. Introduction 

The power system generation scheduling is composed of two tasks [1,2]: On the one hand, one must determine 
the scheduling of the turn-on and turn-off of the thermal generating units; on the other hand, one must also 
determine the economic dispatch (ED), which assigns the amount of power that should be produced by each on-line 
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unit in order to minimize the total operating cost for a specific time generation horizon. The traditional configuration 
of this problem, known as the Unit Commitment (UC) Problem, was modified to account for environmental 
concerns, namely due to the goals imposed by the Kyoto protocol and later by the Paris Agreement. The carbon 
emissions produced by fossil-fueled thermal power plants need also to be minimized. Hence, it is necessary to 
consider these emissions as another objective. Therefore, we are in the presence of a problem with two, usually, 
conflicting objectives. 

Current research is directed to handle both objectives simultaneously as competing objectives instead of 
simplifying the multi-objective nature of the problem by converting it into a single objective problem. Several 
methods have been reported in the literature concerning the environmental/economic dispatch problem such as 
Genetic Algorithms [3-5], Differential Evolution Algorithms [6,7], Harmony Search Algorithms [8], Gravitational 
Search Algorithms [9], Particle Swarm Optimization Algorithms [10–12], and Bacterial Foraging Algorithms [13]. 
These methods fall into the category of metaheuristics, which are optimization methods known to be able to provide 
good quality solutions within a reasonable computational time (see e.g. [14,15]). Different MOEAs like Niched 
Pareto Genetic Algorithm (NPGA) [16], Strength Pareto Evolutionary Algorithm (SPEA) [17] and Non-dominated 
Sorting Genetic Algorithm (NSGA) [18] have been applied to multi-objective problems. Since they use a population 
of solutions in their search, multiple Pareto-optimal solutions can, in principle, be found in one single run. 

In this paper, we propose to address simultaneously the UC and ED problems using multi-objective optimization. 
A Biased Random Key Genetic Algorithm (BRKGA) combined with a non-dominated sorted procedure and Multi-
objective Optimization Evolutionary Algorithm (MOEA) techniques is proposed. The BRKGA developed is based 
on the framework proposed in [19] and on a previous version developed for the single objective UC problem [20] 
and [21]. Here, the BRKGA approach includes a ranking selection method, that is used for ordering the non-
dominated solutions, and a crowded-comparison procedure as in NSGAII. 

The crowded-comparison procedure replaces the sharing function procedure used in original NSGA, which 
allows for maintain diversity in the population. Furthermore, we compare the algorithm here proposed with the 
NSGA-II, SPEA2, and NPGA techniques. Our algorithm is tested on the standard 24-hour test system introduced in 
[22,23]. For this system several cases involving 10 up to 100 generating units are considered. 

 
Nomenclature 

Decision Variables:  
 𝑦𝑦!,!:Thermal generation of unit j at time period t, in [MW]; 𝐷𝐷!: Load demand at time period t, in [MW]; 
 𝑢𝑢!,!: Status of unit j at time t (1 if on; 0 otherwise);  𝑌𝑌!"#!: Minimum generation limit of unit j, in [MW]; 
Auxiliary Variables:      𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎𝒋𝒋: Maximum generation limit of unit j, in [MW]; 
𝑇𝑇!
!"/!""(𝑡𝑡): Consecutive time periods for which unit j has  𝑁𝑁!: Number of the base units;  

                   been on-line/off-line until time period t,                  𝑇𝑇!"#!
!"/!"": Minimum uptime/downtime of unit j, in   

                   in [hours];                                                                                [hours]; 
Parameters:      𝑻𝑻𝒄𝒄,𝒋𝒋: Cold start time of unit j, in [hours]; 
 𝑇𝑇: Time periods (hours) of the scheduling time horizon;          𝑆𝑆𝑆𝑆!: Shut down cost of unit j, in [$]; 
 𝑡𝑡: Time period index;     𝑆𝑆𝑆𝑆!,!: Start-up pollutant emissions of unit j, at time    
𝑁𝑁: Number of generation units;                                                            period t in [ton-CO2] if CO2  or [mg=Nm3] if                                                                               
 𝑗𝑗: Generation unit index;                                                                      nitrogen oxides;                                                
𝑅𝑅!: System spinning reserve requirements at time t,               ∆!

!"/!": Maximum decrease/increase output level    
     in MW ;                                                                                              in consecutive periods for unit j, in [MW]. 

