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Abstract—Distributed data aggregation is an important task, allowing the decentralized determination of meaningful global properties,
which can then be used to direct the execution of other applications. The resulting values are derived by the distributed computation
of functions like COUNT, SUM and AVERAGE. Some application examples deal with the determination of the network size, total storage
capacity, average load, majorities and many others. In the last decade, many different approaches have been proposed, with different
trade-offs in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of aggregation
algorithms, it can be difficult and time consuming to determine which techniques will be more appropriate to use in specific settings,
justifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms,
providing three main contributions. First, it formally defines the concept of aggregation, characterizing the different types of aggregation
functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some
guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.

Index Terms—distributed algorithms, data aggregation, performance trade-offs, fault-tolerance
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1 INTRODUCTION

Data aggregation is an essential building block of mod-
ern distributed systems, enabling the determination of
important system wide properties in a decentralized
manner. The knowledge of these global properties can
then be used as input by other distributed applications
and algorithms. The network size is a common example
of such global properties, which is required by many
algorithms in the context of Peer-to-Peer (P2P) networks,
for instance: in the construction and maintenance of
Distributed Hash Tables (DHT) [1], [2]; when setting the
fanout of a gossip protocol [3]. This size estimation is
also used in many other contexts, for example: to set up
a quorum in dynamic settings [4], to compute the mixing
time of a random walk [5].

The network size is computed through the COUNT
aggregation function. Nevertheless, other meaningful
global properties can be computed using different func-
tions, for example: AVERAGE can be applied to determine
the average system load which can be used to direct local
load balancing decisions; SUM allows the determination
of total values such as the total free disk space avail-
able in a file-sharing system. In the particular case of
Wireless Sensor Networks (WSN) and for the Internet of
Things (IOT) [?], data gathering is often only practical if
data aggregation is performed, due to the strict energy
constraints found on such environments. Even when
energy is available, there is still need for energy efficient
approaches [?].

The above examples intend to illustrate some of the
main reasons that have motivated the research and
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development of distributed data aggregation approaches
over the past years, but more can be found in the
literature. Besides all the existing relevant application
examples, aggregation has also been stated as one of
basis for scalability in large-scale services [6], reinforcing
its importance. Currently, a huge amount of distinct
approaches constitute the body of related work on dis-
tributed data aggregation algorithms, with all exhibiting
different trade-offs in terms of accuracy, time, communi-
cation and fault-tolerance. Together, existing techniques
have confirmed that obtaining global statistics in a dis-
tributed fashion is a difficult problem, especially when
considering faults and network dynamism. Moreover,
in face of such diversity, it becomes difficult to choose
which distributed data aggregation algorithm should be
preferred in a given scenario, and which one will best
suit the requirements of a specific application. One of
the main motivations of this work is precisely to help
readers make this choice.

Some surveys have been previously published [7],
[8], [9], [10], [11] focusing specifically on aggregation
techniques for WSN. Several in-network aggregation
techniques for WSN are depicted in [7], which typically
operate at the network level, needing to deal with the
resource constraints of sensor nodes (limited computa-
tional power, storage and energy resources). A review of
the existing literature more focused on energy efficiency
is presented in [8], and on security in [9], [10]. An-
other work reviewing the state-of-the-art of information
fusion techniques for WSN is also available [11]. In
this later work, a broader view of the sensor fusion
process is reviewed, from raw data collection, passing
through a possible summarization (data aggregation) or
compression, until the final resulting decision or action
is reached. Data aggregation is considered a subset of
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information fusion, that aims at reducing the handled
data volume by establishing appropriate summaries.

In this survey, we intend to address data aggregation
algorithms at a higher abstraction level, providing a
comprehensive and more generic view of the problem
independently from the type of network used. Unlike
most of the previous surveys, we do not focus on
algorithms for specific networks, like WSN. Instead, we
provide a wider view of the existing techniques to tackle
specifically the distributed data aggregation problem, as
the performance of the algorithms vary according to the
underlying network settings. Therefore, more alterna-
tives are presented to the reader compared to previous
works, allowing the determination of which data aggre-
gation algorithms might be more suited for any target
setting. We define the problem of computing aggregation
functions in a distributed fashion, and detail a wide
range of distinct solutions. A taxonomy of the existing
distributed data aggregation algorithms is proposed,
classifying them according to two main perspectives:
communication and computation. The first viewpoint
refers to the routing protocols and intrinsic network
topologies associated with each protocol, which are used
to support the aggregation process. The second per-
spective points out the aggregation functions computed
by the algorithms and the main principles from which
they are based on. Other perspectives (e.g., algorithm
requirements, covered types of aggregation functions)
could have been considered, since the mapping between
the algorithm attributes is multidimensional. However,
we believe that the two chosen perspectives will pro-
vide a clear presentation. We also give some important
guidelines to help in the decision of which distributed
aggregation algorithm should be used, according to the
requirements of a target application and environment.

