
Implementing Hybrid Semantics: From
Functional to Imperative

Sergey Goncharov1, Renato Neves2 and José Proença3

1 Dept. of Comp. Sci., FAU Erlangen-Nrnberg, Germany
2 University of Minho & INESC-TEC, Portugal

3 CISTER/ISEP, Portugal

Abstract. Hybrid programs combine digital control with differential
equations, and naturally appear in a wide range of application domains,
from biology and control theory to real-time software engineering. The
entanglement of discrete and continuous behaviour inherent to such
programs goes beyond the established computer science foundations,
producing challenges related to e.g. infinite iteration and combination of
hybrid behaviour with other effects. A systematic treatment of hybridness
as a dedicated computational effect has emerged recently. In particular,
a generic idealized functional language HybCore with a sound and
adequate operational semantics has been proposed. The latter semantics
however did not provide hints to implementing HybCore as a runnable
language, suitable for hybrid system simulation (e.g. the semantics features
rules with uncountably many premises). We introduce an imperative
counterpart of HybCore, whose semantics is simpler and runnable, and
yet intimately related with the semantics of HybCore at the level of
hybrid monads. We then establish a corresponding soundness and adequacy
theorem. To attest that the resulting semantics can serve as a firm basis
for the implementation of typical tools of programming oriented to the
hybrid domain, we present a web-based prototype implementation to
evaluate and inspect hybrid programs, in the spirit of GHCi for Haskell
and UTop for OCaml. The major asset of our implementation is that it
formally follows the operational semantic rules.

1 Introduction

The core idea of hybrid programming. Hybrid programming is a rapidly
emerging computational paradigm [26,29] that aims at using principles and
techniques from programming theory (e.g. compositionality [12,26], Hoare cal-
culi [29,34], theory of iteration [2,8]) to provide formal foundations for developing
computational systems that interact with physical processes. Cruise controllers
are a typical example of this pattern; a very simple case is given by the hybrid
program below.

while true do {
if v ď 10 then pv1 “ 1 for 1q else pv1 “ ´1 for 1q

}
(cruise controller)

ar
X

iv
:2

00
9.

14
32

2v
1

 [
cs

.L
O

]
 2

9
Se

p
20

20

In a nutshell, the program specifies a digital controller that periodically measures
and regulates a vehicle’s velocity (v): if the latter is less or equal than 10 the
controller accelerates during 1 time unit, as dictated by the program statement
v1 “ 1 for 1 (v1 “ 1 is a differential equation representing the velocity’s rate
of change over time. The value 1 on the right-hand side of for is the duration
during which the program statement runs). Otherwise, it decelerates during the
same amount of time pv1 “ ´1 for 1q. Figure 1 shows the output respective to
this hybrid program for an initial velocity of 5.

Fig. 1: Vehicle’s velocity

Note that in contrast to stan-
dard programming, the cruise con-
troller involves not only classi-
cal constructs (while-loops and
conditional statements) but also
differential ones (which are used
for describing physical processes).
This cross-disciplinary combina-
tion is the core feature of hybrid
programming and has a notably
wide range of application domains
(see [29,30]). However, it also hin-
ders the use of classical techniques of programming, and thus calls for a principled
extension of programming theory to the hybrid setting.

As is already apparent from the (cruise controller) example, we stick to an
imperative programming style, in particular, in order to keep in touch with the
established denotational models of physical time and computation. A popular
alternative to this for modelling real-time and hybrid systems is to use a declarative
programming style, which is done e.g. in real-time Maude [27] or Modelica [10].
A well-known benefit of declarative programming is that programs are very easy
to write, however on the flip side, it is considerably more difficult to define what
they exactly mean.

Motivation and related work. Most of the previous research on formal
hybrid system modelling has been inspired by automata theory and Kleene
algebra (as the corresponding algebraic counterpart). These approaches led
to the well-known notion of hybrid automaton [17] and Kleene algebra based
languages for hybrid systems [28,18,19]. From the purely semantic perspective,
these formalizations are rather close and share such characteristic features as
nondeterminism and what can be called non-refined divergence. The former is
standardly justified by the focus on formal verification of safety-critical systems: in
such contexts overabstraction is usually desirable and useful. However, coalescing
purely hybrid behaviour with nondeterminism detaches semantic models from
their prototypes as they exist in the wild. This brings up several issues. Most
obviously, a nondeterministic semantics, especially not given in an operational
form, cannot directly serve as a basis for languages and tools for hybrid system
testing and simulation. Moreover, models with nondeterminism baked in do not
provide a clear indication of how to combine hybrid behaviour with effects other

2

than nondeterminism (e.g. probability), or to combine it with nondeterminism in
a different way (van Glabbeek’s spectrum [36] gives an idea about the diversity
of potentially arising options). Finally, the Kleene algebra paradigm strongly
suggests a relational semantics for programs, with the underlying relations
connecting a state on which the program is run with the states that the program
can reach. As previously indicated by Höfner and Möller [18], this view is too
coarse-grained and contrasts to the trajectory-based one where a program is
associated with a trajectory of states (recall Figure 1). The trajectory-based
approach provides an appropriate abstraction for such aspects as notions of
convergence, periodic orbits, and duration-based predicates [5]. This potentially
enables analysis of properties such as how fast our (cruise controller) example
reaches the target velocity or for how long it exceeds it.

The issue of non-refined divergence mentioned earlier arises from the Kleene
algebra law p ; 0 “ 0 in conjunction with Fischer-Ladner’s encoding of while-loops
while b do { p } as pb ; pq˚; b. This creates a havoc with all divergent programs

while true do { p }

as they become identified with divergence 0, thus making the above example of a
(cruise controller) meaningless. This issue is extensively discussed in Höfner and
Möller’s work [18] on a nondeterministic algebra of trajectories, which tackles
the problem by disabling the law p ; 0 “ 0 and by introducing a special operator
for infinite iteration that inherently relies on nondeterminism. This iteration
operator inflates trajectories at so-called ‘Zeno points’ with arbitrary values,
which in our case would entail e.g. the program

x :“ 1 ; while true do { wait x ; x :“ x{2 } (zeno)

to output at time instant 2 all possible values in the valuation space (the expression
wait t represents a wait call of t time units). More details about Zeno points
can be consulted in [18,14].

In previous work [12,14], we pursued a purely hybrid semantics via a simple
deterministic functional language HybCore, with while-loops for which we used
Elgot’s notion of iteration [8] as the underlying semantic structure. That resulted
in a semantics of finite and infinite iteration, corresponding to a refined view
of divergence. Specifically, we developed an operational semantics and also a
denotational counterpart for HybCore. An important problem of that semantics,
however, is that it involves infinitely many premisses and requires calculating
total duration of programs, which precludes using such semantics directly in
implementations. Both the above examples (cruise controller) and (zeno) are
affected by this issue. In the present paper we propose an imperative language
with a denotational semantics similar to HybCore’s one, but now provide a
clear recipe for executing the semantics in a constructive manner.

Overview and contributions. Building on our previous work [14], we devise
operational and denotational semantics suitable for implementation purposes,
and provide a soundness and adequacy theorem relating both these styles of

3

semantics. Results of this kind are well-established yardsticks in the programming
language theory [37], and are also beneficial from a practical perspective. For
example, small-step operational semantics naturally guides the implementation of
compilers/evaluators for programming languages, whilst denotational semantics is
more abstract, syntax-independent, and guides the study of program equivalence,
of the underlying computational paradigm, and its combination with other
computational effects.

As mentioned before, in our previous work [14] we introduced a simple
functional hybrid language HybCore with operational and denotational monad-
based semantics. Here, we work with a similar imperative while-language, whose
semantics is given in terms of a global state space of trajectories over Rn, which
is a commonly used carrier when working with solutions of systems of differential
equations. A key principle we have taken as a basis for our new semantics is the
capacity to determine behaviours of a program p by being able to examine only
some subterms of it. In order to illustrate this aspect, first note that our semantics
does not reduce program terms p and initial states σ (corresponding to valuation
functions σ : X Ñ R on program variables X) to states σ1, as usual in classical
programming. Instead it reduces triples p , σ , t of programs p, initial states σ
and time instants t to a state σ1; such a reduction can be read as “given σ as
the initial state, program p produces a state σ1 at time instant t”. Then, the
reduction process of p , σ , t to a state only examines fragments of p or unfolds
it when strictly necessary, depending of the time instant t. For example, the
reduction of the (cruise controller) unfolds the underlying loop only twice for the
time instant 1`1{2 (the time instant 1`1{2 occurred in the second iteration of the
loop). This is directly reflected in our prototype implementation of an interactive
evaluator of hybrid programs Lince. It is available online and comes with a series
of examples for the reader to explore (http://arcatools.org/lince). The plot
in Figure 1 was automatically obtained from Lince, by calling on the previously
described reduction process for a predetermined sequence of time instants t.

For the denotational model, we build on our previous work [12,14] where
hybrid programs are interpreted via a suitable monad H, called the hybrid monad
and capturing the computational effect of hybridness, following the seminal
approach of Moggi [24,25]. Our present semantics is more lightweight and is
naturally couched in terms of another monad HS , parametrized by a set S. In
our case, as mentioned above, S is the set of trajectories over Rn where n is the
number of available program variables X . The latter monad is in fact parametrized
in a formal sense [35] and comes out as an instance of a recently emerged generic
construction [7]. A remarkable salient feature of that construction is that it can
be instantiated in a constructive setting (without using any choice principles)
– although we do not touch upon this aspect here, in our view this reinforces
the fundamental nature of our semantics. Among various benefits of HS over H,
the former monad enjoys a construction of an iteration operator (in the sense of
Elgot [8]) as a least fixpoint, calculated as a limit of an ω-chain of approximations,
while for H the construction of the iteration operator is rather intricate and
no similar characterization is available. A natural question that arises is: how

4

http://arcatools.org/lince

are H and HS related? We do answer it by providing an instructive connection,
which sheds light on the construction of H, by explicitly identifying semantic
ingredients which have to be added to HS to obtain H. Additionally, this results
in “backward compatibility” with our previous work.

