
Efficient Support for Mode-Directed Tabling in
the YapTab Tabling System

João Santos and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jsantos,ricroc}@dcc.fc.up.pt

Abstract. Mode-directed tabling is an extension to the tabling tech-
nique that supports the definition of mode operators for specifying how
answers are inserted into the table space. In this paper, we focus our dis-
cussion on the efficient support for mode directed-tabling in the YapTab
tabling system. We discuss 7 different mode operators and explain how
we have extended and optimized YapTab’s table space organization to
support them. Initial experimental results show that our implementation
compares favorably with the B-Prolog and XSB state-of-the-art Prolog
tabling systems.

1 Introduction

Tabling [1] is a recognized and powerful implementation technique that solves
some limitations of Prolog’s operational semantics in dealing with recursion
and redundant sub-computations. Tabling based models are able to reduce the
search space, avoid looping, and always terminate for programs with the bounded
term-size property. Tabling consists of saving and reusing the results of sub-
computations during the execution of a program and, for that, the calls and the
answers to tabled subgoals are stored in a proper data structure called the table
space. In a traditional tabling system, all the arguments of a tabled subgoal call
are considered when storing answers into the table space. When a new answer
is not a variant1 of any answer that is already in the table space, then it is
always considered for insertion. Therefore, traditional tabling systems are very
good for problems that require storing all answers. Mode-directed tabling [2] is
an extension to the tabling technique that supports the definition of selective
criteria for specifying how answers are inserted into the table space. The idea of
mode-directed tabling is to use mode operators to define what arguments should
be used in variant checking in order to select what answers should be tabled.

In a traditional tabling system, to evaluate a predicate p/n using tabling, we
just need to declare it as ‘table p/n’. With mode-directed tabling, tabled predi-
cates are declared using statements of the form ‘table p(m1, ...,mn)’, where the
mi’s are mode operators for the arguments. Implementations of mode-directed
1 Two (answer or subgoal) terms are considered to be variant if they are the same up

to variable renaming.

tabling are already available in systems like ALS-Prolog [2] and B-Prolog [3],
and a restricted form of mode-directed tabling can be also recreated in XSB
Prolog by using answer subsumption [4].

In this paper, we focus our discussion on the efficient implementation of
mode directed-tabling in the YapTab tabling system [5], which uses tries [6] to
implement the table space. Our implementation uses a more general approach to
the declaration and use of mode operators and, currently, it supports 7 different
modes: index, first, last, min, max, sum and all. To the best of our knowledge,
no other tabling system supports all these modes and, in particular, the sum
mode is not supported by any other system. Experimental results, using a set
of benchmarks that take advantage of mode-directed tabling, show that our
implementation compares favorably with the B-Prolog and XSB state-of-the-art
Prolog tabling systems.

The remainder of the paper is organized as follows. First, we introduce some
background concepts about tabling. Next, we describe the mode operators that
we propose and we show some small examples of their use. Then, we introduce
YapTab’s table space organization and describe how we have extended it to
efficiently support mode-directed tabling. At last, we present some experimental
results and we end by outlining some conclusions.

2 Tabled Evaluation

In a traditional tabling system, programs are evaluated by storing answers for
tabled subgoals in an appropriate data structure called the table space. Similar
calls to tabled subgoals are not re-evaluated against the program clauses, instead
they are resolved by consuming the answers already stored in the corresponding
table entries. During this process, as further new answers are found, they are
stored in their tables and later returned to all similar calls.

Figure 1 illustrates the execution of a tabled program. The top left corner
of the figure shows the program code and the top right corner shows the final
state of the table space. The program defines a small directed graph, represented
by two edge/2 facts, with a relation of reachability, defined by a path/2 tabled
predicate. The bottom of the figure shows the evaluation sequence for the query
goal path(a,Z). Note that traditional Prolog would immediately enter an infinite
loop because the first clause of path/2 leads to a variant call to path(a,Z).

First calls to tabled subgoals correspond to generator nodes (nodes depicted
by white oval boxes) and, for first calls, a new entry, representing the subgoal,
is added to the table space (step 0). Next, path(a,Z) is resolved against the first
matching clause calling, in the continuation, path(a,Y) (step 1). Since path(a,Y)
is a variant call to path(a,Z), we do not evaluate the subgoal against the program
clauses, instead we consume answers from the table space. Such nodes are called
consumer nodes (nodes depicted by black oval boxes). However, at this point,
the table does not have answers for this call, so the computation is suspended.