The remaining of this survey is organized as follows.
In Section 2, we clarify the concept of aggregation, and
define the problem of its distributed computation. A
taxonomy of the existing distributed aggregation algo-
rithms from the communication perspective is proposed
in Section 3, describing the most relevant approaches
and discussing their pros and cons. Section 4 proposes
a taxonomy from the computation perspective. Section 5
summarizes the properties of the most relevant ap-
proaches, and gives some guidelines for their practical
application. Finally, some concluding remarks and future
research directions for the area are drawn in Section 6.

2 PROBLEM DEFINITION

In a nutshell, aggregation can be simply defined as “the
ability to summarize information”, quoting Robbert Van
Renesse [6]. Data aggregation is considered a subset of
information fusion, aiming at reducing the handled data
volume [11]. Here, we provide a more precise definition,
and consider that the process consists in the computation
of an aggregation function defined by:

Definition 2.1 (Aggregation function): An aggregation
function f takes a multiset1 of elements from a set I
and produces an output from a set O:

f : NI → O

The input being a multiset emphasizes that: 1) the
order in which the elements are aggregated is irrelevant;
2) a given value may occur several times. Frequently, for
common aggregation functions such as MIN, MAX, and
SUM, both I and O are the same set. For others, such as
COUNT (which gives the cardinality of the multiset), the
result is an integer, regardless of the input set domain.

An aggregation function aims to summarize infor-
mation. Therefore, the result of an aggregation (in the
output set O) typically takes much less space than
the multiset to be aggregated (an element from NI ).
We will leave unspecified what is acceptable for some
function to be considered as summarizing information,
and therefore, an aggregation function. It can be said
that an element of the output set O is not normally
a multiset (we do not have normally O = NI ) and
that the identity function is clearly not an aggregation
function as it definitely does not summarize information.
In most practical cases, the size of the output is at most
a logarithm of the input size, and often even of constant
size.

2.1 Decomposable functions
For some aggregation functions we may need to per-
form a single computation involving all elements in
the multiset. For many cases, however, one needs to
avoid such centralized computation. In order to perform
distributed in-network aggregation, it is relevant whether
the aggregation function can be decomposed into several
computations involving sub-multisets of the multiset to
be aggregated. For distributed aggregation it is useful,
therefore, to define the notion of decomposable aggrega-
tion function, and a subset of these, which we call self-
decomposable aggregation functions.

Definition 2.2 (Self-decomposable aggregation function):
An aggregation function f : NI → O is said to be
self-decomposable if, for some (merge) operator � and
all non-empty multisets X and Y :

f(X ] Y ) = f(X) � f(Y )

In the above, ] denotes the standard multiset sum (see,
e.g.,[12]). According to the above definition, and given
that the aggregation result is the same for all possible
partitions of a multiset into sub-multisets, it means that
the operator � is commutative and associative. Many
traditional functions such as MIN, MAX, SUM and COUNT
are self-decomposable:

SUM ({x}) = x,

SUM(X ] Y ) = SUM(X) + SUM(Y ).

1. A generalization of set, in which elements are allowed to appear
more than once.
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COUNT({x}) = 1,

COUNT(X ] Y ) = COUNT(X) + COUNT(Y ).

MIN({x}) = x,

MIN(X ] Y ) = min(MIN(X),MIN(Y )).

Definition 2.3 (Decomposable aggregation function):
An aggregation function f : NI → O is said to be
decomposable if for some function g and a self-
decomposable aggregation function h, it can be
expressed as:

f = g ◦ h

From this definition, the self-decomposable functions
are a subset of the decomposable functions, where g =
ID, the identity function. While for self-decomposable
functions the intermediate results (e.g., for in-network
aggregation) are computed in the output set O, for a
general decomposable function, we may need a different
auxiliary set to hold the intermediate results.

The classic example of a decomposable (but not self-
decomposable) function, is AVERAGE, which gives the
average of the elements in the multiset:

AVERAGE(X) = g(h(X)), with
h({x}) = (x, 1),

h(X ] Y ) = h(X) + h(Y ),

g((s, c)) = s/c.

in which h is a self-decomposable aggregation function
that outputs values of an auxiliary set, in this case
pairs, and + is the standard pointwise sum of pairs
(i.e., (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)). Another
example is the RANGE function in statistics, which gives
the difference between the maximum and the minimum
value.