Document structure. After short preliminaries (Section 2), in Section 3 we
introduce our while-language and its operational semantics. In Sections 4 and 5,
we develop the denotational model for our language and connect it formally to the
existing hybrid monad [12,14]. In Section 6, we prove a soundness and adequacy
result for our operational semantics w.r.t. the developed model. Section 7 describes
Lince’s architecture. Finally, Section 8 concludes and briefly discusses future
work. Omitted proofs are found in appendix for reviewing purposes.

2 Preliminaries

We assume familiarity with category theory [1]. By R, R` and R̄` we respectively
denote the sets of reals, non-negative reals, and extended non-negative reals
(i.e. R` extended with the infinity value 8). Let r0, R̄`M denote the set of downsets
of R̄` having the form r0, ds (d P R`) or the form r0, dq (d P R̄`). We call the
elements of the dependent sum

∑
IPr0,R̄`MX

I trajectories (over X). By r0,R`s,
r0,R`q and r0, R̄`q we denote the following corresponding subsets of r0, R̄`M:
{r0, ds | d P R`}, {r0, dq | d P R`} and {r0, dq | d P R̄`}. By X Z Y we denote the
disjoint union, which is the categorical coproduct in the category of sets with
the corresponding left and right injections inl : X Ñ X Z Y , inr : Y Ñ X Z Y . To
reduce clutter, we often use plain union X Y Y in place of X Z Y if X and Y
are disjoint by construction.

By a C b B c we denote the case distinction construct: a if b is true and c
otherwise. By ! we denote the empty function, i.e. a function with the empty
domain. For the sake of succinctness, we use the notation et for the function
application eptq with real-value t.

3 An imperative hybrid while-language and its semantics

This section introduces the syntax and operational semantics of our language.
We first fix a stock of n-variables X “ {x1, . . . , xn} over which we build atomic
programs, according to the grammar

AtpX q Q x :“ t | x11 “ t1, . . . , x
1
n “ tn for t

LTermpX q Q r | r ¨ x | t` s

where x P X , r P R, ti, t, s P LTermpX q. An atomic program is thus either a
classical assignment x :“ t or a differential statement x11 “ t1, . . . , x

1
n “ tn for t.

The latter reads as “run the system of differential equations x11 “ t1, . . . , x
1
n “ tn

for t time units”. We then define the while-language via the grammar

ProgpX q Q a | p ; q | if b then p else q | while b do { p }

5

where p, q P ProgpX q, a P AtpX q and b is an element of the free Boolean algebra
generated by the terms t ď s and t ě s. The expression wait t (from the
previous section) is encoded as the differential statement x11 “ 0, . . . , x1n “ 0fort.

Remark 1. The systems of differential equations that our language allows are
always linear. This is not to say that we could not consider more expressive
systems; in fact we could straightfowardly extend the language in this direction,
for its semantics (presented below) is not impacted by specific choices of solvable
systems of differential equations. But here we do not focus on such choices regard-
ing the expressivity of continuous dynamics and concentrate on a core hybrid
semantics instead on which to study the fundamentals of hybrid programming.

In the sequel we abbreviate differential statements x11 “ t1, . . . , x
1
n “ tnfort to

the expression x̄1 “ t̄ for t, where x̄1 and t̄ abbreviate the corresponding vectors
of variables x11 . . . x

1
n and linear-combination terms t1 . . . tn. We call functions of

type σ : X Ñ R environments; they map variables to the respective valuations.
We use the notation σOrv̄{x̄s to denote the environment that maps each xi in
x̄ to vi in v̄ and the rest of variables in the same way as σ. Finally, we denote
by φx̄

1
“t̄

σ : r0,8q Ñ Rn the solution of a system of differential equations x̄1 “ t̄

with σ determining the initial condition. When clear from context, we omit the
superscript in φx̄“t̄σ . For a linear-combination term t the expression tσ denotes
the corresponding interpretation according to σ and analogously for bσ where b

is a Boolean expression.
We now introduce a small-step operational semantics for our language. In-

tuitively, the semantics establishes a set of rules for reducing a triple 〈program
statement, environment, time instant〉 to an environment, via a finite sequence of
reduction steps. The rules are presented in Figure 2. The terminal configuration
〈skip, σ, t〉 represents a successful end of a computation, which can then be fed
into another computation (via rule (seq-skipÑ)). Contrastingly, 〈stop, σ, t〉 is a
terminating configuration that inhibits the execution of subsequent computations.
The latter is reflected in rules (diff-stopÑ) and (seq-stopÑ) which entail that,
depending on the chosen time instant, we do not need to evaluate the whole
program, but merely a part of it – consequently, infinite while-loops need not
yield infinite reduction sequences (as explained in Remark 2). Note that time
t is consumed when applying the rules (diff-stopÑ) and (diff-seqÑ) in corre-
spondence to the duration of the differential statement at hand. The rules (seq)
and (seq-skipÑ) correspond to the standard rules of operational semantics for
while languages over an imperative store [37].

Remark 2. Putatively infinite while-loops do not necessarily yield infinite reduc-
tion steps. Take for example the while-loop below whose iterations have always
duration 1.

x :“ 0 ; while true do { x :“ x` 1 ; wait 1 } (1)

It yields a finite reduction sequence for the time instant 1{2, as shown below:

x :“ 0 ; while true do { x :“ x` 1 ; wait 1 } , σ , 1{2Ñ

6

(asgÑ) x :“ t , σ , t Ñ skip , σOrtσ{xs , t

(diff-stopÑ) x̄
1
“ ū for t , σ , t Ñ stop , σOrφσptq{x̄s , 0 pif t ă tσq

(diff-skipÑ) x̄
1
“ ū for t , σ , t Ñ skip , σOrφσptσq{x̄s , t´ ptσq pif t ě tσq

(if-trueÑ) if b then p else q , σ , t Ñ p , σ , t pif bσ “ Jq

(if-falseÑ) if b then p else q , σ , t Ñ q , σ , t pif bσ “ Kq

(wh-trueÑ) while b do { p } , σ , t Ñ p ; while b do { p } , σ , t pif bσ “ Jq

(wh-falseÑ) while b do { p } , σ , t Ñ skip , σ , t pif bσ “ Kq

(seq-stopÑ)
p , σ , t Ñ stop , σ1 , t1

p ; q , σ , t Ñ stop , σ1 , t1
(seq-skipÑ)

p , σ , t Ñ skip , σ1 , t1

p ; q , σ , t Ñ q , σ1 , t1

(seqÑ)
p , σ , t Ñ p1 , σ1 , t1

p ; q , σ , t Ñ p1; q , σ1 , t1
pif p

1
‰ stop and p

1
‰ skipq

Fig. 2: Small-step Operational Semantics

{by the rules (asgÑ) and (seq-skipÑ)}
while true do { x :“ x` 1 ; wait 1 } , σOr0{xs , 1{2Ñ

{by the rule (wh-trueÑ)}
x :“ x` 1 ; wait 1 ; while true do { x :“ x` 1 ; wait 1 } , σOr0{xs , 1{2Ñ

{by the rules (asgÑ) and (seq-skipÑ)}
wait 1 ; while true do { x :“ x` 1 ; wait 1 } , σOr0` 1{xs , 1{2Ñ

{by the rules (diff-stopÑ) and (seq-stopÑ)}
stop , σOr0` 1{xs , 0

The gist is that to evaluate program (1) at time instant 1{2, one only needs to un-
fold the underlying loop until surpassing 1{2 in terms of execution time. Note that
if the wait statement is removed from the program then the reduction sequence
would not terminate, intuitively because all iterations would be instantaneous
and thus the total execution time of the program would never reach 1{2.

The following theorem entails that our semantics is deterministic, which is
instrumental for our implementation.

Theorem 1. For every program p, environment σ, and time instant t there is
at most one applicable reduction rule.

Let Ñ‹ be the transitive closure of the reduction relation Ñ that was
previously presented.

Corollary 1. For every program term p, environments σ, σ1, σ2, time instants
t, t1, t2, and termination flags s, s1 P {skip, stop}, if p , σ , t Ñ‹ s, σ1, t1 and p ,
σ , t Ñ‹ s1 , σ2 , t2, then the equations s “ s1, σ1 “ σ2 and t1 “ t2 must hold.

7

Proof. Follows by induction on the number of reduction steps and Theorem 1. [\

As alluded above, the operational semantics treats time as a resource. This is
formalised below.

Proposition 1. For all program terms p and q, environments σ and σ1, and
time instants t, t1 and s, if p , σ , t Ñ q , σ1 , t1 then p , σ , t ` s Ñ q , σ1 ,
t1 ` s; and if p , σ , t Ñ skip , σ1 , t1 then p , σ , t` s Ñ skip , σ1 , t1 ` s.

4 Towards Denotational Semantics: The Hybrid Monad

A mainstream subsuming paradigm in denotational semantics is due to Moggi
[24,25], who proposed to identify a computational effect of interest as a monad,
around which the denotational semantics is built using standard generic mecha-
nisms, prominently provided by category theory. In this section we recall necessary
notions and results, motivated by this approach, to prepare ground for our main
constructions in the next section.

Definition 1 (Monad). A monad T (on the category of sets and functions) is
given by a triple pT, η, p--q‹q, consisting of an endomap T over the class of all
sets, together with a set-indexed class of maps ηX : X Ñ TX and a so-called
Kleisli lifting sending each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad
laws: η‹ “ id, f‹ ¨ η “ f , pf‹ ¨ gq‹ “ f‹ ¨ g‹ (it follows from this definition that T
extends to a functor and η to a natural transformation).

A monad morphism θ : TÑ S from pT, ηT, p--q‹Tq to pS, ηS, p--q‹Sq is a natural
transformation θ : T Ñ S such that θ ¨ ηT “ ηS and θ ¨ f‹T “ pθ ¨ fq‹S ¨ θ.

We will continue to use bold capitals (e.g. T) for monads over the corresponding
endofunctors written as capital Romans (e.g. T).

In order to interpret while-loops one needs additional structure on the monad.