The only possible move after suspending is to backtrack and try the second
matching clause for path(a,Z) (step 2). This originates the answer {Z=b}, which

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z)

1. path(a,Y), edge(Y,Z) 2. edge(a,Z)

3. Z=b

subgoals answers

0. path(a,Z)
3. Z=b
5. Z=a

Table

4. edge(b,Z) 6. edge(a,Z)

5. Z=a 7. Z=b
(fail)

Fig. 1. An example of a tabled evaluation

is then stored in the table space (step 3). At this point, the computation at node
1 can be resumed with the newly found answer (step 4), giving rise to one more
answer, {Z=a} (step 5). This second answer is then also inserted in the table
space and propagated to the consumer node (step 6), which originates the answer
{Z=b} (step 7). This answer had already been found at step 3. Tabling does not
store duplicate answers in the table space and, instead, repeated answers fail.
This is how tabling avoids unnecessary computations, and even looping in some
cases. A new answer is inserted in table space only if it is not a variant of any
answer that is already there. Since there are no more answers to consume nor
more clauses left to try, the evaluation ends and the table entry for path(a,Z)
can be marked as completed.

3 Mode-Directed Tabling

With mode-directed tabling, tabled predicates are declared using statements
of the form ‘table p(m1, ...,mn)’, where the mi’s are mode operators for the
arguments. We have defined 7 different mode operators: index, first, last, min,
max, sum and all. Arguments with modes first, last, min, max, sum or all are
assumed to be output arguments and only index arguments are considered for
variant checking. After an answer be generated, the system tables the answer
only if it is preferable, accordingly to the meaning of the output arguments, than
some existing variant answer. Next, we describe in more detail how these modes
work and we show some examples of their use in the YapTab system.

3.1 Index/First/Last Mode Operators

Starting from the example in Fig. 1, consider now that we modify the program so
that it also calculates the number of edges that are traversed in a path. Figure 2
illustrates the execution of this new program. As we can see, even with tabling,

2. edge(a,Z)

3. Z=b, N=1

0. path(a,Z,N)

...
(infinite answers)

4. edge(b,Z),
 N is 1+1

6. edge(a,Z),
 N is 2+1

5. Z=a, N=2 7. Z=b, N=3

1. path(a,Y,N1), edge(Y,Z), N is N1 + 1

8. edge(b,Z),
 N is 3+1

9. Z=a, N=4

:- table path/3.

path(X,Z,N) :- path(X,Y,N1), edge(Y,Z),
 N is N1+1.
path(X,Z,1) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z,N)

3. Z=b, N=1
5. Z=a, N=2
7. Z=b, N=3
9. Z=a, N=4
 ...

N = 1

Table

subgoals answers

Fig. 2. A tabled evaluation with an infinite number of answers

the program does not terminates. Such behavior occurs because there is a path
with an infinite number of edges starting from a, thus not verifying the bounded
term-size property necessary to ensure termination. In particular, the answers
found at steps 3 and 7 and at steps 5 and 9 have the same answer for variable Z
({Z=b} and {Z=a}, respectively), but they are both inserted in the table space
because they are not variants for variable N.

Knowing that the problem with the program in Fig. 2 resides on the fact
that the third argument generates an infinite number of answers, we can thus de-
fine the path/3 predicate to have mode path(index,index,first). The index mode
means that only the given arguments must be considered for variant checking.
The first mode means that only the first answer must be stored. By considering
this declaration, the answer {Z=b, N=3} is no longer inserted in the table and
execution fails. That happens because, with the first mode on the third argu-
ment, the answer {Z=b, N=1} found at step 3 is considered a variant of the
answer {Z=b, N=3} found at step 7.

The last mode implements the opposite behavior of the first mode, i.e., it
always stores the last answer being found and deletes the previous one, if any.
The last mode has shown to be very useful for implementing problems involving
Preferences [7] and Answer Subsumption [8].

3.2 Min/Max Mode Operators

The min and max modes allow to specify a selective criteria that stores, re-
spectively, the minimal and maximal answers found for an argument. To better
understand their behavior, Fig. 3 shows an example using the min mode. The
program’s goal is to compute the paths with the shortest distances. To do that,
the path/3 predicate is declared as path(index,index,min), meaning that the third
argument should store only the minimal answers for the first two arguments.

