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Abstract. Machine Learning and Data Mining research strongly de-
pend on the quality and quantity of the real world datasets for the eval-
uation stages of the developing methods. In the context of the emerging
Online Multi-Target Regression and Multi-Label Classification method-
ologies, datasets present new characteristics that require specific testing
and represent new challenges. The first difficulty found in evaluation is
the reduced amount of examples caused by data damage, privacy preser-
vation or high cost of acquirement. Secondly, few data events of interest
such as data changes are difficult to find in the datasets of specific do-
mains, since these events naturally scarce.

For those reasons, this work suggests a method of producing synthetic
datasets with desired properties(number of examples, data changes events,
... ) for the evaluation of Multi-Target Regression and Multi-Label Clas-
sification methods. These datasets are produced using First Principle
Models which give more realistic and representative properties such as
real world meaning ( physical, financial, ...) for the outputs and inputs
variables. This type of dataset generation can be used to produce infinite
streams and to evaluate incremental methods such as online anomaly and
change detection. This paper illustrates the use of synthetic data gener-
ation through two showcases of data changes evaluation.
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1 Introduction

In the areas of Machine Learning and Data Mining, datasets quality and quan-
tity are crucial for evaluation stage of methods development [1]. Controlled
evaluation environments with specified challenge problems are required to un-
derstand the behaviour of the methods [2]. Methods of Multi-Target Regres-
sion(MTR) and Multi-Label Classification (MLC) on online data streams are
fair examples that imply these evaluation requirements. The importance of these



methodologies has been growing due to reasonable modelling and predicting
capabilities [3,4]. Formally, let an unbounded data stream be represented by
D = {...,(x1,¥1), (X2,¥2), -+, (X5,¥3), .}, where x; = [zi1--- @i+ 2] Is a
M-dimensional vector of real values containing the data descriptive variables
z; j (input variables) of the i'" example (considering one example with the in-
dex of reference). For Multi-Target Regression, y; = [yi1 - ¥i,j - - - ¥i,n] denotes
a real values vector of responses y; ; (output variables) of the i example. For
Multi-Label Classification, y,; corresponds to a subset of nominal labels A; such
that y, € {\1,...; Ak, ...y AL}, where L is the number of possible labels.

Typically, output set of labels y, are transformed into a vector of outputs
variables [y; 1 - ¥i k- - - ¥i 1], where y; ;, € {0, 1} are binary. If label Ay, is assigned
to the i'" example then y; » = 1, otherwise y; 1, = 0. The outputs variables are
redefined as y;, = [yi1---¥ik - yi,].- Finally, the objective of both MTR and
MLC methods is to learn a function f(x;) — y; that maps the input values of
x; into the output values of y,.

In the evaluation of the methods, the number of examples are not sufficient
in many cases by the reasons of sensitive data, data damage or high cost of ac-
quisition [2]. Data changes scenarios are another prominent challenge for MTR
and MLC methods [5]. Changes in the probability distributions, variables trends
or variables rapid shifts of the inputs variables are events that have strong in-
fluence on the method’s performance [5]. Similarly to the scarcity of examples,
real world datasets that gather all desired data changes properties also lack [2].
Moreover, the data change events are not often annotated, since annotation is
time consuming.

As an attempt to solve this problem, researchers produce synthetic datasets
to create evaluation challenges with desired properties. This alternative allows
to produce a significant amount of examples or even create a reasonable ap-
proximation of an infinite data stream. Moreover, few resources for storage and
transmission are required. Despite high complexity, the produced datasets mod-
els do not reflect the real world conterpart. In fact, the latent models are based
on abstract mathematical concepts.