Definition 2 (Elgot Monad). A monad T is called Elgot if it is equipped with
an iteration operator p--q: that sends each f : X Ñ T pY ZXq to f : : X Ñ TY in
such a way that certain established axioms of iteration are satisfied [2,16].

Monad morphisms between Elgot monads are additionally required to preserve
iteration: θ ¨ f :T “ pθ ¨ fq:S for θ : TÑ S, f : X Ñ T pY ZXq.

For a monad T, a map f : X Ñ TY , called a Kleisli map, is roughly to be
regarded as a semantics of a program p, with X as the semantics of the input,
and Y as the semantics of the output. For example, with T being the maybe
monad p--q Z {K}, we obtain semantics of programs as partial functions. Let us
record this example in more detail for further reference.

Example 1 (Maybe Monad M). The maybe monad is determined by the following
data: MX “ X Z {K}, the unit is the left injection inl : X Ñ X Z {K} and given
f : X Ñ Y Z {K}, f‹ is equal to the copairing rf, inrs : X Z {K}Ñ Y Z {K}.

It follows by general considerations (enrichment of the category of Kleisli
maps over complete partial orders) that M is an Elgot monad with the following

8

iteration operator p--q6: given f : X Ñ pY ZXq Z {K}, and x0 P X, let x0, x1, . . .
be the longest (finite or infinite) sequence over X constructed inductively in such
a way that fpxiq “ inl inr xi`1. Now, f 6px0q “ inrK if the sequence is infinite or
fpxiq “ inrK for some i, and f 6px0q “ inl y if for the last element of the sequence
xn, which must exist, fpxnq “ inl inl y.

Other examples of Elgot monad can be consulted e.g. in [16].

The computational effect of hybridness can also be captured by a monad, called
hybrid monad [12,14], which we recall next (in a slightly different but equivalent
form). To that end, we also need to recall Minkowski addition for subsets of the
set R̄` of extended non-negative reals (see Section 2): A`B “ {a` b | a P A,
b P B}, e.g. ra, bs ` rc, ds “ ra` c, b` ds and ra, bs ` rc, dq “ ra` c, b` dq.

Definition 3 (Hybrid Monad H). The hybrid monad H is defined as follows.

– HX “
∑
IPr0,R`sX

IZ
∑
IPr0,R̄`MX

I , i.e. it is a set of trajectories valued on X
and with the domain downclosed. For any p “ inj〈I, e〉 P HX with inj P {inl,
inr}, let us use the notation pd “ I, pe “ e, the former being the duration of
the trajectory and the latter the trajectory itself. Let also ε “ 〈∅, !〉.

– ηpxq “ inl〈r0, 0s, λt. x〉, i.e. ηpxq is a trajectory of duration 0 that returns x.
– given f : X Ñ HY , we define f‹ : HX Ñ HY via the following clauses:

f‹pinl〈I, e〉q “ inj〈I ` J, λt. pfpetqq0e C t ă d B pfpedqqt´de 〉
if I 1 “ I “ r0, ds for some d, fpedq “ inj 〈J, e1〉

f‹pinl〈I, e〉q “ inr〈I 1, λt. pfpetqq0e 〉 if I 1 ‰ I

f‹pinr〈I, e〉q “ inr〈I 1, λt. pfpetqq0e 〉

where I 1 “
⋃{

r0, ts Ď I | @s P r0, ts. fpesq ‰ inr ε
}

and inj P {inl, inr}.

The definition of the hybrid monad H is somewhat intricate, so let us complement
it with some explanations (details and further intuitions about the hybrid monad
can also be consulted in [12]). The domain HX constitutes three types of
trajectories representing different kinds of hybrid computation:

– (closed) convergent : inl〈r0, ds, e〉 P HX (e.g. instant termination ηpxq);
– open divergent : inr〈r0, dq, e〉 P HX (e.g. instant divergence inr ε or a trajectory
r0,8q Ñ X which represents a computation that runs ad infinitum);

– closed divergent : inr〈r0, ds, e〉 P HX (representing computations that start to
diverge precisely after the time instant d).

The Kleisli lifting f‹ works as follows: for a given trajectory inj〈I, e〉, we first
calculate the largest interval I 1 Ď I on which the trajectory λt P I 1.fpetq does
not instantly diverge (i.e. fpetq ‰ inr ε) throughout, hence I 1 is either r0, d1s or
r0, d1q for some d1. Now, the first clause in the definition of f‹ corresponds to the
successful composition scenario: the argument trajectory 〈I, e〉 is convergent, and
composing f with e as described in the definition of I 1 does not yield divergence
all over I. In that case, we essentially concatenate 〈I, e〉 with fpedq, the latter

9

being the trajectory computed by f at the last point of e. The remaining two
clauses correspond to various flavours of divergence, including divergence of the
input (inr〈I, e〉) and divergences occurring along f ¨ e. Incidentally, this explains
how closed divergent trajectories may arise: if I 1 “ r0, d1s and d1 is properly
smaller than d, this indicates that we diverge precisely after d1, which is possible
e.g. if the program behind f continuously checks a condition which did not fail
up until d1.

5 Deconstructing the Hybrid Monad

As mentioned in the introduction, in [14] we used H for giving semantics to a
functional language HybCore whose programs are interpreted as morphisms of
type X Ñ HY . Here, we are dealing with an imperative language, which from
a semantic point of view amounts to fixing a type of states S, shared between
all programs; the semantics of a program is thus restricted to morphisms of
type S Ñ HS. As explained next, this allows us to make do with a simpler
monad HS , globally parametrized by S. The new monad HS has the property
that HSS is naturally isomorphic to HS. Apart from (relative to H) simplicity,
the new monad enjoys further benefits, specifically HS is mathematically a better
behaved structure, e.g. in contrast to H, Elgot iteration on HS is constructed
as a least fixed point. Factoring the denotational semantics through HS thus
allows us to bridge the gap to the operational semantics given in Section 3, and
faciliates the soundness and adequacy proof in the forthcoming Section 6.

In order to define HS , it is convenient to take a slightly broader perspective.
We will also need to make a detour through the topic of ordered monoid modules
with certain completeness properties so that we can characterise iteration on HS

as a least fixed point.

Definition 4 (Monoid Module, Generalized Writer Monad [14]). Given
a (not necessarily commutative) monoid pM,`, 0q, a monoid module is a set E
equipped with a map . : MˆE Ñ E (monoid action), subject to the laws 0 . e “ e,
pm` nq . e “ m . pn . eq.

Every monoid-module pair pM,Eq induces a generalized writer monad T “
pT, η, p--q‹q with T “ Mˆ p--q Y E, ηXpxq “ 〈0, x〉, and

f‹pm,xq “ pm` n, yq where m P M, x P X, fpxq “ 〈n, y〉 P Mˆ Y

f‹pm,xq “ m . e where m P M, x P X, fpxq “ e P E

f‹peq “ e where e P E

This generalizes the writer monad pE “ ∅q and the exception monad pM “ 1q.

Example 2. A simple motivating example of a monoid-module pair pM,Eq is the
pair pR`, R̄`q where the monoid operation is addition with 0 as the unit and the
monoid action is also addition.

More specifically, we are interested in ordered monoids and (conservatively)
complete monoid modules. These are defined as follows.

10

Definition 5 (Ordered Monoids, (Conservatively) Complete Monoid
Modules [7]). We call a monoid pM, 0,`q an ordered monoid if it is equipped
with a partial order ď, such that 0 is the least element of this order and ` is
right-monotone (but not necessarily left-monotone).

An ordered M-module w.r.t. an ordered monoid pM,`, 0,ďq, is an M-module
pE, . q together with a partial order v and a least element K, such that . is
monotone on the right and p´ . Kq is monotone, i.e.

K v x

x v y

a . x v a . y

a ď b

a . K v b . K

We call the last property restricted left monotonicity.
An ordered M-module is (ω-)complete if for every ω-chain s1 v s2 v . . . on E

there is a least upper bound
⊔
i si and . is continuous on the right, i.e.

@i. si v
⊔
i si

@i. si v x⊔
i si v x a .

⊔
i si v

⊔
i a . si

(the law
⊔
i a . si v a .

⊔
i si is derivable). Such an M-module is conservatively

complete if additionally for every ω-chain a1 v a2 v . . . in M, such that the least
upper bound

∨
i ai exists,

(∨
i ai
)
. K “

⊔
i ai . K.

A homomorphism h : E Ñ F of (conservatively) complete monoid M-modules is
required to be monotone and structure-preserving in the following sense: hpKq “ K,
hpa . xq “ a . hpxq, hp

⊔
i xiq “

⊔
i hpxiq.

The completeness requirement for M-modules has a standard motivation coming
from domain theory, where v is regarded as an information order and complete-
ness is needed to ensure that the relevant semantic domain can accommodate
infinite behaviours. The conservativity requirement additionally ensures that the
least upper bounds, which exist in M agree with those in E. Our main example is
as follows (we will use it for building HS and its iteration operator).

Definition 6 (Monoid Module of Trajectories). The ordered monoid of
finite open trajectories

(
TrjS , Û, 〈∅, !〉,ď) over a given set S, is defined as follows:

TrjS “
∑
IPr0,R`q S

I , the unit is the empty trajectory ε “ 〈∅, !〉; summation is
concatenation of trajectories Û, defined as follows:

〈r0, d1q, e1〉Û〈r0, d2q, e2〉 “ 〈r0, d1 ` d2q, λt. e
t
1 C t ă d1 B et´d12 〉.

The relation ď is defined as follows: 〈r0, d1q, e1〉 ď 〈r0, d2q, e2〉 if d1 ď d2 and
et1 “ et2 for every t P r0, d1q. We can additionally consider both sets

∑
IPr0,R̄`q S

I

and
∑
IPr0,R̄`M S

I as TrjS-modules, by defining the monoid action . also as
concatenation of trajectories and by equipping these sets with the order v:
〈I1, e1〉 v 〈I2, e2〉 if I1 Ď I2 and et1 “ et2 for all t P I1.