5. Z=c, C=2 6. Z=d, C=5

2. edge(a,Z,C)

3. Z=b, C=1

0. path(a,Z,C)

4. edge(b,Z,C2),
 C is 1+C2

7. edge(c,Z,C2),
 C is 2+C2

8. Z=d, C=3

1. path(a,Y,C1), edge(Y,Z,C2), C is C1+C2

9. edge(d,Z,C2),
 C is 3+C2

10. Z=c, C=4
(fail)

:- table path(index,index,min).

path(X,Z,C) :- path(X,Y,C1), edge(Y,Z,C2),
 C is C1+C2.
path(X,Z,C) :- edge(X,Z,C).

edge(a,b,1).
edge(b,c,1).
edge(b,d,4).
edge(c,d,1).
edge(d,c,1).

0. path(a,Z,C)

3. Z=b, C=1
5. Z=c, C=2
6. Z=d, C=5
8. Z=d, C=3

Table

subgoals answers

Fig. 3. Using the min mode to compute the paths with the shortest distances

By observing the example in Fig. 3, we can see that the execution tree follows
the normal evaluation of a tabled program and that the answers are stored as
they are found. The most interesting part happens at step 8, where the answer
{Z=d, C=3} is found. This answer is a variant of the answer {Z=d, C=5} found
at step 6. In the previous example, with the first mode, the old answer would
have been kept in the table. Here, as the new answer is minimal on the third
argument, the old answer is replaced by the new answer.

The max mode works similarly, but stores the maximal answer instead. In
any case, we must be careful when using these two modes as they may not ensure
termination for programs without the bounded term-size property. For instance,
this would be the case if, in the example of Fig.3, we used the max mode instead
of the min mode.

3.3 Sum/All Mode Operators

Two other modes that can be useful are the sum and the all. The sum mode
allows to sum all the answers for a given argument and the all mode allows to
store all the answers for a given argument. Consider, for example, the program
in Fig. 4 where the path/3 predicate is declared as path(index,index,min,all)
meaning that, for each path, we want to store the shortest distance of the path
(the third argument) and, at the same time, we want to store the number of edges
traversed, for all paths with the same minimal distances (the fourth argument).

The execution tree for the program in Fig. 4 is similar to the previous ones.
The most interesting part happens when the answer {Z=b, C=2, N=2} is found
at step 8. This answer is a variant of the answer found at step 3 and although

N = 1

:- table path(index,index,min,all).

path(X,Z,C,N) :- path(X,Y,C1,N1),
 edge(Y,Z,C2),
 C is C1+C2, N is N1+1.
path(X,Z,C,1) :- edge(X,Z,C).

edge(a,b,2).
edge(a,c,1).
edge(c,b,1).

0. path(a,Z,C,N)
3. Z=b, C=2, N=1
4. Z=c, C=1, N=1
8. Z=b, C=2, N=2

Table

subgoals answers

3. Z=b, C=2 4. Z=c, C=1

2. edge(a,Z,C)

0. path(a,Z,C,N)

5. edge(b,Z,C2),
 C is 2+C2,
 N is 1+1

7. edge(c,Z,C2),
 C is 1+C2,
 N is 1+1

8. Z=b, C=2, N=2

1. path(a,Y,C1,N1), edge(Y,Z,C2), C is C1+C2, N is N1+1

9. edge(b,Z,C2),
 C is 2+C2,
 N is 2+1

10. fail6. fail

Fig. 4. Using the all mode to compute the paths with the shortest distances together
with the number of edges traversed

both have the same minimal value (C=2), the new answer is still inserted in the
table space since the number of edges (fourth argument) is different.

Notice that when the sum or all modes are used in conjunction with another
mode, like the min mode in the example, it is important to keep in mind that
the aggregation of answers made for the sum or all argument depends on the
corresponding answer for the min argument. Consider, for example, that in the
previous example we had found one more answer {Z=b, C=1, N=4}. In this
case, the new answer would be inserted and the answers {Z=b, C=2, N=1} and
{Z=b, C=2, N=2} would be deleted because the new answer corresponds to a
shorter distance, as defined by the value C=1 in the min argument.

3.4 Related Work

The ALS-Prolog [2] and B-Prolog [3] systems also implement mode-directed
tabling using a very similar syntax. However, some mode operators have different
names in those systems. For example, the index, first and all modes are known
as +, - and @, respectively. The sum mode is not supported by any other system
and B-Prolog also does not implement the last and all modes. The + (index)
mode in B-Prolog is assumed to be an input argument, which means that it can
only be called with ground terms. On the other hand, B-Prolog includes an extra
mode, named nt, to indicate that a given argument should not be tabled and,
thus, not considered to be inserted in the table space. B-Prolog also extends the
mode-directed tabling declaration to include a cardinality limit that allows to
define the maximum number of answers to be stored in the table space [3].

