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Obstructive Sleep Apnea diagnosis: the Bayesian network model revisited
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Abstract—Obstructive Sleep Apnea (OSA) is a disease that affects
approximately 4% of men and 2% of women worldwide but is still
underestimated and underdiagnosed. The standard method for
assessing this index, and therefore defining the OSA diagnosis, is
polysomnography (PSG). Previous work developed relevant
Bayesian network models but those were based only on variables
univariatedly associated with the outcome, yielding a bias on the
possible knowledge representation of the models. The aim of this
work was to develop and validate new Bayesian network decision
support models that could be used during sleep consult to assess
the need for PSG. Bayesian models were developed using a) expert
opinion, b) hill-climbing, c) naive Bayes and d) TAN structures.
Resulting models validity was assessed with in-sample AUC and
stratified cross-validation, also comparing with previously
published model. Overall, models achieved good discriminative
power (AUC>70%) and validity (measures consistently above
70%). Main conclusions are a) the need to integrate a wider range
of variables in the final models and b) the support of using
Bayesian networks in the diagnosis of obstructive sleep apnea.
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L INTRODUCTION

Obstructive Sleep Apnea (OSA) is a disease that affects
approximately 4% of men and 2% of women worldwide but
is still underestimated and underdiagnosed. It is
characterized by episodes of breathing cessation (apnea) or
reduction in airflow (hypopnea) during sleep for at least 10
seconds as a result of upper airway collapse. The severity of
OSA is associated with the apnea-hypopnea index (AHI),
documented during sleep, which can be divided into mild (5
< AHI <15), moderate (15 < AHI <30) and severe (AHI >
30). The standard method for assessing this index, and
therefore defining the OSA diagnosis, is polysomnography
(PSG). However, it is time-consuming, expensive and
relatively limited to urban areas which, consequently,
originates high waiting lists [1].

In Portugal, patients are referred by the primary care
physician to a sleep consult, and then the sleep expert
physicians decide the need to perform polysomnography.
Although patients are screened by the physicians, based on
clinical factors, the specificity of the entire process is rather
low (48% of PSG performed in 2010, in our sleep laboratory,
resulted negative for OSA) which, together with the limited
availability of the service, yields long waiting lists both for
consultation and to perform PSG. This setting clearly
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presents the need for a valuable decision support tool that
can a) help primary care physicians referring patients to
sleep consult, and b) help sleep experts decide who needs
PSG.

Recently, many studies have been conducted to apply
machine learning methods for medical knowledge discovery,
including sleep medicine, consisting on an alternative to
traditional statistic in defining diagnostic models. These
models can now be generated by artificial intelligence, using
decision trees, neural networks, support vector machines and
Bayesian networks (BN) [4]-[7].

Previous work [1] studied several factors and identified
six as associated with OSA diagnosis (body mass index, neck
and abdominal circumferences, gender, witnessed apneas and
alcohol consumption before sleep), but the studied sample
(patients already referenced to sleep consult) made the
results not generalizable to use in primary care, where it
would be needed the most. For example, snoring could not
be assessed since it was prevalent (100%) in that sample.
Furthermore, the Bayesian networks were developed based
only on variables univariatedly associated with the outcome,
yielding a bias on the possible knowledge representation of
the models.

The aim of this work is to revisit the obstructive sleep
apnea cohort, developing and validating new Bayesian
network-based decision support system that can be used in
the future during sleep consult to assess the need for PSG.

II.

This study was designed according to the common
characteristics of validation of a diagnostic test.

METHODS

A. Patients

This study included patients referred to perform PSG at
the Sleep Laboratory of Vila Nova de Gaia/Espinho Hospital
Center, Portugal. In this study we focus on the derivation
sample created with the patients that realized PSG between
December of 2011 to February of 2012. All adults, older than
18 years, referred by the physicians with suspected OSA
were included.