Consider the following functors:

H 1SX “
∑

IPr0,R`q
SI ˆX Y

∑
IPr0,R̄`q

SI (2)

11

HSX “
∑

IPr0,R`q
SI ˆX Y

∑
IPr0,R̄`M

SI (3)

Both of them extend to monads H1S and HS as they are instances of Definition 4.
Moreover, it is laborious but straightforward to prove that both H 1SX and HSX
are conservatively complete TrjS-modules on X [7], i.e. conservatively complete
TrjS-modules, equipped with distinguished maps η : X Ñ H 1SX, η : X Ñ HSX.
In each case η sends x P X to 〈ε, x〉. The partial order on H 1SX (which we will
use for obtaining the least upper bound of a certain sequence of approximations)
is given by the clauses below and relies on the previous order ď on trajectories:

〈〈I, e〉, x〉 v 〈〈I, e〉, x〉
〈I, e〉 ď 〈I 1, e1〉

〈I, e〉 v 〈〈I 1, e1〉, x〉
〈I, e〉 ď 〈I 1, e1〉
〈I, e〉 v 〈I 1, e1〉

The monad given by (2) admits a sharp characterization, which is an instance of
a general result [7]. In more detail,

Proposition 2. The pair pH 1SX, ηq is a free conservatively complete TrjS-module
on X, i.e. for every conservatively complete TrjS-module E and a map f : X Ñ E,

there is unique homomorphism f̂ : H 1SX Ñ E such that f̂ ¨ η “ f .

Intuitively, Proposition 2 ensures that H 1SX is a least conservatively complete
TrjS-module generated by X. This characterization entails a construction of an
iteration operator on H1S as a least fixpoint. This, in fact, also transfers to HS

(as detailed in the proof of the following theorem).

Theorem 2. Both H1S and HS are Elgot monads, for which f : is computed as
a least fixpoint of ω-continuous endomaps g ÞÑ rη, gs‹ ¨ f over the function spaces
X Ñ H 1SY and X Ñ HSY correspondingly.

In this section’s remainder, we formally connect the monad HS with the monad H,
the latter introduced in our previous work and used for providing a semantics
to the functional language HybCore. In the following section we provide a
semantics for the current imperative language via the monad HS . Specifically,
in this section we will show how to build H from HS by considering additional
semantic ingredients on top of the latter.

Let us subsequently write ηS , p--q‹S and p--q:S for the unit, the Kleisli lifting
and the Elgot iteration of HS . Note that S,X ÞÑ HSX is a parametrized monad
in the sense of Uustalu [35], in particular HS is functorial in S and for every
f : S Ñ S1, Hf : HS Ñ HS1 is a monad morphism.

Then we introduce the following technical natural transformations ι : HSX Ñ

X Z pS Z {K}q and τ : HSZYX Ñ HSX. First, let us define ι:

ιpI, e, xq “

ß
inr inl e0, if I ‰ ∅
inlx, otherwise

ιpI, eq “

ß
inr inl e0, if I ‰ ∅
inr inrK, otherwise

In words: ι returns the initial point for non-zero length trajectories, and otherwise
returns either an accompanying value from X or K depending on that if the given
trajectory is convergent or divergent. The functor p--q ZE for every E extends to
a monad, called the exception monad. The following is easy to show for ι.

12

Jx :“ tKpσq “ ηpσOrtσ{xsq

Jx̄1 “ ū for tKpσq “ 〈r0, tσq, λt . σOrφσptq{x̄s, σOrφσptσq{x̄s〉
Jp ; qKpσq “ JqK‹pJpKpσqq

Jif b then p else qKpσq “ JpKpσq C bσ B JqKpσq

Jwhile b do { p }Kpσq “ pλσ. pĤ inrqpJpKpσqq C bσ B ηpinlσqq:pσq
Fig. 3: Denotational semantics.

Lemma 1. For every S, ι : HS Ñ p--q Z pS Z {K}q is a monad morphism.

Next we define τ : HSZYX Ñ HSX:

τpI, e, xq “

ß
〈I, e, x〉, if I “ I 1

〈I 1, e1〉, otherwise
τpI, eq “ 〈I 1, e1〉

where 〈I 1, e1〉 is the largest such trajectory that for all t P I 1, et “ inl e1t.

Lemma 2. For all S and Y , τ : HSZY Ñ HS is a monad morphism.

We now arrive at the main result of this section.

Theorem 3. The correspondence S ÞÑ HSS extends to an Elgot monad as
follows:

ηpx P Sq “ ηSpxq,

pf : X Ñ HSSq
‹ “

(
HXX

Hι1¨f id
ÝÝÝÝÑ HSZ{K}X

τ
ÝÑ HSX

f‹S
ÝÑ HSS

)
,

pf : X Ñ HSZXpS ZXqq
: “

(
X

f:
SZX
ÝÝÝÑ HSZXS

H
rinl,pι1¨fq6s

id
ÝÝÝÝÝÝÝÝÑ HSZ{K}S

τ
ÝÑ HSS

)
.

where ι1 “ rinl, ids ¨ ι : HSS Ñ S Z {K} and p--q6 : pX Ñ pS Z Xq Z {K}q Ñ
pX Ñ S Z {K}q is the iteration operator of the maybe-monad p--q Z {K} (as in
Example 1). Moreover, thus defined monad is isomorphic to H.

Proof (Proof Sketch). It is first verified that the monad axioms are satisfied using
abstract properties of ι and τ , mainly provided by Lemmas 1 and 2. Then the
isomorphism θ : HSS –HS is defined as expected: θpr0, dq, e, xq “ inl〈r0, ds, ê〉
where et “ êt for t P r0, dq, êd “ x; and θpI, eq “ inr〈I, e〉. It is easy to see
that θ respects the unit. The fact that θ respects Kleisli lifting amounts to a
(tedious) verification by case distinction. Checking the formula for p--q: amounts
to transferring the definition of p--q:, as defined in previous work [13], along θ.
See the full proof in the appendix. [\

6 Soundness and Adequacy

Let us start this section by providing a denotational semantics to our language
using the results of the previous section. We will then provide a soundness

13

and adequacy result that formally connects the thus established denotational
semantics with the operational semantics presented in Section 3.

First, consider the monad in (3) and fix S “ RX . We denote the obtained
instance of HS as Ĥ. Intuitively, we interpret a program p as a map JpK : S Ñ ĤS
which given an environment (a map from variables to values) returns a trajectory
over S. The definition of JpK is inductive over the structure of p and is given
in Figure 3.

Example 3. Given an element p “ inl〈I, e, x〉 P ĤX, let us denote I by pd and
e by pe, and analogously for elements p “ inr〈I, e〉 P ĤX. Now, consider the
program x :“ x` 1 ; wait 1 and denote its interpretation Jx :“ x` 1 ; wait 1K
by f : S Ñ ĤS. According to the denotational semantics, wrapping this program
into an infinite while-loop yields pĤ inr ¨fq: : S Ñ ĤS. Drawing a parallel with
Remark 2, we will show that we can derive the value of the trajectory pĤ inr ¨fq:pσq
at time instant 1{2 by unfolding just once the fixpoint equation concerning p´q:.

First, let us observe that ppĤ inr ¨fqpσqq
1{2
e “ σOrpx`1qσ{xs. Moreover, note that

ppĤ inr ¨fqpσqqd “ r0, 1s because the only non-instantaneous term in the program
is wait 1, which terminates after exactly one time unit. Now, according to the
Kleisli lifting of Ĥ (recall Definition 6), and since 1{2 ă 1, the equation

ppg‹ ¨ Ĥ inr ¨ fqpσqq
1{2
e “ ppĤ inr ¨fqpσqq

1{2
e

holds for every map g : S Z S Ñ ĤS. Therefore,

ppĤ inr ¨fq:pσqq
1{2
e “ pprη, pĤ inr ¨fq:s‹ ¨ Ĥ inr ¨fqpσqq

1{2
e // fixpoint equation

“ ppĤ inr ¨fqpσqq
1{2
e // 1{2 ă 1

“ σOrpx` 1qσ{xs

In order to establish soundness and adequacy between the small-step operational
semantics and the denotational semantics, we will use an auxiliary device. Namely,
we will introduce a big-step operational semantics that will serve as midpoint
between the two previously introduced semantics. We will show that the small-
step semantics is equivalent to the big-step one and then establish soundness
and adequacy between the big-step semantics and the denotational one. The
desired result then follows by transitivity. The big-step rules are presented in
Figure 4 and follow the same reasoning than the small-step ones. The expression
p, σ, t ⇓ r, σ1 means that p paired with σ evaluates to r, σ1 at time instant t.

Next, we need the following result to formally connect both styles of opera-
tional semantics.

Lemma 3. Given a program p, an environment σ and a time instant t

1. if p , σ , t Ñ p1 , σ1 , t1 and p1 , σ1 , t1 ⇓ skip , σ2 then p , σ , t ⇓ skip , σ2;
2. if p , σ , t Ñ p1 , σ1 , t1 and p1 , σ1 , t1 ⇓ stop , σ2 then p , σ , t ⇓ stop , σ2.

Proof. The proofs follows by induction over the derivation of the small step
relation. [\

14

(diff-stop⇓)
t ă sσ

x̄1 “ t̄ for s , σ , t ⇓ stop , σOrφσptq{x̄s

(diff-skip⇓)
x̄1 “ t̄ for t , σ , tσ ⇓ skip , σOrφσptσq{x̄s

(asg⇓)
x :“ t , σ , 0 ⇓ skip , σOrtσ{xs

(seq-stop⇓)
p , σ , t ⇓ stop , σ1

p ; q , σ , t ⇓ stop , σ1

(seq-skip⇓)
p , σ , t ⇓ skip , σ1 q , σ1 , t1 ⇓ r , σ2

p ; q , σ , t` t1 ⇓ r , σ2
pr P {stop, skip}q

(if-true⇓)
bσ “ J p , σ , t ⇓ r , σ1

if b then p else q , σ , t ⇓ r , σ1
pr P {stop, skip}q

(if-false⇓)
bσ “ K q , σ , t ⇓ r , σ1

if b then p else q , σ , t ⇓ r , σ1
pr P {stop, skip}q

(wh-true⇓)
bσ “ J p ; while b do { p } , σ , t ⇓ r , σ1

while b do { p } , σ , t ⇓ r , σ1
pr P {stop, skip}q

(wh-false⇓)
bσ “ K

while b do { p } , σ , 0 ⇓ skip , σ

Fig. 4: Big-step Operational Semantics

Theorem 4. The small-step semantics and the big-step semantics are related as
follows. Given a program p, an environment σ and a time instant t

1. p , σ , t ⇓ skip , σ1 iff p , σ , t Ñ‹ skip , σ1 , 0;
2. p , σ , t ⇓ stop , σ1 iff p , σ , t Ñ‹ stop , σ1 , 0.