2.2 Duplicate sensitiveness and idempotence
Depending on the aggregation function, it may be rele-
vant whether a given value occurs several times in the
multiset. For some aggregation functions, such as MIN
and MAX, the presence of duplicate values in the multiset
does not influence the result, which only depends on its
support set (the set obtained by removing all duplicates
from the original multiset). E.g.,

MIN({1, 3, 1, 2, 4, 5, 4, 5}) = MIN({1, 3, 2, 4, 5}) = 1

For others, such as SUM and COUNT, the number of
times each element occurs (its multiplicity) is relevant:

COUNT({1, 3, 1, 2, 4, 5, 4, 5}) = 8

6=
COUNT({1, 3, 2, 4, 5}) = 5

Therefore, duplicate sensitiveness is important and
must be taken into account for distributed aggregation,
in order to compute the correct result.

TABLE 1
Taxonomy of aggregation functions

Decomposable Non-decomposable

Self-decomposable

Duplicate
MIN, MAX RANGE DISTINCT COUNT

insensitive
Duplicate

SUM, COUNT AVERAGE MEDIAN, MODE
sensitive

Definition 2.4 (Duplicate insensitive aggregation function):
An aggregation function f is said to be duplicate
insensitive if for all multisets M , f(M) = f(S), where S
is the support set of M .

Moreover, some duplicate insensitive functions (like
MIN and MAX) can be implemented using an idempo-
tent binary operator that can be successively applied
(by intermediate nodes) on the elements of the multi-
set (any number of times without affecting the result).
This helps in obtaining fault tolerance and decentralized
processing, allowing retransmissions or sending values
across multiple paths (without affecting the aggregation
result). Unfortunately, the distributed application of an
idempotent operator is not always possible, even for
some duplicate insensitive aggregation functions, such
as DISTINCT COUNT (i.e., cardinality of the support set).
In practice, the application of an idempotent operator in
a distributed way to compute an aggregation function
appears to be only possible if the function is duplicate
insensitive and self-decomposable.

2.3 Taxonomy of common aggregation functions
Building on the concepts of decomposability and du-
plicate sensitiveness, we can obtain a taxonomy of ag-
gregation functions (Table 1). It contains the standard
aggregation functions, under the usual statistical defini-
tion. In addition to those already mentioned, it contains
MEDIAN (the value separating the higher half from the
lower half, after ordering the values), and MODE (the
value that appears most often).

This table helps to clarify how suited an aggrega-
tion function is to a distributed computation. Non-
decomposable aggregation functions are harder to com-
pute than decomposable ones, being vulgarly labeled
in the literature as “complex”. Commonly, duplicate
insensitive aggregation functions are easier to compute
than duplicate sensitive. As we will see in the next
section, one way to obtain fault-tolerance (at the cost of
some accuracy) is to use duplicate insensitive approaches
to estimate some aggregation function (e.g., sketches,
see section 4.3), replacing the use of non-idempotent
operations (like SUM) by idempotent ones (like MAX).

This simple classification of common aggregation
functions is orthogonal to the taxonomies provided in
the next two sections about the distributed algorithms
that can be used to compute them.
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3 COMMUNICATION TAXONOMY

Three major classes of aggregation algorithms are iden-
tified from the communication perspective, according
to the characteristics of their communication/routing
strategy and network topology (see Table 2): structured
(usually, hierarchy-based), unstructured (usually, gossip-
based), and hybrid (mixing the previous categories).

The structured communication class refers to aggrega-
tion algorithms that are dependent from a specific net-
work topology and routing scheme to operate correctly.
If the required routing topology is not available, then
an additional preprocessing phase is needed in order to
create it, before starting the execution of the algorithm.
This dependency limits the use of these techniques in
dynamic environments. For instance, in mobile networks
these algorithms need to be able to continuously adapt
their routing structure to follow network changes. Typi-
cally, these algorithms are directly affected by problems
tied to the used routing structure. For example, in tree-
based communication structures a single point of failure
(node/link) can compromise the delivery of data from
all its subtrees, and consequently impair the applications
supported by that structure. In practice, due to their
energy efficiency, hierarchical communication structures
(e.g., tree routing topology) are the most often used to
perform data aggregation, especially in WSN. Alterna-
tive routing topologies are also considered, like the ring
topology, although very few approaches rely on it.