Mode-directed tabling can also be recreated in the XSB Prolog system by
using answer subsumption [4]. XSB Prolog has two answer subsumption mecha-

nisms. One is called partial order answer subsumption and can be used to mimic,
in terms of functionality, the min and max modes. Consider that we want to
use it with the program in Fig. 3 that computes the paths with the shortest
distances. Then, we should declare the path/3 predicate as path(, , po(< /2))
meaning that the third argument will be evaluated using partial order answer
subsumption, where the predicate < /2 implements the partial order relation.
The other two arguments are considered to be index arguments.

The other XSB’s mechanism, called lattice answer subsumption, is more pow-
erful and can be used to mimic, in terms of functionality, the other modes. To
use it with the same example, we only need to change the path/3 declaration
to path(, , lattice(min/3)). Note that the min/3 predicate must have three ar-
guments. This is necessary since, with this mechanism, we can generate a third
answer starting from the new answer and from the answer stored in the table. For
example, for the shortest path problem, the predicate min/3 could be something
like:

min(Old, New, Res) : − Old < New → Res = Old ; Res = New.

4 Implementation

In this subsection, we describe the changes made to YapTab in order to support
mode-directed tabling. We start by briefly presenting some background concepts
about the table space organization in YapTab and then we discuss in more detail
how we have extended it to efficiently support mode-directed tabling.

4.1 YapTab’s Table Space Organization

Like we have seen, during the execution of a program, the table space may be
accessed in a number of ways: (i) to find out if a subgoal is in the table and, if
not, insert it; (ii) to verify whether a newly or preferable answer is already in
the table and, if not, insert it; and (iii) to load answers from the tables.

With these requirements, a careful design of the table space is critical to
achieve an efficient implementation. YapTab uses tries which is regarded as a
very efficient way to implement the table space [6]. A trie is a tree structure where
each different path through the trie nodes corresponds to a term described by the
tokens labeling the traversed nodes. For example, the tokenized form of the term
path(X, 1, f(Y)) is the sequence of 5 tokens path/3, V AR0, 1, f/1 and V AR1,
where each variable is represented as a distinct V ARi constant [9]. Two terms
with common prefixes will branch off from each other at the first distinguishing
token. Consider, for example, a second term path(Z, 1, b), represented by the
sequence of 4 tokens path/3, V AR0, 1 and b. Since the main functor, token
path/3, and the first two arguments, tokens V AR0 and 1, are common to both
terms, only one node will be required to fully represent this second term in the
trie, thus allowing to save three nodes in this case.

YapTab’s table design implements tables using two levels of tries. The first
level, named subgoal trie, stores the tabled subgoal calls and the second level,

named answer trie, stores the computed answers for a given call. More specifi-
cally, each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie. Each different subgoal call is
then represented as a unique path in the subgoal trie, starting at the predicate’s
table entry and ending in a subgoal frame data structure, with the argument
terms being stored within the path’s nodes. The subgoal frame data structure
acts as an entry point to the answer trie. Contrary to subgoal tries, answer trie
paths hold just the substitution terms for the free variables that exist in the
argument terms of the corresponding subgoal call [6].

f/1

VAR1

VAR0

1

VAR1

subgoal
trie

subgoal frame for
p(VAR0,1,VAR1)

VAR0

b

answer
trie

1st
argument

2nd
argument

3rd
argument

substitution
term for

1st argument

substitution
term for

3rd argument

table entry for
p/3

Fig. 5. Table space organization

An example for a tabled predicate p/3 is
shown in Fig. 5. Initially, the table entry for
p/3 points to an empty subgoal trie. Then,
the subgoal p(X, 1, Y) is called and three trie
nodes are inserted to represent the arguments
in the call: one for variable X (V AR0), a sec-
ond for integer 1, and a last one for vari-
able Y (V AR1). Since the predicate’s func-
tor term is already represented by its ta-
ble entry, we can avoid inserting an explicit
node for p/3 in the subgoal trie. Then, the
leaf node is set to point to a subgoal frame,
from where the answers for the call will
be stored. The example shows two answers
for p(X, 1, Y): {X=V AR0, Y=f(V AR1)} and
{X=V AR0, Y=b}. Since both answers have
the same substitution term for argument X,
they share the top node in the answer trie
(V AR0). For argument Y , each answer has a
different substitution term and, thus, a different path is used to represent each.