Proof. The right-to-left direction is obtained by induction over the length of the
small-step reduction sequence using Lemma 3. The left-to-right direction follows
by induction over the proof of the big-step judgement using Proposition 1. [\

Finally, we can connect the operational and the denotational semantics in the
expected way.

Theorem 5 (Soundness and Adequacy). Given a program p, an environ-
ment σ and a time instant t

1. p , σ , t Ñ‹ skip , σ1 , 0 iff JpKpσq “ ph : r0, tq Ñ RX , σ1q;
2. p , σ , t Ñ‹ stop , σ1 , 0 iff either JpKpσq “ ph : r0, t1q Ñ RX , σ2q or JpKpσq “

h : r0, t1q Ñ RX , and in either case with t1 ą t and hptq “ σ1.

Here, “soundness” corresponds to the left-to-right directions of the equivalences
and “adequacy” to the right-to-left ones.

Proof. By Theorem 4, we equivalently replace the goal as follows:

15

Parser
Interpreter

(Oper. semantics)
Plot

generator

Plot visualiser
(plotly.js)

Core engine Inspector

Comp. algebra tools
(SageMath) Evaluation at a time instant

Fig. 5: Depiction of Lince’s architecture

1. p , σ , t ⇓ skip , σ1 iff JpKpσq “ ph : r0, tq Ñ RX , σ1q;
2. p , σ , t ⇓ stop , σ1 iff either JpKpσq “ ph : r0, t1q Ñ RX , σ2q or JpKpσq “

h : r0, t1q Ñ RX , and in either case with t1 ą t and hptq “ σ1.

Then the “soundness” direction is obtained by induction over the derivation of
the rules in Fig. 4. The “adequacy” direction follows by structural induction
over p; for while-loops, we call on the fixpoint law rη, f :s‹ ¨ f “ f : of Elgot
monads. [\

7 Implementation

This section presents our prototype implementation – Lince – which is available
online both to run in our servers and to be compiled and executed locally
(http://arcatools.org/lince). Its architecture is depicted in Figure 5. The
dashed rectangles correspond to its main components. The one on the left
(Core engine) provides the parser respective to the while-language and the
engine to evaluate hybrid programs using the small-step operational semantics
of Section 3. The one on the right (Inspector) depicts trajectories produced
by hybrid programs according to parameters specified by the user and provides
an interface to evaluate hybrid programs at specific time instants (the initial
environment σ : X Ñ R is assumed to be the function constant on zero). As
already mentioned, plots are generated by automatically evaluating at different
time instants the program given as input. Incoming arrows in the figure denote
an input relation and outgoing arrows denote an output relation. The two main
components are further explained below.

Core engine. Our implementation extensively uses the computer algebra tool
SageMath [31]. This serves two purposes: (1) to solve systems of differential
equations (present in hybrid programs); and (2) to correctly evaluate if-then-
else statements. Regarding the latter, note that we do not merely use predicate
functions in programming languages for evaluating Boolean conditions, essentially
because such functions tend to give wrong results in the presence of real numbers
(due to the finite precision problem). Instead of this, Lince uses SageMath
and its ability to perform advanced symbolic manipulation to check whether
a Boolean condition is true or not. However, note that this will not always
give an output, fundamentally because solutions of linear differential equations
involve transcendental numbers and real-number arithmetic with such numbers is

16

http://arcatools.org/lince

undecidable [20]. We leave as future work the development of more sophisticated
techniques for avoiding errors in the computational evaluation of hybrid programs.

Inspector. The user interacts with Lince at two different stages: (a) when
inputting a hybrid program and (b) when inspecting trajectories using Lince’s
output interfaces. The latter case consists of adjusting different parameters
for observing the generated plots in an optimal way. Plot parameters include
the time range of observation, visibility of variable’s trajectories, and options to
display additional information about the trajectory (e.g. where in time conditional
statements are evaluated).

Event-triggered programs. Observe that the differential statements x11 “

t, . . . , x1n “ t for t are time-triggered : they terminate precisely when the instant
of time t is achieved. In the area of hybrid systems it is also usual to consider
event-triggered programs: those that terminate as soon as a specified condition
ψ becomes true [38,6,11]. So we next consider atomic programs of the type
x11 “ t, . . . , x1n “ t until ψ where ψ is an element of the free Boolean algebra
generated by t ď s and t ě s where t, s P LTermpX q, signalling the termination
of the program. In general, it is impossible to determine with exact precision
when such programs terminate (again due to the undecidability of real-number
arithmetic with transcendental numbers). A natural option is to tackle this
problem by checking the condition ψ periodically, which essentially reduces event-
triggered programs into time-triggered ones. The cost is that the evaluation
of a program might greatly diverge from the nominal behaviour, as discussed
for instance in documents [4,6] where an analogous approach is discussed for
the well-established simulation tools Simulink and Modelica. In our case, we
allow programs of the form x11 “ t, . . . , x1n “ t untilε ψ in the tool and define
them as the abbreviation of while ψ do { x11 “ t, . . . , x1n “ t for ε }. This sort
of abbreviation has the advantage of avoiding spurious evaluations of hybrid
programs w.r.t. the established semantics. We could indeed easily allow such
event-triggered programs natively in our language (i.e. without recurring to
abbreviations) and extend the semantics accordingly. But we prefer not to do this
at the moment, because we wish first to fully understand the ways of limiting
spurious computational evaluations arising from event-triggered programs.

Remark 3. Simulink and Modelica are powerful tools for simulating hybrid
systems, but lack a well-established, formal semantics. This is discussed for
example in [3,9], where the authors aim to provide semantics to subsets of
Simulink and Modelica. Getting inspiration from control theory, the language
of Simulink is circuit-like, block-based; the language of Modelica is acausal
and thus particularly useful for modelling electric circuits and the like which are
traditionally modelled by systems of equations.

Example 4 (Bouncing Ball). As an illustration of the approach described above
for event-triggered programs, take a bouncing ball dropped at a positive height p
and with no initial velocity v. Due to the gravitational acceleration g, it falls to
the ground and bounces back up, losing part of its kinetic energy in the process.

17

Fig. 6: Position of the bouncing ball over time (plot on the left); zoomed in position of
the bouncing ball at the first bounce (plot on the right).

This can be approximated by the following hybrid program

pp1 “ v, v1 “ g until0.01 p ď 0^ v ď 0q ; pv :“ vˆ´0.5q

where 0.5 is the dampening factor of the ball. We now want to drop the ball from
a specific height (e.g. 5 meters) and let it bounce until it stops. Abbreviating
the previous program into b, this behaviour can be approximated by p :“ 5 ; v :“
0 ; while true do { b }. Figure 6 presents the trajectory generated by the ball
(calculated by Lince). Note that since ε “ 0.01 the ball reaches below ground,
as shown in Figure 6 on the right. Other examples of event- and time-triggered
programs can be seen in Lince’s website.

8 Conclusions and future work

We introduced small-step and big-step operational semantics for hybrid programs
suitable for implementation purposes and provided a denotational counterpart via
the notion of Elgot monad. These semantics were then linked by a soundness and
adequacy theorem [37]. We regard these results as a stepping stone for developing
computational tools and techniques for hybrid programming; which we attested
with the development of Lince. With this work as basis, we plan to explore the
following research lines in the near future.
Program equivalence. Our denotational semantics entails a natural notion of
program equivalence (denotational equality) which inherently includes classical
laws of iteration and a powerful uniformity principle [33], thanks to the use
of Elgot monads. We intend to further explore the equational theory of our
language so that we can safely refactor/simplify hybrid programs. Note that
the theory includes equational schema like px :“ a ; x :“ bq “ x :“ b and
pwait a ; wait bq “ wait pa ` bq thus encompassing not only usual laws of
programming but also axiomatic principles behind the notion of time.
New program constructs. Our while-language is intended to be as simple as
possible whilst harbouring the core, uncontroversial features of hybrid program-
ming. This was decided so that we could use the language as both a theoretical
and practical basis for advancing hybrid programming. A particular case that we

18

wish to explore next is the introduction of new program constructs, including e.g.
non-deterministic or probabilistic choice and exception operations raisepexcq.
Denotationally, the fact that we used monadic constructions readily provides a
palette of techniques for this process, e.g. tensoring and distributive laws [22,23].
Robustness. One important aspect of hybrid programming is that programs
should be robust : small variations in their input should not result in big changes
in their output [32,21]. We wish to extend Lince with features for automatically
detecting non-robust programs. A main source of non-robustness are conditional
statements if b then p else q: very small changes in their input may change the
validity of b and consequently cause a switch between (possibly very different)
execution branches. Currently, we are working on the systematic detection of
non-robust conditional statements in hybrid programs, by taking advantage of
the notion of δ-perturbation [20].

Acknowledgements The first author would like to acknowledge support of
German Research Council (DFG) under the project A High Level Language
for Monad-based Processes (GO 2161/1–2). The second author was financed by
the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation – COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, FCT
– Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-
030947. The third author was partially supported by National Funds through
FCT/MCTES, within the CISTER Research Unit (UIDB/04234/2020); by COM-
PETE 2020 under the PT2020 Partnership Agreement, through ERDF, and by
national funds through the FCT, within project POCI-01-0145-FEDER-029946;
by the Norte Portugal Regional Operational Programme (NORTE 2020) under
the Portugal 2020 Partnership Agreement, through ERDF and also by national
funds through the FCT, within project NORTE-01-0145-FEDER-028550; and by
the FCT within project ECSEL/0016/2019 and the ECSEL Joint Undertaking
(JU) under grant agreement No 876852. The JU receives support from the Eu-
ropean Union’s Horizon 2020 research and innovation programme and Austria,
Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

References

1. J. Adámek, H. Herrlich, and G. Strecker. Abstract and concrete categories. John
Wiley & Sons Inc., New York, 1990.

2. J. Adámek, S. Milius, and J. Velebil. Elgot theories: a new perspective on the
equational properties of iteration. Mathematical Structures in Computer Science,
21(2):417–480, 2011.