In case of duplicate studies from the same patient, the
one with best sleep efficiency was selected. Patients with
suspicion of another disorder than OSA, patients already
diagnosed (therapeutic studies), and patients with severe
lung disease or neurological condition that somehow affects
the respiratory function, such as neuromuscular diseases,
were excluded.
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B. Variables

Thirty-three variables have been selected and collected in
the previous study [1], including demographic information,
clinical history, physical examination and co-morbidities
information: Gender, Race, Age, Snoring, Witnessed apneas,
Gasping/Choking, Motor Vehicle Crashes, Refreshing Sleep,
Humor alterations, Nocturia, Restless Sleep, Decreased
libido, Morning headaches, Alcohol before sleep, Smoking,
Sedative use, Epworth sleepiness scale (ESS), Concentration
decrease, BMI, NC, AC, Craniofacial and upper airway
abnormalities, Atrial fibrillation, Stroke, Myocardial
infarction, Pulmonary hypertension, Congestive heart failure,

Diabetes, Metabolic Syndrome, Renal failure,
Hypothyroidism,  Gastroesophageal  reflux  disease,
Hypertension.

From the same study, six variables were found

significantly associated with the outcome: obesity (BMI >
30), increased neck and abdominal circumferences (using
literature-based thresholds), gender, witnessed apneas and
alcohol consumption before sleep. This subset of variables
will be referred to as the “selected” variables.

C. Data collection

Clinical information was collected prospectively during
consultation, 3 months before PSG. For the PSG, the
parameters, settings, filters, technical specifications, sleep
stage, event scoring and final results were applied according
to the American Academy of Sleep Medicine rules of 2007.
For this study, the outcome measure was the clinical
diagnosis supported on PSG results, dichotomized into
normal or OSA (mild, moderate and severe).

D. Bayesian network models

Models were built using either all data variables
(discretized when necessary) from the study, or only the
significant variables identified in previous work [1] with
univariate logistic regression.

Cases with missing data were removed for structure
learning but included for parameter fitting.

Continuous variables were categorized according to the
following definitions/breaks, rounded from quantiles in the
data or from the literature:

*  Age: breaks 40, 50, 60, 70;

*  Weight: breaks 70, 80, 90, 100;

*  Height: breaks 1.60, 1.65, 1.70, 1.75, 1.80;

e BMI: breaks 25, 27.5, 30, 32.5, 35;

*  Obesity: normal or obese (threshold: BMI > 30);

* NC: breaks 38, 41, 44,

e AC: breaks 97, 103, 111;

e NC Increased: breaks male 42cm, female 37cm [2];

e AC Increased: breaks male 94cm, female 80cm;

* ESS:breaks 3, 6,9, 12, 15, 18, 21.

For exploration purposes, Bayesian networks were built
using a hill-climbing strategy [3]. For classification
purposes, the result of PSG (normal or OSA) was defined as
the class attribute to construct the models.
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The Bayesian network classifiers used to build the
models were Naive Bayes (NB) and Tree Augmented Naive
Bayes (TAN), given their previous good results in other
clinical domains [4-7].

Also compared were the hill-climbing model defined
previously [1] and an expert-defined causal model using
selected variables.

E. Evaluation methodology

Receiver Operating Characteristic (ROC) curve analysis
was performed to determine in-sample area under the curve
(AUC). The achieved models were then evaluated with
sensitivity, specificity, precision (positive and negative
predictive values) and AUC estimates, using 10 times
stratified 4-fold cross-validation.

A significance level of 5% was used for confidence
interval definition.

We used R statistical package [8] to learn and evaluate
the models, using packages bnlearn [3] and gRain [9] for
structure learning and conditional probability tables fitting,
PpROC [10] for ROC curves assessment, and epitools [11] for
simple odds ratio computation.

II1L.

The initial cohort considered 113 patients for inclusion,
27 of whom were excluded (18 with other pathology, 3
children, 3 with no information, 2 already diagnosed, and 1
with neuromuscular disease). The final cohort used to fit the
models had 86 patients, 69 (80%) of which were male and
the global mean age was 56 years. Forty one patients (48%)
had normal result while 45 patients were diagnosed with
OSA (52%): 17 (37%) mild, 15 (33%) moderate and 13
(30%) severe.