However, datasets can be constructed through the employment of a First
Principle Models (FPM) which are described by established laws without mak-
ing assumptions (empirical or fitted parameters) [6]. FPM are used to create
synthetic data for a wide range of areas such as Chemical Engineering (In-
dustrial Chemical process) [7] and Mechanical Engineering(Mechanical Systems
Diagnosis) [8]. In the area of Control Systems, Proportional-Integrate-Derivative
(PID) systems modelling uses FPM extensively in several contexts of applica-
tion [9]. For instance, FPM based software simulators(parametrized with inputs
and outputs variables) that mimic those systems are created to reduce cost in
the industrials trials [7]. The abundance of free software simulators and models
of PID systems justified the focus on PID Systems. Thus, this work suggests
a method to produce synthetic datasets that are reproducible for MTR and
MLC evaluation. This method applies the FPM to produce more realistic and
representative models.



Section 2 briefly reviews some existent methods of dataset generation. Sec-
tion 3 describes the FPM method and the selected FPM model that is used to
produce the synthetic datasets. Section 4 shows the production of the MTR, and
MLC synthetic datasets and their application through MTR and MLC meth-
ods evaluation showcases, under data changes scenarios. Finally, the results are
presented and discussed in Section 5 and the main conclusions are reported in
Section 6.

2 Related Work

In the literature, most of dataset generators produce Single-Label Classification
(the output variable y, is a label) datasets, since MLC is an emerging methodol-
ogy [1]. Monedero et al [2], Frasch et al [10] and Narasimhamurthy et al [5] are
representative examples of Single-Label Classification(SLC) dataset generators.

Omne possible strategy is to produce several Binary Classification (where
Yix € {0,1}) outputs (one for each label) and combine them into MLC datasets.
However, these datasets does not represent correlation between outputs.

Read et al propose a dataset generator that uses single-label generators and
combine them according to configured label imbalance and probabilities of si-
multaneous label occurrence [11]. This dataset generator attempt to create more
realistic datasets in terms of label imbalance and concept drifts through an em-
pirical method.

Tomas et al propose a highly configurable dataset generators for MLC based
on the creation of hyper-spheres [1]. However, the generator is not designed to
produce data changes. In addiction, despite high flexibility, this dataset generator
produces an abstract mathematical challenge.

Similarly, the majority of the existent datasets generator produce Single-
Target Regression(also known as Multivariate Regression) datasets with simple
but highly non-linear models. Friedman produced STR datasets from very simple
and non-linear models to test the methods of Multivariate Adaptive Regresssion
Splines [12] The same strategy used in MLC can be applied to produce MTR
from a STR. For the best of our knowledge, no MTR dataset generators were
found in literature. In fact, MLC methodologies received more attention by the
researchers.

3 First Principle Model-Tennesse Eastman Process

In order to illustrate the application of FPM’s to generate MTR and MLC
datasets, the Tennessee Eastman Process (TEP) was chosen. TEP consists of an
industrial process of continuous chemical production. The process is unstable,
non-linear and controlled by PID system. Basically, PID systems are controlled
mechanisms based on loop feedback that are used in process stabilization [9)].
Figure 1 shows the model of a generic PID system. These systems involves es-
sentially a Plant and a PID controller.
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Fig. 1. Model of a generic PID system.

The Plant consists of a set equations that represent the behaviour of the
controlled process. The process is driven by the manipulable variables u; and
observed by the measurement variables y,. Some processes present the distur-
bances variables d; (binary variables)to simulate process impairments. The error
e; between the desired set points r; and process measurements is computed with
the purpose of being minimized. The PID controller consists of weighted sum of
proportional(present values), integral(past values) and derivative (possible fu-
ture values) terms which are calibrated in order to produce stable responses [9].
This component receives the error and computes new manipulable variables val-
ues that stabilizes the Plant process. Figure 2 represents the diagram of TEP
Plant. Most process details were originally omitted for simplification and pro-
tection of intellectual property.
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Fig. 2. Model of TEP Plant. The u; = w;,; are the individual manipulable variables,
Yyj = ¥s,; are individual measurements variables.