The unstructured communication category covers ag-
gregation algorithms that can operate independently
from the network organization and structure, with-
out establishing any predefined topology. In terms
of communication, this kind of algorithms is essen-
tially characterized by the used communication pat-
tern: flooding/broadcast, random walk and gossip. The flood-
ing/broadcast communication pattern is associated with
the dissemination of data from one node to all the
network nodes or to a group of nodes – “one to all”.
A random walk consists in sequential message transmis-
sions, from one node to another – “one to one”. The
gossip communication pattern refers to a well-known
communication protocol, based on the spreading of a
rumor [13] (or an epidemic disease), in which messages
are sent successively from one node to a selected number
of peers – “one to many”. In the recent years, several
aggregation algorithms based on gossip communication
have been proposed, leveraging properties of simplicity,
scalability and robustness. More details about these dif-
ferent communication patterns (see Table 2), applied to
data aggregation, will be further described.

The hybrid class groups algorithms that mix the use
of different routing strategies from the previous cate-
gories, with the objective of combining good properties
and overcoming weakness, while deriving equivalent or
improved aggregations (more details in Section 3.6).

TABLE 2
Taxonomy from a communication perspective

Routing Algorithms

Structured

Hierarchy
(tree, cluster,
multipath)

TAG [14], DAG [15],
I-LEAG [16],
Sketches [17],
RIA-LC/DC [18], [19],
Tributary-Delta [20],
Q-Digest [21]

Ring
(Horowitz and
Malkhi, 2003) [22]

Unstructured

Flooding/Broadcast Randomized Reports [23]

Random walk

Random Tour [24],
(Dolev et al., 2002) [25], [26],
Sample & Collide [27], [24],
Capture-Recapture [28]

Gossip

Push-Sum Protocol [29],
Push-Pull Gossiping [30],
DRG [31],
Flow Updating [32], [33],
Extrema Propagation [34]
Equi-Depth[35],
Adam2 [36],
Hop-Sampling [37], [38],
Interval Density [37], [38]

Hybrid Hierarchy + Gossip (Chitnis et al., 2008) [39]

3.1 Hierarchy-based approaches
Traditionally, existing aggregation algorithms operate on
a hierarchy-based communication scheme. Hierarchy-
based approaches are often used to perform data ag-
gregations, especially in WSN. This routing strategy
consists in the definition of a hierarchical communication
structure (e.g., spanning tree), rooted at a single point,
commonly designated as sink. In general, in a hierarchy-
based approach the data is simply disseminated from
level to level, upwards in the hierarchy, in response to
a query request made by the sink, which computes the
final result. Besides the sink, other special nodes can be
defined to compute intermediate aggregates, working as
aggregation points that forward their results to upper
level nodes until the sink is reached.

Aggregation algorithms based on hierarchic commu-
nication usually work in two phases, involving the
participation of all nodes in each one: request phase
and response phase. The request phase corresponds to
the spreading of an aggregation request throughout the
whole network. Several considerations must be taken
into account before starting this phase, depending on
which node wants to perform the request and on the
existing routing topology. For instance: if the routing
structure has not been established yet, it must be created
and ought to be rooted at the requesting node; if the
required topology is already established, first the node



5

must forward its request to the root, in order to be
spread (from the sink) across all the network. During
the response phase, all the nodes answer the aggregation
query by sending the requested data toward the sink.
In this phase, nodes can be asked to simply forward
the received data or to compute partial intermediate
aggregates to be sent.

The aggregation structure of hierarchy-based ap-
proaches provides a simple strategy that enables the
exact computation of aggregates (if no node or commu-
nication failures happen), in an efficient manner in terms
of energy consumption (i.e., message load). However,
in adverse environments this type of approach exhibits
some fragility in terms of robustness, since a single point
of failure can jeopardize the obtained result. Further-
more, to correctly operate in dynamic environments,
where the network continuously changes, with nodes
joining and leaving, extra procedures are required to
maintain an updated routing structure.

3.1.1 TAG
The Tiny AGgregation service for ad-hoc sensor net-
works described by Madden et al. [14] represents a
classical tree-based in-network aggregation approach. As
referred by the authors, TAG is agnostic to the imple-
mentation of the tree-based routing protocol, as far as
it satisfies two important requirements. First, it must be
able to deliver query requests to all the network nodes.
Second, it must provide at least one route from every
node (that participates in the aggregation process) to
the sink, guaranteeing that no duplicates are generated
(at most one copy of every message must arrive). This
algorithm requires the previous creation of a tree-based
routing topology, and also the continuous maintenance
of such routing structure in order to operate over mobile
networks.