3. O. Bouissou and A. Chapoutot. An operational semantics for Simulink’s simulation
engine. In ACM SIGPLAN Notices, vol. 47, pp. 129–138. ACM, 2012.

4. D. Broman. Hybrid simulation safety: Limbos and zero crossings. In Principles of
Modeling, pp. 106–121. Springer, 2018.

5. Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.

19

6. D. A. Copp and R. G. Sanfelice. A zero-crossing detection algorithm for robust
simulation of hybrid systems jumping on surfaces. Simulation Modelling Practice
and Theory, 68:1–17, 2016.

7. T. L. Diezel and S. Goncharov. Towards Constructive Hybrid Semantics. In Z. M.
Ariola, ed., 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), vol. 167 of LIPIcs, pp. 24:1–24:19, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

8. C. Elgot. Monadic computation and iterative algebraic theories. In Studies in Logic
and the Foundations of Mathematics, vol. 80, pp. 175–230. Elsevier, 1975.

9. S. Foster, B. Thiele, A. Cavalcanti, and J. Woodcock. Towards a UTP semantics
for Modelica. In International Symposium on Unifying Theories of Programming,
pp. 44–64. Springer, 2016.

10. P. Fritzson. Principles of object-oriented modeling and simulation with Modelica
3.3: a cyber-physical approach. John Wiley & Sons, 2014.

11. R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE
Control Systems, 29(2):28–93, 2009.

12. S. Goncharov, J. Jakob, and R. Neves. A semantics for hybrid iteration. In 29th
International Conference on Concurrency Theory, CONCUR 2018. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018.

13. S. Goncharov, J. Jakob, and R. Neves. A semantics for hybrid iteration. CoRR,
abs/1807.01053, 2018.

14. S. Goncharov and R. Neves. An adequate while-language for hybrid computation.
In Proceedings of the 21st International Symposium on Principles and Practice of
Programming Languages 2019, PPDP ’19, pp. 11:1–11:15, New York, NY, USA,
2019. ACM.

15. S. Goncharov, L. Schröder, C. Rauch, and J. Jakob. Unguarded recursion on
coinductive resumptions. Logical Methods in Computer Science, 14(3), 2018.

16. S. Goncharov, L. Schröder, C. Rauch, and M. Piróg. Unifying guarded and un-
guarded iteration. In International Conference on Foundations of Software Science
and Computation Structures, pp. 517–533. Springer, 2017.

17. T. A. Henzinger. The theory of hybrid automata. In LICS96’: Logic in Computer
Science, 11th Annual Symposium, New Jersey, USA, July 27-30, 1996, pp. 278–292.
IEEE, 1996.

18. P. Höfner and B. Möller. An algebra of hybrid systems. The Journal of Logic and
Algebraic Programming, 78(2):74 – 97, 2009.

19. J. J. Huerta y Munive and G. Struth. Verifying hybrid systems with modal
kleene algebra. In J. Desharnais, W. Guttmann, and S. Joosten, eds., Relational
and Algebraic Methods in Computer Science, pp. 225–243, Cham, 2018. Springer
International Publishing.

20. S. Kong, S. Gao, W. Chen, and E. Clarke. dreach: δ-reachability analysis for
hybrid systems. In International Conference on TOOLS and Algorithms for the
Construction and Analysis of Systems, pp. 200–205. Springer, 2015.

21. D. Liberzon and A. S. Morse. Basic problems in stability and design of switched
systems. IEEE Control systems, 19(5):59–70, 1999.

22. C. Lüth and N. Ghani. Composing monads using coproducts. In M. Wand and
S. L. P. Jones, eds., ICFP’02: Functional Programming, 7th ACM SIGPLAN
International Conference, Pittsburgh, USA, October 04 - 06, 2002, pp. 133–144.
ACM, 2002.

23. E. Manes and P. Mulry. Monad compositions I: general constructions and recursive
distributive laws. Theory and Applications of Categories, 18(7):172–208, 2007.

20

24. E. Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific
Grove, California, USA, June 5-8, 1989, pp. 14–23. IEEE Computer Society, 1989.

25. E. Moggi. Notions of computation and monads. Information and computation,
93(1):55–92, 1991.

26. R. Neves. Hybrid programs. PhD thesis, Minho University, 2018.
27. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of real-time maude.

Higher-order and symbolic computation, 20(1-2):161–196, 2007.
28. A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated

Reasoning, 41(2):143–189, 2008.
29. A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex

Dynamics. Springer, Heidelberg, 2010.
30. R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: the

next computing revolution. In DAC’10: Design Automation Conference, 47th
ACM/IEEE Conference, Anaheim, USA, June 13-18, 2010, pp. 731–736. IEEE,
2010.

31. W. Stein et al. Sage Mathematics Software (Version 6.4.1). The Sage Development
Team, 2015. http://www.sagemath.org.

32. R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability criteria for
switched and hybrid systems. Society for Industrial and Applied Mathematics
(review), 49(4):545–592, 2007.

33. A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators.
In Logic in Computer Science, LICS 2000, pp. 30–41, 2000.

34. K. Suenaga and I. Hasuo. Programming with infinitesimals: A while-language for
hybrid system modeling. In International Colloquium on Automata, Languages,
and Programming, pp. 392–403. Springer, 2011.

35. T. Uustalu. Generalizing substitution. RAIRO-Theoretical Informatics and Appli-
cations, 37(4):315–336, 2003.

36. R. van Glabbeek. The linear time-branching time spectrum (extended abstract).
In Theories of Concurrency, CONCUR 1990, vol. 458, pp. 278–297, 1990.

37. G. Winskel. The formal semantics of programming languages: an introduction. MIT
press, 1993.

38. H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems. IEEE
Transactions on Automatic Control, 11(2):161–167, 1966.

21

A Appendix: Omitted Proofs

Proof of Theorem 1

The proof follows by inspecting the structure of program terms: first, for atomic
programs the proof follows directly, because the corresponding premises are
mutually exclusive. For conditionals, the proof also follows directly due to the
same reason. For sequential composition p ; q, we need to proceed by case
distinction: if p is atomic then the only applicable rules are (seq-stopÑ) and
(seq-skipÑ) but then it is easy to see that the corresponding premises are
mutually exclusive. If p is non-atomic then the only applicable rules are (seqÑ)
and (seq-skipÑ). But in this context, the application of (seq-skipÑ) requires
that p is a while-loop with bσ “ K which forbids the application of (seqÑ).
Conversely, the application of (seqÑ) requires that p is not a while-loop with
bσ “ K and thus we cannot apply (seq-skipÑ). The proof for while-loops is
direct because the relevant premises are mutually disjoint. [\

Proof of Theorem 2

Proposition 2 entails an enrichment of the Kleisli category of H1S over complete
partial orders [7, Theorem 7] and such monads are Elgot by a general argument [15,
Theorem 5.8]. The monad HS can be obtained from H1S by application of an
exception monad transformer, which sends T to Tp--Z

∑
IPr0,R`s S

Iq and then
HS is again Elgot by a general result [15, Theorem 7.1]. The obtained iteration
operator is by definition a least fixpoint of the same ω-continuous endomap. [\

Proof of Lemma 2

The proof that the equation concerning monad units τ ¨ ηHSZY “ ηHS holds
follows easily from the fact that τpε, xq “ 〈ε, x〉. It remains to show that the
equation concerning Kleisli liftings

τ ¨ f‹HSZY ppq “ pτ ¨ fq
‹
HS ¨ τppq

also holds for every element p P HSZYX. This is straightforward, but laborious
because it requires several case distinctions. We first consider the simple case in
which p “ 〈I, e〉 for some interval I and trajectory e:

τ ¨ f‹HSZY pI, eq “ τpI, eq

“ pτ ¨ fq‹HS ¨ τpI, eq

Next, we consider the case in which p “ 〈I, e, x〉 for some interval I, trajectory e,
and element x P X. We proceed with a further case distinction: first, we assume
the existence of some t P I such that et “ inr y for some y P Y . In this case
τpI, e, xq is open convergent, and therefore,

τ ¨ f‹HSZY pI, e, xq “ τpI, e, xq

“ pτ ¨ fq‹HS ¨ τpI, e, xq

22

Now we assume the opposite, namely that there is no t P I such that et “ inr y
for some y P Y . For this particular case, we can slightly abuse notation and
state that τpI, e, xq “ 〈I, e, x〉. Going further in case distinctions, we assume that
fpxq “ 〈I 1, e1〉 for some interval I 1 and trajectory e1. In this case,

τ ¨ f‹HSZY pI, e, xq “ τp〈I, e〉Û〈I 1, e1〉q
“ 〈I, e〉ÛτpI 1, e1q
“ pτ ¨ fq‹HS 〈I, e, x〉
“ pτ ¨ fq‹HS ¨ τpI, e, xq

Next we assume that fpxq “ 〈I 1, e1, x1〉 and proceed with a further case distinction:
we assume the existence of some t P I 1 such that e1t “ inr y for some y P Y , and
calculate,

τ ¨ f‹HSZY pI, e, xq “ τp〈I, e〉Û〈I 1, e1〉, x1q
“ 〈I, e〉ÛτpI 1, e1q
“ pτ ¨ fq‹HS 〈I, e, x〉
“ pτ ¨ fq‹HS ¨ τpI, e, xq

Finally, we assume the non-existence of some t P I such that e1t “ inr y for some
y P Y . For this particular case, we can slightly abuse notation and state that
τp〈I, e〉Û〈I 1, e1〉, x1q “ p〈I, e〉Û〈I 1, e1〉, x1q. Then we obtain,

τ ¨ f‹HSZY pI, e, xq “ τp〈I, e〉Û〈I 1, e1〉, x1q
“ p〈I, e〉Û〈I 1, e1〉, x1q
“ pτ ¨ fq‹HS pI, e, xq

“ pτ ¨ fq‹HS ¨ τpI, e, xq

This concludes the proof. [\

Proof of Theorem 3

The fact that ι and τ are monad morphisms expands as follows:

ι ¨ pηS : X Ñ HSXq “ inl, (4)

ι ¨ pf : X Ñ HSY q
‹
S “ rι ¨ f, inrs ¨ ι. (5)

τ ¨ pηSZY : X Ñ HSZYXq “ ηS , (6)

τ ¨ pf : X Ñ HSZY Zq
‹
SZY “ pτ ¨ fq

‹
S ¨ τ. (7)

Note the following simple joint properties of ι and τ :

ι ¨ τ “ pidZridZK, inrsq ¨ ι, (8)

τ ¨Hrf,inrs id “ τ ¨ pHf idq ¨ τ (9)

for any f : X Ñ Y Z Z.