When adding answers, the leaf nodes are chained in a linked list in insertion
time order, so that the recovery may happen the same way. In Fig. 5, we can
observe that the leaf node for the first answer (node V AR1) points (dashed
arrow) to the leaf node of the second answer (node b). To maintain this list, two
fields in the subgoal frame data structure point, respectively, to the first and last
answer of this list (for simplicity of illustration, these pointers are not shown in
Fig. 5). When consuming answers, a consumer node only needs to keep a pointer
to the leaf node of its last loaded answer, and consumes more answers just by
following the chain. Answers are loaded by traversing the trie nodes bottom-up
(again, for simplicity of illustration, such pointers are not shown in Fig. 5).

4.2 Mode-Directed Tabled Subgoal Calls

In YapTab, mode-directed tabled predicates are compiled by extending the table
entry data structure to include a mode array, where the information about the
modes is stored. In this mode array, the modes appear in the order in which the
arguments are accessed, which can be different from their position in the original

declaration. For example, index arguments must be considered first, irrespective
of their position. Or, if using the all and min modes in a declaration, all min
arguments must be considered before any all argument, since the all means that
all answers must be stored, making meaningless the notion of being minimal in
this case. As we will see in Section 4.3, changing the order is also strictly neces-
sary to achieve an efficient implementation. In YapTab, the mode information is
thus stored in the order mentioned below, together with the argument’s position:

1. arguments with index mode;
2. arguments with max or min mode;
3. arguments with all mode;
4. argument (only one is allowed) with sum or last mode;
5. arguments with first mode.

Figure 6 shows an example for a p(all,index,min) mode-directed tabled pred-
icate. The index mode is placed first in the mode array, then the min mode and
last the all mode.

index

min

all

2

3

1

table entry for
p(all,index,min)

Fig. 6. Mode array

During tabled evaluation, new tabled
subgoal calls are inserted in their own sub-
goal tries by following the order of the ar-
guments in the call. With mode-directed
tabling, we follow the order defined in the
corresponding mode array. For example,
consider again the mode-directed tabled predicate p/3 as declared in Fig. 6
and the subgoal call p(X,1,Y). Figure 7 shows the difference between the re-
sulting subgoal tries with and without mode-directed tabling. The values in the
mode array indicate that we should start by inserting first the second argument
of the subgoal call (1), then the third argument (Y or V AR0) and last the first
argument (X or V AR1).

(b)(a)

VAR0

1

VAR1

subgoal
trie

1

VAR0

VAR1

subgoal
trie

table entry for
p/3

table entry for
p(all,index,min)

Fig. 7. Subgoal tries for p(X,1,Y) consid-
ering p/3 declared (a) with and (b) with-
out mode-directed tabling

The mode information is used
when creating the subgoal frame as-
sociated with the subgoal call at
hand. With mode-directed tabling,
subgoal frames were extended to in-
clude a new array, named substitu-
tion array, where the mode infor-
mation is stored, together with the
number of free variables associated
with each argument in the subgoal
call. The argument’s order is the
same as in the mode array.

Figure 8 shows the substitution
array for the subgoal call p(X,1,Y).
The first position, corresponding to the argument with the constant 1, has no
free variables and thus we store a 0 in the substitution array. The other two
arguments are free variables and, thus, they have a 1 in the substitution array.

It is possible to optimize the array by removing entries that have 0 variables
and by joining contiguous entries with the same mode. As we will see next, the
substitution array plays an important role in the process of inserting answers in
the answer trie.

4.3 Mode-Directed Tabled Answers

index

min

all

0

1

1

subgoal frame for
p(1,VAR0,VAR1)

Fig. 8. Substitution array

Like in traditional tabling, tabled answers
are only represented by the substitution
terms for the free variables in the arguments
of the corresponding subgoal call. However,
for mode-directed tabling, when we are con-
sidering the substitution terms individually,
it is important to know beforehand which mode applies to each, and for that, we
use the information stored in the corresponding substitution array. Moreover,
the substitutions must be considered in the same order that the variables they
substitute have been inserted in the subgoal trie.