Two products G and H (Product) are produced from four gaseous reactants
(A, C, D, E). An inert product B is present but does not intervenes in the
chemical reaction. A by-product F (Purge) results from the whole reaction. The
chemical reactions are irreversible and exothermic. The process model comprises
five inter-acting major units: a reactor, a condenser, a vapour-liquid separator,
a stripper for the product stream and centrifugal compressor for the recycle
stream. The model has 41 measurements and 12 manipulated variables and 12
set points. There is also 20 variables that simulate disturbances. The physical
quantities that the variables represent are explained in detail in Bathelt et al [7].
Tables 7 to 5 gives the names of the variables and respective physical meaning
(see in Appendix).

4 Methods

This section gives the description of procedures for the generation of MTR and
MLC datasets. Two evaluation showcases of MTR regressor and MLC classifier
which predict over the generated datasets are also described. The generation
of the datasets was focused on data changes robustness tests. Data changes in
streams can be analysed in two aspects: nature and rate. The nature reflects
the variables statistics that changed such as mean and variance [13]. The rate
of change is an important aspect that influences the performance of most MTR
and MLC methods. Abrupt changes (concepts drifts) are identified when the
change occur from one example to the next (inexistence of transition phase).
Gradual changes (concepts shifts) present a transition phase where the changing
statistic is continuously varying [13]. This work is focused on the abrupt changes
(concept drifts) of the mean statistic which is one of the most studied topics in
data streams [14].

In this work, a simulator that implements the model described in Section
3 was used. The files of this simulator can be found at http://depts. washing-
ton.edu/control/LARRY/TE and was originally developed by Ricker [15]. This
simulator was partially developed in C and in Matlab(Simulink). TEP simulator
is composed essentially by a plant function developed in C language and pos-
teriorly built into a Matlab mex file. The PID controller (a set of small PID
controllers) function was developed in Simulink.

To produce data changes events, the set points variables are manipulated.
Some set points such as Production Set Point allows to produce gradual changes
(concept shifts) and abrupt changes (concept drifts) events, since the variables
are related to measurements variables convergence to stable values. The rate
can be calibrated using a rate limiter in the simulink environment. Figure 3
shows the parameters of data change event. The curve reflects the variation of
a statistical parameter from a value a to a value b. The parameter t is the
example index where the change starts and W is the number of examples in the
transition phase. The change in the set point value create similar changes in the
Plant parameters. The changes can be whether a descending and ascending of a
parameter.
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Fig. 3. Model of a data change reflecting a statistical parameter variation.

The generated datasets were produce with 100000 examples each, for both
MTR and MLC evaluation. In this experiments, the changes were created with
the periodicity of 5000, 10000 and 20000 examples. The W values were 0 in order
to simulate a concept drift. Two special cases were also produced. One dataset
does not present any drift(base line) and the other presents a constant decreasing
change. Regarding the MTR dataset production, the dataset joins measurement
variables y, and manipulable variables u; with purpose of predicting u; from
y;. Each data example is defined as e; = (y;, u;). As performance measures, the
error was used for the error evolution and RMSE was used for global evaluation
and comparison between algorithms. The error curve was smooth with a me-
dian sliding window due to the spiky form. The window length is 1000 examples
without overlapping. For MLC dataset generation, the disturbances variables
d; and measurement variables y,; are joined. The purpose is to predict the dis-
turbance variables d; from y,. The d; disturbance variables are already in the
form used in MLC problem transformation [11]. Each data example is defined
as e; = (y;,d;). A Poisson process was used to choose the instant of a distur-
bance occurrence with a user defined duration. The duration of the disturbances
was 5000 examples. In this evaluation, the inputs variables were smoothed with
a low-pass filter (sliding windows of 1000 examples) in other to have stability.
The F-Measure, Precision, Recall, Accuracy and Exact Match were used for the
classification scenario.

The Multi-Target regressor MT-AMRules and the Multi-Label classifier ML-
AMRules were used to exemplify the application of synthetic datasets in MTR
and MLC methods evaluation, respectively. Both MTR regressor and MLC clas-
sifier were tested using a prequential mode.