2. The multi-objective UCP formulation 

In the multi-objective UC problem, one needs to determine an optimal schedule, which minimizes the production 
cost and emission of atmospheric pollutants over the scheduled time horizon subject to system and operational 
constraints. Therefore, the multi-objective UC problem should be formulated including both objectives, i.e., the 
minimization of the operational costs and the minimization of the pollutant emissions. 
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unit in order to minimize the total operating cost for a specific time generation horizon. The traditional configuration 
of this problem, known as the Unit Commitment (UC) Problem, was modified to account for environmental 
concerns, namely due to the goals imposed by the Kyoto protocol and later by the Paris Agreement. The carbon 
emissions produced by fossil-fueled thermal power plants need also to be minimized. Hence, it is necessary to 
consider these emissions as another objective. Therefore, we are in the presence of a problem with two, usually, 
conflicting objectives. 

Current research is directed to handle both objectives simultaneously as competing objectives instead of 
simplifying the multi-objective nature of the problem by converting it into a single objective problem. Several 
methods have been reported in the literature concerning the environmental/economic dispatch problem such as 
Genetic Algorithms [3-5], Differential Evolution Algorithms [6,7], Harmony Search Algorithms [8], Gravitational 
Search Algorithms [9], Particle Swarm Optimization Algorithms [10–12], and Bacterial Foraging Algorithms [13]. 
These methods fall into the category of metaheuristics, which are optimization methods known to be able to provide 
good quality solutions within a reasonable computational time (see e.g. [14,15]). Different MOEAs like Niched 
Pareto Genetic Algorithm (NPGA) [16], Strength Pareto Evolutionary Algorithm (SPEA) [17] and Non-dominated 
Sorting Genetic Algorithm (NSGA) [18] have been applied to multi-objective problems. Since they use a population 
of solutions in their search, multiple Pareto-optimal solutions can, in principle, be found in one single run. 

In this paper, we propose to address simultaneously the UC and ED problems using multi-objective optimization. 
A Biased Random Key Genetic Algorithm (BRKGA) combined with a non-dominated sorted procedure and Multi-
objective Optimization Evolutionary Algorithm (MOEA) techniques is proposed. The BRKGA developed is based 
on the framework proposed in [19] and on a previous version developed for the single objective UC problem [20] 
and [21]. Here, the BRKGA approach includes a ranking selection method, that is used for ordering the non-
dominated solutions, and a crowded-comparison procedure as in NSGAII. 

The crowded-comparison procedure replaces the sharing function procedure used in original NSGA, which 
allows for maintain diversity in the population. Furthermore, we compare the algorithm here proposed with the 
NSGA-II, SPEA2, and NPGA techniques. Our algorithm is tested on the standard 24-hour test system introduced in 
[22,23]. For this system several cases involving 10 up to 100 generating units are considered. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 [𝐹𝐹 𝑦𝑦, 𝑢𝑢 ,𝐸𝐸 𝑦𝑦, 𝑢𝑢 ]   (1) 

Due to its combinatorial nature, multi-period characteristics, and nonlinearities, the UC problem is a hard 
optimization problem, which involves both integer and continuous variables and a large set of constraints. The first 
component of the objective is to minimize the system operational costs composed of generation and start-up costs. 
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where 𝑆𝑆𝑆𝑆!,! and 𝑆𝑆𝑆𝑆! are the start-up and shut-down costs of unit j at time period t , respectively. On the other hand, 
the second objective is to minimize the total quantity of atmospheric pollutant emissions such as NOx and CO2.  
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where 𝑆𝑆𝑆𝑆!,! is the start-up pollutant emissions of unit j at time period 𝑡𝑡. The constraints can be divided into two 
categories: the system constraints and the technical constraints. Regarding the first category of constraints it can be 
further divided into load requirements and spinning reserve requirements, which can be written as follows: 

1) Power Balance Constraints: The sum of unit generation outputs must cover the total power demand, for each 
time period. 

		
yt , j .ut , j ≥Dt

j=1

N

∑ , t ∈ 1,2,...,T{ }    (4) 

2) Spinning Reserve Constraints: The total amount of real power generation available from on-line units net of 
their current production level must satisfy a pre-specified percentage of the load demand in order to minimize 
the probability of load interruption. 

		
Ymax j .ut , j ≥Rt +Dt

j=1

N

∑ , t ∈ 1,2,...,T{ }    (5) 

The second category of constrains includes unit output range, minimum number of time periods that the unit must 
be in each status (on-line and off-line), and the maximum output variation allowed for each unit. 

3) Unit Output Range Constraints: For each time period t and unit j, the real power output of each generator is 
restricted by lower and upper limits. 

		
Ymin j .ut , j ≤ yt , j ≤Ymax j .ut , j .    (6) 

4) Ramp rate Constraints: Due to the thermal stress limitations and mechanical characteristics, the output 
variation levels of each online unit in two consecutive periods are restricted by ramp rate limits. 