Consider again the substitution array for the subgoal call p(X,1,Y). Now, if
we find the answer {X=f(a), Y=5}, the first binding to be considered is {Y=5}
with min mode and then {X=f(a)} with all mode. Since the answer trie is
initially empty, both terms can be inserted as usual. Later, if another answer is
found, for example, {X=b, Y=3}, we begin the insertion process by considering
the binding {Y=3} with min mode. As there is already an answer in the table,
we must compare both accordingly to the min mode. Since the new answer is
preferable (3 < 5), the old answer must be invalidated and the new one inserted
in the table. The invalidation process consists in: (a) deleting all intermediate
nodes corresponding to the answers being invalidated; and (b) tagging the leaf
nodes of such answers as invalid nodes. Invalid nodes are only deleted when the
table is later completed or abolished. Figure 9 illustrates the aspect of the answer
trie before and after the invalidation process.

subgoal frame for
p(1,VAR0,VAR1)

5

f/1

aanswer
trie

5

f/1

subgoal frame for
p(1,VAR0,VAR1)

3

b

a

(b)(a)

3

Fig. 9. Invalidating answers for p(X,1,Y)
(a) before and (b) after the invalidation
process

Invalid nodes are opaque to
subsequent subgoal calls, but can
be still visible from the consumer
calls already in evaluation. Hence,
when invalidating a node, we may
have consumers still pointing to it.
By deleting leaf nodes, this would
make consumers unable to follow
the chain of answers. An alternative
would be to traverse the stacks and
update the consumers pointing to
invalidated answers, but this could
be a very costly operation.

Notice also that the mode’s order in the substitution array is crucial for the
simplicity and efficiency of the invalidation process. When, at a given node N ,
we decide that an answer should be invalidated, the substitution array’s order

ensures that all nodes below node N (including N) are the ones we want to
invalidate and that the upper nodes are the ones we want to keep. This might
not be the case if we used the original order. For example, consider again the call
p(X,1,Y) and the answers {X=f(a), Y=5} and {X=b, Y=3}. Figure 10 illustrates
the invalidation process of these answers, if using the original declaration.

(b)(a)

subgoal frame for
p(VAR0,1,VAR1)

f/1

a

5answer
trie

f/1

a

subgoal frame for
p(VAR0,1,VAR1)

b

3

5

b

3

Fig. 10. Invalidating answers, without
changing the insertion order, for p(X,1,Y)
(a) before and (b) after the invalidation
process

To detect that the second answer
is preferable (3 < 5), we need to
navigate in the trie until reaching
the leaf node 5 for the first answer.
Thus, the invalidation process may
require deleting upper nodes (as the
example in Fig. 10 shows) and/or
traverse several paths to fully detect
all preferable answers (this would be
the case if we had two intermedi-
ate answers with the same minimal
values, for instance {X=f(a), Y=5}
and {X=h(c), Y=5}), making there-
fore the invalidation process much
more complex and costly.

4.4 Scheduling and Mode-Directed Tabling

In a tabled evaluation, there are several points where we may have to choose be-
tween continuing forward execution, backtracking, consuming answers, or com-
pleting subgoals. The decision on which operation to perform is determined by
the scheduling strategy. The two most successful strategies are batched scheduling
and local scheduling [10].

Batched scheduling evaluates programs in a depth-first manner as does the
WAM. When new answers are found for a particular tabled subgoal, they are
added to the table space and the evaluation continues with forward execution.
Only when all clauses have been resolved, the newly found answers will be for-
warded to the consumers. Batched scheduling thus tries to delay the need to
move around the search tree by batching the consumption of answers.

Local scheduling is an alternative scheduling strategy that tries to complete
subgoals as soon as possible. The key idea is that whenever new answers are
found, they are added to the table space, as usual, but execution fails. Local
scheduling thus explores the whole search space for a tabled predicate before
returning answers for forward execution.

To the best of our knowledge, YapTab is the only tabling system that sup-
ports the dynamic mixed-strategy evaluation of batched and local scheduling
within the same evaluation [11]. This is very important, because for mode-
directed tabled predicates, the ability of being able to use local evaluation can
be crucial to correctly and/or efficiently support some modes.

: − table num links(index, sum).
num links(A, 0) : − edge(, A).
num links(A, 1) : − edge(A,).

: − table num nodes(sum).
num nodes(0).
num nodes(1) : − num links(,).

edge(a, b). edge(a, c). edge(b, c).

Fig. 11. A cascade of two mode-directed
tabled predicates using the sum mode

This is the case for the sum
mode. As it sums all the answers
for a given argument, we might
end with wrong results if we re-
turn partial results instead of ag-
gregating them and only return-
ing the aggregated result. Consider,
for example, the two mode-directed
tabled predicates num links/2 and
num nodes/1 in Fig. 11 and
the query goal num nodes(N). If
num links/2 is evaluated using lo-
cal scheduling, we get the right re-
sult (N=3) but, with batched scheduling, we end with a wrong result (N=6).
This occurs because, with batched evaluation, the num links(,) call in the
second clause of num nodes/2 succeeds 2 times for each edge/2 fact.

preferable/aggregated
answer

batched
evaluation

mode-directed
tabled predicate

Fig. 12. Useless computations with
batched evaluation

Batched evaluation can also yield
useless computations for mode-directed
tabled predicates (see Fig. 12). Con-
sider, for example, a mode-directed
tabled predicate p/1 declared as
p(max) and the query goal:

: − p(Max), do work(Max, Res).