23

Let us show that

ι1 ¨ f‹ “ rι1 ¨ f, inrs ¨ ι1 (10)

for f : X Ñ HSS. In conjunction with the obvious equation ι1 ¨ η “ inl this will
certify that ι1 is a monad morphism. Indeed,

ι1 ¨ f‹ “ rinl, ids ¨ ι ¨ f‹S ¨ τ ¨Hrinl,ids¨ι¨f id // definition

“ rinl, ids ¨ rι ¨ f, inrs ¨ ι ¨ τ ¨Hrinl,ids¨ι¨f id // (5)

“ rι1 ¨ f, ids ¨ ι ¨ τ ¨Hrinl,ids¨ι¨f id

“ rι1 ¨ f, ids ¨ pidZridZK, inrsq ¨ ι ¨Hrinl,ids¨ι¨f id // (8)

“ rι1 ¨ f, ids ¨ pidZridZK, inrsq ¨ pidZprinl, ids ¨ ι ¨ f Z idqq ¨ ι

“ rι1 ¨ f, ids ¨ pidZrrinl, idZKs ¨ ι ¨ f, inrsq ¨ ι

“ rι1 ¨ f, ids ¨ pidZrι1 ¨ f, inrsq ¨ ι // definition

“ rι1 ¨ f, rι1 ¨ f, inrss ¨ ι

“ rι1 ¨ f, inrs ¨ rinl, ids ¨ ι

“ rι1 ¨ f, inrs ¨ ι1 // definition

We proceed with proving the monad laws.

– η‹ “ id: η‹ “ pηSq‹S ¨ τ ¨Hrinl,ids¨ι¨ηS id “ τ ¨Hinl id “ id, using (4);

– f‹ ¨ η “ f : f‹ ¨ η “ f‹S ¨ τ ¨Hrinl,ids¨ι¨f id ¨η
S “ f‹S ¨ τ ¨ η

SZ{K} “ f‹S ¨ η
S “ f ,

using (6);
– pf‹ ¨ gq‹ “ f‹ ¨ g‹ where f : X Ñ HSS, g : Y Ñ HXX: the calculation runs

as follows.

pf‹ ¨ gq‹ “ pf‹S ¨ τ ¨Hι1¨f id ¨gq
‹
S ¨ τ ¨Hι1¨f‹¨g id // definition

“ f‹S ¨ pτ ¨Hι1¨f id ¨gq
‹
S ¨ τ ¨Hι1¨f‹¨g id // monad law

“ f‹S ¨ pτ ¨Hι1¨f id ¨gq
‹
S ¨ τ ¨Hrι1¨f,inrs¨ι1¨g id // (10)

“ f‹S ¨ pτ ¨Hι1¨f id ¨gq
‹
S ¨ τ ¨Hrι1¨f,inrs id ¨Hι1¨g id // functoriality

“ f‹S ¨ pτ ¨Hι1¨f id ¨gq
‹
S ¨ τ ¨Hι1¨f id ¨τ ¨Hι1¨g id // (9)

“ f‹S ¨ τ ¨Hι1¨f id ¨g
‹
X ¨ τ ¨Hι1¨g id // (7)

“ f‹ ¨ g‹. // definition

The isomorphism θ : HSS–HS is defined as expected: θpr0, dq, e, xq “ inl〈r0, ds, ê〉
where et “ êt for t P r0, dq and êd “ x; and θpI, eq “ inr〈I, e〉. It is easy to
see that θ respects unit. Let us show that θ also respects Kleisli lifting. Let
f : X Ñ HSS and proceed by case distinction.

– We first prove pθ ¨ f‹qpI, eq “ pθ ¨ fq‹pθpI, eqq. Let 〈I 1, e1〉 v 〈I, e〉 be the
largest such trajectory that for all t P I 1, fpetq ‰ ε. By unfolding definitions,
the goal reduces to

θpf‹SpI
1, λt. psnd fpetqq0qq “ inr〈I2, λt. ppθ ¨ fqpetqq0e 〉. (11)

24

where I2 is the largest subinterval of I, such that pθ¨fqpetq ‰ inr ε for all t P I2.
By definition, I 1 “ I2 and θpf‹SpI

1, λt. psnd fpetqq0qq “ 〈I 1, λt. psnd fpetqq0〉.
Therefore, we are left to verify that for all t P I 1, psnd fpetqq0 “ pθpfpetqqq0e .
Indeed, for any t P I 1, fpetq ‰ ε and therefore the initial point of the trajectory
returned by θpfpetqq is the same as for fpetq.

– Next we prove pθ ¨ f‹qpr0, dq, e, xq “ pθ ¨ fq‹pθpr0, dq, e, xqq, which unfolds to

pθ ¨ f‹Sqppτ ¨Hι1¨f qpr0, dq, e, xqq “ pθ ¨ fq
‹pinl〈r0, ds, ê〉q (12)

where et “ êt for t P r0, dq and êd “ x. Again, let 〈I 1, e1〉 v 〈r0, dq, e〉
be the largest such trajectory that for all t P I 1, fpetq ‰ ε. If I 1 ‰ r0, dq
then (12) reduces to (11) and we are done by the previous clause. Let
us proceed under the assumption that I 1 “ r0, dq. The left hand side
of (12) reduces to θp〈r0, dq, λt. psnd fpetqq0〉 . fpxqq. If fpxq “ ε then the
later reduces inr〈r0, dq, λt. psnd fpetqq0〉 and since pθ ¨ fqpxq “ inr ε, the right
hand side of (12) also reduces to the same expression by definition of the
Kleisli composition of H. Finally, consider the remaining case of fpxq ‰
ε. Then θp〈r0, dq, λt. psnd fpetqq0〉 . fpxqq “ injp〈r0, dq, λt. psnd fpetqq0〉 Û pq
where θpfpxqq “ inj p. Analogously, pθ¨fq‹pinl〈r0, ds, ê〉q “ injp〈r0, dq, λt. psnd fpetqq0〉Û
pq, and we are done.

We proceed to verify correctness of the stated characterization of the iteration
operator of H.

Lemma 4. The natural transformation ι1 “ rinl, ids ¨ ι : HSS Ñ S Z {K} is an
Elgot monad morphism.

Proof. We have already seen above that ι1 is a monad morphism (the non-
trivial part of this statement is equation (10)). We are left to check that ι1 is
iteration preserving, i.e. pι1 ¨ f :qpx0q “ pι

1 ¨ fq6px0q for all f : X Ñ HSZXpS ZXq
and x0 P X. Let us recall the definition of pι1 ¨ fq6px0q from Example 1: we
build a sequence x0, x1, . . . where ι1pfpxiqq “ inl inr xi`1 for every i, and then
pι1 ¨ fq6px0q “ inrK either if this sequence is infinite or ι1pfpxiqq “ inrK for some
i, and pι1 ¨ fq6px0q “ inl y if ι1pfpxiqq “ inl inl y for some i.

Suppose that the constructed sequence is infinite. This means that for every
i, fpxiq “ 〈ε, inr xi`1〉, or fpxiq “ 〈I, e, y〉 with I ‰ ∅, and e0 “ inr xi`1, or
fpxiq “ 〈I, e〉 with I ‰ ∅, and e0 “ inr xi`1. Note also that ι1pfpxiqq “ inrK for
any i. Now, consider

pι1 ¨ f :qpx0q “ prinl, ids ¨ ι ¨ τ ¨Hrinl,pι1¨fq6s idqpf
:

SZXpx0qq. (13)

If for every i, fpxiq “ 〈ε, inr xi`1〉 then f :SZXpx0q “ ε and the whole ex-
pression (13) evaluates to inrK. Otherwise, suppose that fpxiq “ 〈ε, inr xi`1〉
for i “ 0, . . . , n ´ 1 and either fpxn´1q “ 〈I, e, y〉, I ‰ ∅, e0 “ inr xn, or
fpxn´1q “ 〈I, e〉, I ‰ ∅, e0 “ inr xi`1. It is then easy to see that in each case

either f :SZXpx0q “ 〈I, e, y〉 or f :SZXpx0q “ 〈I, e〉, and in both cases I non-empty

and e0 “ inr xn. The effect of Hrinl,pι1¨fq6s id on the result of f :SZXpx0q includes

25

replacing e0 with inrK, which in conjunction with subsequent action of τ , turns
the whole expression (13) into inrK.

Suppose next that the sequence x0, . . . is finite and prove by induction over its
length n that pι1 ¨ f :qpx0q “ pι

1 ¨ fq6px0q. Suppose that n ą 0. Then ι1pfpx0qq “

inl inr x1 for a suitable x1 P X, and

pι1 ¨ f :qpx0q “ pι
1 ¨ rη, f :s‹qpfpx0qq // fixpoint law

“ rι1 ¨ rη, f :s, inrspι1pfpx0qqq // (10)

“ rrinl, ι1 ¨ f :s, inrspι1pfpx0qqq

“ rrinl, ι1 ¨ f :s, inrspinl inr x1q // assumption

“ pι1 ¨ f :qpx1q

“ pι1 ¨ fq6px1q // induction hypothesis

“ rrinl, pι1 ¨ fq6s, inrspinl inr x1q

“ rrinl, pι1 ¨ fq6s, inrspι1pfpx0qqq // assumption

“ pι1 ¨ fq6px0q. // fixpoint law

If n “ 0 then either ι1pfpx0qq “ inl inl s or ι1pfpx0qq “ inrK. The proof that
pι1 ¨ f :qpx0q “ pι

1 ¨ fq6px0q is then analogous to the above, except that we need
not call the induction hypothesis.