		−Δ j
dn ≤ yt , j − yt−1, j ≤ Δ j

up .    (7) 

5) Minimum Uptime/Downtime Constraints: If the unit has already been turned on/off, there will be a minimum 
uptime/downtime time before it is shut-down/started-up, respectively. 
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		Tj
on(t)≥Tmin, jon and Tj

off (t)≥Tmin, joff .    (8) 

3. Multi-objective UCP optimization 

3.1. Decoding procedure 

The decoding procedure used in all four multi-objective optimization algorithms is the one proposed in [20,21]. 
For each chromosome, the corresponding solution is obtained in two main stages. Firstly, the output generation level 
matrix for each unit and time period is computed using the random key values. Each element of the output 
generation matrix, 𝑦𝑦!,! is given as the product of the percentage vectors by the periods demand 𝐷𝐷!, i.e.,  

 𝑦𝑦!,! = 𝐷𝐷!
!"!
!"!!

!!!
.                                                                                                                                              (9) 

Here each component of the percentage vectors is given by the corresponding random key entry divided by the 
sum of all random key values as illustrated in algorithm 1 in [20]. Then, the feasibility of the output levels is 
checked and whenever a constraint is not satisfied the solution is modified by the repair algorithm presented in [21]. 

3.2. Repair algorithm 

The repair algorithm is composed of several steps. Firstly, the output levels are adjusted in order to satisfy the 
output range constraints. Next, we have the adjustment of output levels to satisfy ramp rate limits. It follows the 
repairing of the minimum uptime/downtime constraints violation. Afterwards, the output levels are adjusted in order 
to satisfy spinning reserve requirements. Finally, the output levels are adjusted for demand requirements satisfaction 
at each time period. For details on the repairing mechanisms, the reader is referred to [21]. 

3.3. BRKGA multi-objective UC approach 

The BRKGA is adapted using the ranking selection method for ordering the non-dominated solutions according 
to the Pareto domination concept, while the crowding distance is used to break the ties by choosing the best 
individuals to be included in new population. Details about the BRKGA approach are given in [19,20]. The initial 
population, with size 𝑁𝑁!, is constructed by generating the random keys. Given a population of chromosomes 
(random keys) the decoding procedure is applied such that to each chromosome corresponds a feasible UC solution. 
The fitness function used to evaluate the solutions includes both the total operational cost and CO2 or NOx pollutant 
emissions. We have adopted a fitness procedure similar to that of NSGA-II, given in [24]. Therefore, the population 
is sorted based on the non-domination concept. Each solution is assigned a fitness (rank) equal to its non-dominated 
level. The biased selection and biased crossover operators and the introduction of mutants are used to create an 
offspring population, also of size 𝑁𝑁!. On the one hand, the biased selection ensures that one of the parents used for 
mating comes from a subset containing the best solutions of the current population. On the other hand, the biased 
crossover chooses with higher probability an allele from the best parent. Mutants are generated in the same way as 
the initially population and are introduced directly in the next generation. We start by combining the current 
population with the newly obtained one. The combined population size is the double (2𝑁𝑁!) of the current population 
and it is sorted by the non-domination criterion (Fast Non-dominated Sorting Approach). The non-domination 
criteria leads to several levels of non-dominated fronts. The first level includes all non-dominated individuals of the 
combined population. The second level, contains solutions only dominated by the solutions in the first level. All 
other levels are defined in a similar way, that is, each level contains only solutions dominated by all previous non-
dominated levels. In order to obtain the new population we go through the different levels, in ascending order, and 
include all its solutions if  𝑁𝑁! is not reached; otherwise only some solutions are included, until 𝑁𝑁! is reached, using 
the descending order of crowding distance as a selection criterion. 
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include all its solutions if  𝑁𝑁! is not reached; otherwise only some solutions are included, until 𝑁𝑁! is reached, using 
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3.4. Performance metric 

The solutions of the different MOEAs considered are compared by analysing the approximated Pareto fronts 
produced. In addition, we also use the set coverage metric [25]. This metric takes into consideration a pair of non-
dominated sets comparing the fraction of each set that is covered by the other set.  If 𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 = 0 ; then none of 
the points in set 𝐵𝐵 are covered by set 𝐴𝐴. If 𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 = 1; then all points in 𝐵𝐵 are dominated by or equal to points in 
𝐴𝐴. It should be noticed that 𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵  is not necessarily equal to 1 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 .  

 

4. Results 

The benchmark problem instances include a system with 10 up to 100 generation units for a time horizon of 24 
hours. The base case of the 10 generation unit system problem was originally proposed in [22]. For problem details, 
e.g., see [23] and the reference therein. Subsequentially, the 20, 40, 60, 80 and 100 generators systems were 
obtained by replicating the base case system (i.e., the 10 generators system) and the load demands are adjusted in 
proportion to the system size. Here, in all cases, the spinning reserve is kept at 10% of the hourly demand.  In Fig. 1, 
we have plotted the non-dominated solutions for all four methods. As it can be seen, the NPGA is clearly dominated 
by the other three methods. Regarding the remaining methods, from Fig. 1 it can be seen that the non-dominated 
solutions of the NSGA are almost always dominated by the ones obtained by the BRKGA and SPEA2. 