With batched evaluation, the call
to do work(Max, Res) will be exe-
cuted for each Max partial result com-
puted by p(Max), hence originating
as many useless computations as the
number of non-maximal results.

5 Experimental Results

In this section, we present some experimental results for a set of benchmarks that
take advantage of mode-directed tabling. The environment for our experiment
was a machine with a AMD FX(tm)-8150 8-core processor with 32 GBytes of
main memory and running the Linux kernel 64 bits version 3.2.0. To put our
results in perspective, we compare our implementation, on top of Yap Prolog
(development version 6.3), with the B-Prolog (version 7.8 beta-6) and the XSB
(version 3.3.6) systems, both using local scheduling. For XSB, we adapted the
benchmarks to use lattice answer subsumption (as discussed in Section 3.4)2.
For benchmarking, we used the following set of programs:

2 For programs using min/max modes, we also tried with partial order answer sub-
sumption but, unexpectedly, we got worst results.

shortest(N) uses the min mode to determine all-pairs shortest paths in a graph
representing the flight connections between the N busiest commercial air-
ports in US3.

shortest first(N) uses the first mode to extend the all-pairs shortest paths
program to also include the first justification for each shortest path.

shortest all(N) uses the all mode to extend the all-pairs shortest paths pro-
gram to also include all the justifications for each shortest path.

shortest pref(N) uses the last mode to solve the all-pairs shortest paths pro-
gram using Preferences [8].

knapsack(N) uses the max mode to determine the maximum number of items
to include in a collection, from N weighted items, so that the total weight is
equal to a given value.

lcs(N) uses the max mode to find the longest subsequence common to two
different sequences of size N.

matrix(N) uses the min mode to implement the matrix chain multiplication
problem that determines the most efficient way to multiply a sequence of N
matrices.

pagerank(N) uses the sum mode to measure the rank values of web pages in
a realistic dataset of web links called search engines4, using N iterations.

Table 1 shows the execution times, in milliseconds, for running the bench-
marks with YapTab, B-Prolog and XSB. In parentheses, it also shows the over-
head ratios against YapTab with local evaluation. The execution times are the
average of 3 runs. The entries marked with n.a. correspond to programs using
modes not available in B-Prolog. The ratios marked with (—) mean that we
are not considering them in the average results (they correspond either to n.a.
entries or to execution times much higher than YapTab).

In general, the results show that, for all combinations of experiments and
systems, there is no clear tendency showing that the overhead ratios increase or
decrease as we increase the size of the corresponding set of programs.

Comparing the results for local and batched evaluation, they show that, on
average, batched evaluation is around 29% worse than local evaluation. Batched
evaluation gets worse the more answers are inserted into the table space. This
affects in particular the shortest first(), shortest all() and shortest pref()
set of programs, which confirms our discussion regarding the fact that batched
evaluation is more suitable to useless computations.

Regarding the comparison with the other systems, the results obtained for
YapTab clearly outperform those of B-Prolog and XSB. On average, B-Prolog
and XSB are, respectively, around 1.82 and 2.49 times worse than YapTab using
local evaluation.

Please note that for B-Prolog and XSB we do not include the performance
of some programs into the average results. For B-Prolog, this is because these
programs use the all, last and sum modes, which are not supported in B-Prolog.

3 http://toreopsahl.com/datasets
4 http://www.cs.toronto.edu/~tsap/experiments/download/download.html

Table 1. Execution times, in milliseconds, for YapTab, B-Prolog and XSB and the
respective overhead ratios when compared with YapTab’s local evaluation

Programs
YapTab

B-Prolog XSB
Local Batched

shortest(300) 1,088 1,261 (1.16) 2.990 (2.37) 2,922 (2.69)
shortest(400) 1,544 1,785 (1.16) 4,216 (2.36) 4,321 (2.80)
shortest(500) 2,170 2,472 (1.14) 5,792 (2.34) 6,218 (2.87)

shortest first(300) 1,394 2,641 (1.89) 3,225 (1.22) 5,013 (3.60)
shortest first(400) 2,052 3,432 (1.67) 4,614 (1.34) 7,257 (3.54)
shortest first(500) 2,866 4,228 (1.57) 7,400 (1.42) 10,328 (3.60)