5 Results

In this section, two simple showcases with MTR and MLC are demonstrated.
The types of involved data changes events are also visualized. A comparison
between a scenario without data changes and several scenarios where several
types of data changes occur is performed. Figure 4 depicts 4 data changes in
the mean statistic with different rates using the Reactor Coolant variable. The
porpose is to show the flexibility and the diversity of the adapted software to
create several types of data changes.
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Fig. 4. Examples of data changes with different rate of variation observed in Reactor
Coolant variable.

These gradual and abrupt changes are created using rate delimiters in Simulink
implementation. The thinner curve represents an abrupt change (concept drift)
which is the event that is intended to be evaluated in MTR and MLC showcases.

In the following paragraphs, the MTR and MLC evaluation showcases are
presented. Figure 5 shows the evalution of the error for several MTR datasets.
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Fig. 5. Error evolution that show the effect of data changes.

The plots a) to ¢) represent the smoothed error curve for 5000 (MTR._5k
dataset), 10000 (MTR_10k dataset) and 20000 (MTR_20k dataset) examples of
concept drift periodicity, respectively. The plot d) represent in solid line the
scenario where the dataset presents no data change (MTR_NoChange dataset)
and the scenario where the data change is constant (MTR_Const dataset) in
dotted line. The error curves show the effect of the concept drifts. Figures 5 shows



descending (dashed) and ascending (solid) concept drift events. The descending
variation cause error increasing with more impact than ascending variation. The
impact of ascending variation can be observed in the plot ¢). Table 1 show the
results of MTR regression using several datasets with different challenges.

Table 1. RMSE of the MTR evaluation.

Dataset MTR_5k MTR_10k MTR_20k MTR_NoChange MTR_Const
RMSE 0.158 0.151 0.146 0.101 0.119

Table 1 shows that the more often data changes, the higher is the RMSE.
This fact is espected, since the drifts lead to the relearning of the model. In-
terestingly, Figure 5 d) shows that the constant and gradual change lead to a
gradual increasing of the error compared to the drift scenario where no drifts
occurs.

Table 2 show the results of MLC regression using several algorithms. Perfor-
mance measures of the MLC evaluation for datasets of 5000 (MLC_5k dataset),
10000 (MLC_10k dataset) and 20000 (MLC_20k dataset) example periodicity. It
also presents the performance measures for scenarios of no data change (MLC_
NoChange dataset) occurred and constant change (MLC_Const dataset).

Table 2. Performance measures of the MLC evaluation

Dataset MLC_5k MLC_10k MLC_20k MLC_NoChange MLC_Const

Accuracy 0.80 0.79 0.80 0.83 0.79
Exact Match  0.62 0.61 0.62 0.66 0.60
Precision 0.65 0.65 0.64 0.62 0.65
Recall 0.68 0.66 0.68 0.63 0.67
F-Measure 0.65 0.64 0.64 0.61 0.65

Table 2 shows that the drifts and the gradual change produce little effect on
the performance measures.

6 Conclusion

This work presented a framework for data set generation for MTR, and MLC
evaluation. A realistic and representative datasets for MTR regression and MLC
Classification were obtained for method evaluation. However, the main limita-
tions are the limited number of inputs and outputs. As future work, the main
goal is to implement a MTR and MLC data streamer that produces data trough
a configurable FPM in a standalone and portable application.
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Appendix: Tables of TEP variables

Table 3. Manipulable Variables

Variable Name Variable Description Unit
uq D feed flow (stream 2) kg/h
Us E feed flow (stream 3) kg/h
us A feed flow (stream 1) kscmh
Uy A and C feed flow (stream 4) kscmh
Us Compressor recycle valve %

Ug Purge valve (stream 9) %

wr Separator pot liquid flow (stream 10) m3/h
ug Stripper liquid product flow (stream 11) m?/h
U Stripper steam valve %