A total of eight models were evaluated and compared,
differing on the algorithm used to model the structure —
Naive Bayes (NB), Tree-Augmented Naive Bayes (TAN),
hill-climbing (HC) or expert-defined (Causal) - and the
nimber of predictive factors included (33 or 6): NB33, NB6,
TAN33, TAN6, HC33, HC6, Causal and HC2014 (for the
structure model learned in [1]).

RESULTS

A. Bayesian network qualitative models

Fig. 1 to 4 present the graphical representations for some
of the evaluated networks (HC2014, HC6, TANG6, Causal,
and HC33), being mostly useful for knowledge discovery
and factors interaction inspection.

From the graph representations in Fig. 1 we can observe
that HC2014 and HC6 are mostly equivalent, having only a
slight change in the ascendant node for witnessed apneas
(from gender to OSA outcome) with the latter better
representing the expected association.

Also interesting enough is to note the conditional
independences risen from the algorithm: in both models,
increased NC and AC are conditionally independent given
knowledge on obesity; on HC2014, alcohol consumption and
witnessed apneas were conditionally independent given
gender, while on HC6 witnessed apneas is directly dependent
on the outcome.



Given the classification target, Fig. 2 presents different

@ @ associations expressed by TANG6, starting by assuming all
factors directly dependent from the outcome (TAN structure

assumption) and possibly allowing an extra ascendant for

@ each node. In this model, interesting dependences rise: male

gender  influences  witnessed  apneas  (OR=6.89,

CI95%=[2.19,25.01]) and alcohol consumption before sleep

(OR=16.01, CI95%=[2.98,401.29]),  while  alcohol

consumption influences increased neck circumference

9 - (OR=2.67, CI95%=[1.02,7.46]), which in turn is associated
@ @ with obesity (OR=14.66, CI95%=[4.77,53.74]), which
slightly influences increased abdominal circumference

@ (OR=4.62, CI95%=[0.56,182.60]).
‘ Using some expert knowledge on the selected variables

considered, the Causal model - designed by hand - resulted
in the network presented in Fig. 3. Here, the main points are
that most of the characteristics exposed by the hill-climbing
methods make sense from the expert point of view:
* the conditional independence of AC and NC given
obesity,
e the gender influence on both alcohol consumption
before sleep and witnessed apneas, and
* witnessed apneas as an expression (observation) of
the outcome.

Figure 1. HC2014 and HC6 : Hill-climbing network developed in [1]
(left) and with current procedure with selected variables (right).

In order to better study the interaction of different factors,
HC33 (Fig. 4) presents a complete exposition of the network
of factors, also highlighting some factors which were
considered not relevant for the model: atrial fibrillation
(OR=0.44, CI95%=[0.09,9.10]), smoking (OR=0.51,
CI95%=[0.20,1.67]), all age categories (e.g. age>70,
OR=1.26, CI95%=[0.47,4.82]), all height categories (e.g.
height>1.80, OR=1.33, CI95%[0.37,9.27]) and the Epworth
Sleepiness Scale (perhaps the strangest factor not be found
relevant for the model; e,g, ESS=]18,24], OR=0.97,
CI95%=[0.21,13.3]).

Other interesting sub-structures include:

*  weight/size substructure, where weight
measurements and computed obesity associated
with stroke (OR=2.08, CI195%=[0.45,28.60]);

e outcome observation substructure, with witnessed
apneas and concentration decrease following the

outcome;
@ @ * sleep effects on mental health substructure, with

repairing sleep associated with headaches,
associated with gender, concentration decrease and
humor alterations, humor alterations with sedative
@ use and libido alterations;
e co-morbidities substructure, with neck
circumference associated with arterial hypertension,
diabetes and infarction, and congestive heart failure.

Figure 2. TANG: Tree-Augmented Naive Bayes with selected variables.