shortest all(300) 4,324 8,383 (1.94) n.a. (—) 61,803 (—)
shortest all(400) 5,861 10,590 (1.81) n.a. (—) 122,985 (—)
shortest all(500) 8,337 13,598 (1.63) n.a. (—) 239,451 (—)

shortest pref(300) 2,882 4,241 (1.47) n.a. (—) 6,666 (2.31)
shortest pref(400) 4,152 5,621 (1.35) n.a. (—) 9,932 (2.39)
shortest pref(500) 5,773 7,473 (1.29) n.a. (—) 14,129 (2.45)

knapsack(1000) 1,013 998 (0.99) 837 (0.84) 2,684 (2.65)
knapsack(1500) 1,581 1,561 (0.99) 1,229 (0.79) 3,977 (2.52)
knapsack(2000) 2,037 2,040 (1.00) 1,582 (0.78) 5,473 (2.69)

lcs(1000) 1,196 1,416 (0.98) 2,900 (2.48) 3,060 (2.56)
lcs(1500) 2,768 3,560 (0.98) 5,784 (2.12) 7,128 (2.58)
lcs(2000) 4,864 6,053 (0.99) 10,116 (2.11) 13,338 (2.74)

matrix(100) 192 224 (1.17) 582 (2.60) 396 (2.06)
matrix(150) 925 1,076 (1.16) 2,549 (2.37) 1,610 (1.74)
matrix(200) 3,005 3,534 (1.18) 7,816 (2.21) 4,688 (1.56)

pagerank(1) 365 n.a. (—) n.a. (—) 128,377 (—)
pagerank(16) 813 n.a. (—) n.a. (—) > 10 min (—)
pagerank(36) 1,260 n.a. (—) n.a. (—) > 10 min (—)

Average (1.29) (1.82) (2.49)

For XSB, the execution times for the shortest all() and pagerank() are much
higher than YapTab and including them would have distorted the comparison
between the three systems. To the best of our knowledge, YapTab is thus the only
system that supports the all, last and sum modes and handles them efficiently.

6 Conclusions

We discussed how we have extended and optimized YapTab’s table space or-
ganization to provide engine support for mode-directed tabling. In particular,
we presented how we deal with mode-directed tabled subgoal calls and answers
and we discussed the role of scheduling in mode-directed tabled evaluations.
Our implementation uses a more general approach to the declaration and use of
mode operators and, currently, it supports 7 different modes. To the best of our
knowledge, no other tabling system supports all these modes and, in particular,
the sum mode is not supported by any other system. Experimental results on
benchmarks that take advantage of mode-directed tabling, showed that our im-
plementation clearly outperforms the B-Prolog and XSB state-of-the-art Prolog

tabling systems. In particular, YapTab is the only system that efficiently han-
dles programs that use the all mode. Further work will include extending our
implementation to support multi-threaded mode-directed tabling.

Acknowledgments

This work is partially funded by the ERDF (European Regional Development
Fund) through the COMPETE Programme and by FCT (Portuguese Foundation
for Science and Technology) within projects PEst (FCOMP-01-0124-FEDER-
022701), HORUS (PTDC/EIA-EIA/100897/2008) and LEAP (PTDC/EIA-CCO
/112158/2009). João Santos is funded by the FCT grant SFRH/BD/76307/2011.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Guo, H.F., Gupta, G.: Simplifying Dynamic Programming via Mode-directed
Tabling. Software Practice and Experience 38(1) (2008) 75–94

3. Zhou, N.F., Kameya, Y., Sato, T.: Mode-Directed Tabling for Dynamic Program-
ming, Machine Learning, and Constraint Solving. In: IEEE International Con-
ference on Tools with Artificial Intelligence. Volume 2., IEEE Computer Society
(2010) 213–218

4. Swift, T., Warren, D.S.: Tabling with Answer Subsumption: Implementation, Ap-
plications and Performance. In: European Conference on Logics in Artificial Intel-
ligence. Number 6341 in LNAI, Springer-Verlag (2010) 300–312

5. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling
to logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005)
161–205

6. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1)
(1999) 31–54

7. Guo, H.F., Jayaraman, B., Gupta, G., Liu, M.: Optimization with Mode-Directed
Preferences. In: 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, ACM (2005) 242–251

8. Santos, J., Rocha, R.: Mode-Directed Tabling and Applications in the YapTab
System. In: Symposium on Languages, Applications and Technologies. (2012) 25–
40

9. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

10. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. Number 1140
in LNCS, Springer-Verlag (1996) 243–258

11. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250–264