U1o Reactor cooling water flow m?>/h
U1 Cooling water flow m3/h

U12 Agitator speed rpm




Table 4. Setpoints

Variable Name Variable Description Unit

1 Production Set point mol/h
T2 Strip Level Set point %

r3 Separator Set point %

T4 Reactor Level Set point %

5 Reactor Pression Set point kPa gauge
re Mole G Set point mol %
T A Set point mol %
T8 C Set point mol %
T9 Reactor Temperature °C

r10 Steam Valve Position -(on/off)
ri1 Stripper steam valve -(on/off)
12 Agitator Setting rpm

Table 5. Disturbances variables

Variable Name Variable Description Type
d1 A/C feed ratio, B composition constant (stream 4) Step
do B composition A/C ratio constant (stream 41) Step
ds D feed temperature(stream 1) Step
da Reactor cooling water inlet temperature Step
ds Condenser cdmting water inlet temperature Step
ds A feed loss (stream I) Random
dr C header pressure losereduced availability (stream 4) Random
ds A, B, C feed composition (stream 4) Random
do D feed temperature (stream 2) Random
d1o C feed temperature (stream 4) Random
di1 Reactor cooling water inlet temperature Drift
di2 Condenser cooling water inlet temperature Stiction
di3 Reaction kinetics Stiction
di4 Slow drift Random
dis Reactor cooling water valve Sticking Random
die Condenser cooling water valve Sticking Random
dir Unknown Random
dis Unknown Random
dig Unknown Random
d20 Unknown Random




Table 6. Variables of measurements.

Variable Name Variable Description Unit

Y1 A feed (stream 1) kscmh

Y2 D feed (stream 2) kg/h

Y3 E feed (stream 3) kg/h

Ya A and C feed (stream 4) kscmh

Ys Recycle flow (stream 8) kscmh

Y6 feed rate (stream 6) kscmh

Y7 Reactor pressure kPa gauge
Y Reactor level %

Yo Reactor temperature °C

Y10 Purge rate (stream 9) kscmh

Y11 Separator temperature °C

Y12 Product separator level %

Y13 Separator pressure kPa gauge
Y14 Separator underflow (stream 10) m?3/h

Y15 Stripper level %

Y16 Stripper pressure kPa gauge
Y17 Stripper underflow (stream 11) m3/h

Y18 Stripper temperature °C

Y19 Stripper steam dew kg/h

Y20 Compressor work kW

Y21 Reactor cooling water outlet temperature °C

Y22 Separator cooling water outlet temperature °C

Table 7. Variables of measurements(Concentrations).

Variable Name Variable Description Unit

Y23 Concentration of A in Reactor feed (stream 6) mol %
Yoa Concentration of B in Reactor feed (stream 6) mol %
Yos Concentration of C in Reactor feed (stream 6) mol %
Y26 Concentration of D in Reactor feed (stream 6) mol %
Yo Concentration of E in Reactor feed (stream 6) mol %
Yos Concentration of F in Reactor feed (stream 6) mol %
Y29 Concentration of A in Purge (stream 9) mol %
Y30 Concentration of B in Purge (stream 9) mol %
Y31 Concentration of C in Purge (stream 9) mol %
Y32 Concentration of D in Purge (stream 9) mol %
Y33 Concentration of E in Purge (stream 9) mol %
Y34 Concentration of F in Purge (stream 9) mol %
Y35 Concentration of G in Purge (stream 9) mol %
Y36 Concentration of H in Purge (stream 9) mol %
Y37 Concentration of D in stripper underflow (stream 11) mol %
Y38 Concentration of E in stripper underflow (stream 11) mol %
Y39 Concentration of F in stripper underflow (stream 11) mol %
Y40 Concentration of G in stripper underflow (stream 11) mol %

Ya1

( )
Concentration of H in stripper underflow (stream 11) mol %