We proceed with the proof of Theorem 3. In order to show that the iteration
operators of HS and H are connected as stated, we first need to recall how
the iteration operator of the latter monad is defined. We do it by resorting to
singular iteration and progressive iteration [13]. Let p--q; be the iteration operator
transferred from H to S ÞÑ HSS along the isomorphism θ.

Given f : X Ñ HSZXpS Z Xq, we say that f is singular if for all x P X,
fpxq “ 〈I, e, y〉 implies that et factors through inl for all t ą 0 from I, and
analogously fpxq “ 〈I, e〉 implies that et factors through inl for all t ą 0 from
I. We say that such f is progressive if for every x P X, fpxq “ 〈I, e, y〉 implies
that e0 factors through inl unless I is empty; fpxq “ 〈ε, y〉 implies that y factors
through inl; and fpxq “ 〈I, e〉 implies that e0 factors through inl unless I is
empty. Equivalently, f is progressive if ι1 ¨ f : X Ñ pS Z Xq Z {K} factors
through inlZ id. It is known [13, Theorem 20] that every f ; is decomposable
as g;; where the inner iteration is singular, the outer iteration is progressive
and g : X Ñ HpSZXqZXppS ZXq ZXq is constructed from f in such a way that

f “ pHrid,inrsrid, inrsq ¨ g. What we need to show thus is that p--q: agrees with p--q;

both in the singular and in the progressive case and that f : “ g:: for f and g as
above. For general g, the latter equation is called the codiagonal law of iteration.
Let us proceed by case distinction.

– (singular case) If f is singular then for a given x0 P X, f ;px0q is described
as follows. If pι1 ¨ fq6px0q “ inrK then f ;px0q “ ε – otherwise, we form
the longest possible sequence x0, . . . , xn such that fpxiq “ 〈ε, inlxi`1〉 for
all i. This sequence, must be finite, for otherwise pι1 ¨ fq6px0q would be

26

equal to inrK, and also fpxnq cannot be ε for the same reason. If fpxnq “

〈ε, inr y〉 then f ;pxq “ 〈ε, y〉. In the remaining cases, f :SZXpxnq “ 〈I, e〉 or

f :SZXpxq “ 〈I, e, y〉 with I ‰ ∅, and we put correspondingly f ;px0q “ 〈I, e1〉
and f ;px0q “ 〈I, e1, y〉 where e1 is calculated as follows:

e1t “

ß
s, if t “ 0 and pι1 ¨ fq6px0q “ inl s
s, if t ą 0 and et “ inl s

Let us go through these clauses and argue that in each clause f :px0q is
defined in the same way. By Lemma 4, if pι1 ¨fq6px0q “ ι1 ¨f :px0q “ inrK then
f :pxq “ ε “ f ;pxq. We proceed under the assumption that pι1 ¨ fq6pxq ‰ inrK.

If fpxnq “ 〈ε, inr y〉 then f :SZXpx0q in the expression

pτ ¨Hrinl,pι1¨fq6s idqpf
:

SZXpx0qq

for f :px0q, evaluates to ηpyq “ 〈ε, y〉 and hence, the whole expression evaluates

to ηpyq. Finally, if f :SZXpxnq “ 〈I, e〉 then f :SZXpx0q “ 〈I, e〉 and the effect
of τ ¨Hrinl,pι1¨fq6s id on 〈I, e〉 in the above expression coincides with the effect
described above: for all points of e, except for the initial one τ ¨Hrinl,pι1¨fq6s id

simply removes inl, and for e0 it additionally calls pι1 ¨ fq6. But since e0 “

pι1 ¨ fq6pxnq “ pι
1 ¨ fq6px0q and the latter must be of the form inl s, for the

new trajectory 〈I, e1〉, e10 “ s. The case f :SZXpxnq “ 〈I, e, y〉 is analogous.
– (progressive case) The original construction [13] of p--q; essentially amounts

to regarding the given f : X Ñ HSZXpS ZXq as operating on partial tra-
jectories (i.e. such pairs 〈I, e : I Ñ S ZX〉 that e is a partial function), on
which the requisite fixpoint is calculated as a suitable limit of an ω-chain of
approximations, subsequently trimmed by discarding trajectory fragments
that occur after points of undefinedness.
For progressive f this construction simplifies: we have f ; “ f̂ :S , where

f̂ : X Ñ HSpS Z Xq is manufactured from f as follows. Given x P X,
if fpxq “ 〈I, e, y〉 or fpxq “ 〈I, e〉 and for some t P I, et “ inr x1 and

prinl, ids¨ι¨fqpx1q “ inrK then f̂pxq “ 〈I 1, e1〉 where I 1 is the largest subinterval
of I that does not contain such t and for every t P I 1, e1t “ s where either
et “ inl s or et “ inr x1 and prinl, ids ¨ ι ¨ fqpx1q “ inl inl s. Otherwise, i.e. if the

indicated t P I does not exist, f̂pxq “ 〈I, e1, y〉 for fpxq “ 〈I, e, y〉 and or

f̂pxq “ 〈I, e1〉 for fpxq “ 〈e, y〉, where e1 is calculated as before under I 1 “ I.

To show that f ; “ f :, it therefore suffices to verify that f̂ equals to

τ ¨Hrinl,pι1¨fq6s id ¨f. (14)

Using progressiveness of f , note that for every x P X, pι1 ¨ fq6pxq “ inl y
if fpxq “ 〈ε, inl y〉, pι1 ¨ fq6pxq “ inrK if fpxq “ ε, and pι1 ¨ fq6pxq “ inl e0

if fpxq “ 〈I, e〉 or fpxq “ 〈I, e, y〉 with I ‰ ∅. By definition, the effect of
Hrinl,pι1¨fq6s id on each fpxq can be described as follows: every 〈I, e〉 P fpxq is
sent to 〈I, e1〉 and every 〈I, e, y〉 P fpxq is sent to 〈I, e1, y〉 where e1 is obtained

27

from e by case distinction:

e1t “


et, if et factors through inl
inrK, if et “ inr x1 and fpx1q “ ε
inlx2, if et “ inr x1 and fpx1q “ 〈ε, inlx2〉
u0, if et “ inr x1 and fpx1q “ 〈J, u〉 and J ‰ ∅
u0, if et “ inr x1 and fpx1q “ 〈J, u, x2〉 and J ‰ ∅

The effect of τ in (14) on the result amounts to restricting the obtained
trajectories to subintervals on which the above clause returning inrK is
not effective. The total action of (14) on x P X then coincides with the

corresponding action of f̂ , as described above.
– (codiagonal law) We will show that g:: “ pHrid,inrsrid, inrs ¨ gq

: for any given
g : X Ñ HpSZXqZXppSZXqZXq. This is one of the axioms of Elgot monads,
in particular, it holds for HS , which fact we are going to use in the following
calculation. Let

h “ pι1 ¨Hrid,inrsrid, inrs ¨ gq
6 : X Ñ S Z {K},

w “ pι1 ¨ g:q6 : X Ñ S Z {K},
u “ pι1 ¨ gq6 : X Ñ pS ZXq Z {K}.

Then, on the one hand:

pHrid,inrsrid, inrs ¨ gq
:

“ pτ ¨Hrinl,hs id ¨Hrid,inrsrid, inrs ¨ gq
:

S // definition

“ τ ¨Hrinl,hs¨rid,inrs id ¨pHidrid, inrs ¨ gq
:

pSZXqZX

“ τ ¨Hrrinl,hs,hs id ¨pHidrid, inrs ¨ gq
:

pSZXqZX

and on the other hand:

g:: “ pτ ¨Hrinl,ws id ¨pτ ¨Hrinl,us id ¨gq
:

SZXq
:

S // definition

“ pτ ¨Hrinl,ws id ¨τ ¨Hrinl,us id ¨g
:

pSZXqZXq
:

S

“ pτ ¨Hrrinl,ws,inrs id ¨Hrinl,us id ¨g
:

pSZXqZXq
:

S // (9)

“ pτ ¨Hrrinl,ws,inrs¨rinl,us id ¨g
:

pSZXqZXq
:

S

“ pτ ¨Hrrinl,ws,rrinl,ws,inrs¨us id ¨g
:

pSZXqZXq
:

S

“ τ ¨Hrrinl,ws,rrinl,ws,inrs¨us id ¨pg
:

pSZXqZXq
:

pSZXqZX

“ τ ¨Hrrinl,ws,rrinl,ws,inrs¨us id ¨pHidrid, inrs ¨ gq
:

pSZXqZX . // codiagonal

To obtain the desired equality, we are thus left to show that h “ w and
w “ rrinl, ws, inrs ¨ u. Indeed,

h “ pι1 ¨Hrid,inrsrid, inrs ¨ gq
6

28

“ pprid, inrs Z idq ¨ ι1 ¨ gq6 // (5),(4)

“ ppι1 ¨ gq6q6 // codiagonal law

“ pι1 ¨ g:q6 // Lemma 4

“ w

and

w “ pι1 ¨ g:q6

“ ppι1 ¨ gq6q6 // Lemma 4

“ rrinl, ppι1 ¨ gq6q6s, inrs ¨ pι1 ¨ gq6 // fixpoint law

“ rrinl, ws, inrs ¨ ι1 ¨ u.

This completes the proof of Theorem 3. [\

29

	Implementing Hybrid Semantics: From Functional to Imperative
	1 Introduction
	2 Preliminaries
	3 An imperative hybrid while-language and its semantics
	4 Towards Denotational Semantics: The Hybrid Monad
	5 Deconstructing the Hybrid Monad
	6 Soundness and Adequacy
	7 Implementation
	8 Conclusions and future work
	A Appendix: Omitted Proofs