 

Fig. 1. Pareto-optimal fronts obtained from different algorithms in a single run for 10 units. 

From the results reported in Table 1 it can be concluded that the non-dominated solutions of SPEA2 cover 
relatively higher percentages of the other solutions. In addition, BRKGA is the second best algorithm, in terms of 
coverage performance. Although the BRKGA front often dominates higher percentages of the corresponding NPGA 
and NSGA-II fronts, BRKGA non-dominated solutions rarely cover SPEA2 solutions. Nevertheless, this is not 
always the case since, for example, considering the problem with 100 thermal units, we can observe in Table 1 that, 
on average,  the BRKGA front dominates on average 35.5 % of the corresponding SPEA2 front, while the non-
dominated set produced by SPEA2 dominates only 16.3% of the non-dominated BRKGA solutions. 
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Table 1. Percentage of non-dominated solutions coverages of set B covered by those in set A. 

10 units 

 set A/set B BRKGA NSGA II NPGA SPEA2 
BRKGA --- 75.5 69.5 31.5 
NSGA II 12.7 --- 44.5 0 
NPGA 23.8 38.5 --- 2 
SPEA2 54.4 97 90 --- 
20 units 
BRKGA                                         ---  46.3 50.5 46.5 
NSGA II 34.6 --- 56.8 53.5 
NPGA 28.6 33.3 --- 35.5 
SPEA2 48.1 29.5 42.3 --- 
40 units 
BRKGA --- 75.8 62.5 64.8 
NSGA II 3.9 --- 38.1 16.3 
NPGA 4.8 56.1 --- 27.4 
SPEA2 13.6 76.6 56.1 --- 
60 units 
BRKGA --- 75.2 55.6 24.3 
NSGA II 0.6 --- 54.6 0 
NPGA 0.15 37.8 --- 5.7 
SPEA2 35.7 100 92.6 --- 
80 units 
BRKGA --- 80.3 77 0 
NSGA II 0 --- 64.6 0 
NPGA 0 28.1 --- 0 
SPEA2 99.4 100 100 --- 
100 units 
BRKGA --- 82.6 57.9 35.5 
NSGA II 0.4 --- 50.2 0 
NPGA 0 36.8 --- 0 
SPEA2 16.3 98.2 99.7 --- 

 
Moreover, the non-dominated set obtained by BRKGA dominates 82.6% of the non-dominated solutions found 

by NSGA II, while the front obtained by NSGA II dominates less than 0.4 % of the non-dominated solutions 
produced by BRKGA. Finally, the BRKGA front dominates on average 57.9% of the corresponding NPGA front 
while the non-dominated set produced by NPGA do not cover any solutions produced by BRKGA. 

5. Conclusions 

A compromise between the unit operating costs and the level of pollutants emission implies the consideration of a 
multi-objective problem. In this paper, a new multi-objective Biased Random Key Genetic Algorithm approach 
(BRKGA) is used to provide Pareto optimal solutions for the environmental/economic unit commitment problem. 
The proposed algorithm is combined with the non-dominated sorting procedure and crowded comparison operator 
used in NSGA II technique. The algorithm maintains a finite-sized archive of non-dominated solutions, which is 
continuously updated in the presence of new solutions based on the concept of Pareto dominance. The proposed 
approach has been assessed through a comparative study, for the case study problem, with the other multi-objective 
optimization techniques by resorting to benchmark problem instances. The best results are obtained for BRKGA and 
SPEA2 approaches. Comparatively to the SPEA2, the BRKGA algorithm has best diversity performance. The 
results show that the BRKGA can be an effective method for producing tradeoff curves with a small CPU-time 
requirement. Tradeoff curves such as those presented here may give decision makers the ability of making 
environmentally friendly decisions. 
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(BRKGA) is used to provide Pareto optimal solutions for the environmental/economic unit commitment problem. 
The proposed algorithm is combined with the non-dominated sorting procedure and crowded comparison operator 
used in NSGA II technique. The algorithm maintains a finite-sized archive of non-dominated solutions, which is 
continuously updated in the presence of new solutions based on the concept of Pareto dominance. The proposed 
approach has been assessed through a comparative study, for the case study problem, with the other multi-objective 
optimization techniques by resorting to benchmark problem instances. The best results are obtained for BRKGA and 
SPEA2 approaches. Comparatively to the SPEA2, the BRKGA algorithm has best diversity performance. The 
results show that the BRKGA can be an effective method for producing tradeoff curves with a small CPU-time 
requirement. Tradeoff curves such as those presented here may give decision makers the ability of making 
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