° B. Bayesian network quantitative in-sample analysis

For a quantitative analysis, Fig. 5 presents the in-sample

ROC curves for all models. As expected, increasing model

complexity enhances the in-sample AUC (e.g. NB 85.6% vs

@ 80.4%, TAN 99.5% vs 79.9%, HC 83.3% vs 79.3%). Causal
and previous HC model presented lower AUC (76.7%) but,

globally, all models presented good discriminative power

towards the outcome.
Figure 3. Causal: Expert-defined network with selected variables.
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C. Bayesian network generalizable cross-validation

In order to assess the ability of the models to generalized
beyond the derivation cohort, cross-validation was endured.
Tab. I presents the result of the 10-times-repeated stratified
4-fold cross-validation.

From the exposed results, HC33 rises as the best
classification model (using the 50% threshold classification
cutoff to predict the outcome) only loosing in terms of
specificity and positive predictive value. The lower results
for these measures could possibly be overcome with a
threshold study to find the best cutoff for the classification
rule.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Previous work on Bayesian networks for obstructive
sleep apnea was biased by a selection of significant variables
that reduced: a) the interpretability of the overall models
(more complex network present interesting subnetworks to
be further analyzed by the clinical experts), b) the
discriminative power of the models (much better AUC were
computed for models with all 33 variables), and c) predictive
quality (better accuracy, sensitivity and precision cross-
validation estimates).

More studies are required to better fit a clinical decision
support model into clinical practice, especially if we consider
anticipating the support into primary care, but this study
clarified the need to integrate a much wider set of clinical
variables into a diagnostic model for obstructive sleep apnea,
nevertheless reinforcing the advantages of Bayesian network
models for the task at hands.
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TABLE 1. VALIDITY ASSESSMENT AVERAGED FROM 10 TIMES 4-FOLD CROSS-VALIDATION
Model Validity assessment measures (%, CI95%)
ode Accuracy Sensitivity Specificity Precision (positive) Precision (negative) AUC
NB33 61.09 58.92% 63.45% 64.55% 58.92% 69.53%
[57.45,64.72] [54.13,63.71] [58.4,68.51] [60.82,68.27] [54.88,62.95] [66.27,72.78]
NB6 67.68 65.08% 70.55% 71.41% 65.33% 77.84%
[65.27,70.09] [61.31,68.85] [66.8,74.29] [68.5,74.31] [62.77,67.89] [75.07,80.6]
TAN33 65.21 65.02% 65.41% 67.92% 63.65% 73.37%
[62.03,68.39] [60.58,69.46] [60.87,69.95] [64.54,71.29] [60.02,67.28] [69.88,76.86]
TAN6 64.53 62.5% 66.75% 69.24% 61.75% 72.25%
[60.96,68.1] [57.95,67.05] [60.29,73.21] [64.65,73.84] [58.42,65.09] [68.5,76.01]
HC33 72.41 79.94% 64.14% 72.04% 75.74% 79.9%
[69.19,75.62] [75.77,84.11] [58.46,69.81] [68.68,75.41] [71.54,79.95] [77.04,82.76]
HC6 68.03 78.69% 56.34% 68.2% 73.85% 77.44%
[65.92,70.14] [73.14,84.25] [50.91,61.77] [64.93,71.47] [69.72,77.98] [75.21,79.66]
HC2014 69.33 58.54% 81.16% 78.16% 65.14% 75.81%
[66.1,72.56] [53.84,63.25] [76.59,85.73] [74.00,82.33] [61.73,68.54] [72.27,79.35]
Causal 66.41 61.38% 71.93% 71.48% 63.46% 72.65%
[63.42,69.4] [57.06,65.7] [67.37,76.49] [67.84,75.12] [60.22,66.7] [68.88,76.41]

Highlighted values are the best for each quality measure, being also significantly better than at least one other model.
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Figure 4. HC33: Hill-climbing network using all 33 variables.
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Figure 5. In-sample ROC curves for all the studied Bayesian networks: Naive Bayes (with all or selected variables), Tree-Augmented Naive Bayes (with all
or selected variables), hill-climbing (with all or selected variables), hill-climbing model from [1], and a expert-defined causal model with selected variables.
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