TAG allows the computation of basic database aggre-
gation functions, such as COUNT, MAXIMUM, MINIMUM,
SUM and AVERAGE (providing a declarative SQL-like
query language with grouping capabilities). The algo-
rithm performs a classic hierarchy-based aggregation
process which consists of two phases: a distribution phase
(in which the aggregation query is propagated along the
tree routing topology, from the root to the leaves) and
a collection phase (where the values are aggregated from
the children to the parents, until the root is reached).
The derivation of the aggregation result at the root
incurs a minimal time overhead that is proportional to
the tree depth. This waiting time is needed to ensure
the conclusion of the two execution phases and the
participation of all nodes in the aggregation process.

Figure 1 show an example of the execution of TAG
to compute the AVERAGE. In the particular case of the
AVERAGE the sum and count need to be aggregated at
all intermediate nodes in order to compute the global
average at the sink2. In this example, it is considered

2. Recall that AVERAGE is a decomposable aggregation function, but
not self-decomposable (see Section 2.1).
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Fig. 1. Execution example of TAG to compute the AVER-
AGE function.

that a tree routing topology rooted at node i is already
available. Then, at time t = 1 node i initiate the distribu-
tion phase by sending an average request to its children
(nodes j and k) which at their turn will also propagate
the query to all their children. At time t = 3, upon the
reception of the average query, the leaves initiate the
collection phase, reporting to their parents the value of
their local reading for the sum and the value 1 for the
count, in a pair (sum, count). E.g., node l sends (1, 1) and
node m sends (2, 1) to node j. Then, the intermediate
nodes j and k aggregate the values received from their
children with their own and send the result to their
own parent. E.g., node j aggregates the received values
(1, 1) and (2, 1) with its own (3, 1) and sends the result
(6, 3) = (1+2+3, 1+1+1) to i. Finally, the sink aggregate
the values received from all its children with its own
(6 + 5 + 1, 3 + 2 + 1) = (12, 6) and computes the global
average result 12/6 = 2.

A pipelined aggregate technique (detailed in [40]) has
been proposed to minimize the effect of the waiting
time overhead. According to this technique, smaller time
intervals (relatively to the overall needed time) are used
to repetitively produce periodic (partial) aggregation
results. In each time interval, all nodes that have received
the aggregation request will transmit a partial result.
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The sent value is calculated from the application of the
aggregation function to the local reading and the results
received from children in the previous interval. Over
time, after each successive time interval, the aggregated
value will result from the participation of a growing
number of nodes, increasing the reliability and accuracy
of the result, becoming close to the correct value at each
step. The correct aggregation result should be reached
after a minimum number of iterations (in an ideal fail-
safe environment).

Following the authors concerns about power con-
sumption, additional optimization techniques were pro-
posed to the TAG basic approach, in order to reduce
the number of messages sent, taking advantage of the
shared communication medium in wireless networks
(which enables message snooping and broadcast) and
giving decision power to nodes. They proposed a tech-
nique called hypothesis testing, to use in certain classes of
aggregates, where each node can decide to transmit the
value resulting from its subtree, only if it will contribute
to the final result.

3.1.2 DAG
An aggregation scheme for WSN based on the creation
of a Directed Acyclic Graph (DAG) is proposed in [15],
with the objective of reducing the effect of message loss
in common tree-based approaches, by allowing nodes to
use alternative parents. The DAG is created by setting
multiple parents (within radio range) to each node, as
its next hop toward the sink.

In more detail, request messages are extended with
a list of parent nodes (IDs), enabling children to learn
the grandparents that are two hops away. In order
to avoid duplicated aggregates, only a grandparent is
chosen to aggregate intermediate values, preferably a
common grandparent of its parents. The most common
grandparent among the lists received from parents is
chosen as the destination aggregator. Otherwise, one
of the grandparents is chosen (e.g., when a node has
only one parent node). Response messages are handled
according to specific rules to avoid duplicate processing:
they can be aggregated, forwarded or discarded. Mes-
sages are aggregated if the receiving node corresponds to
the destination, forwarded if the destination is a node’s
parent, and otherwise discarded (destination is not the
node or one of its parents). Note that, although the same
message can be duplicated and multiple “copies” can
reach the same node (a grandparent), they will have
the same destination node and only one from the same
source will be considered for aggregation after receiving
all messages from children.

This method takes advantage of the path redundancy
introduced by the use of multiple parents to improve
the robustness of the aggregation scheme (tolerance to
message loss), when compared to traditional tree-based
techniques. Though a better accuracy can be achieved, it
comes at the cost of higher energy consumption, as more
messages, and with an increased size, are transmitted.

Note that, this approach does not fully overcome the
message loss problem of tree routing topologies, as some
nodes may have a single parent, being dependent from
the quality of the created DAG.

3.1.3 Sketches
An alternative multi-path based approach is proposed
in [17] to perform in-network aggregation for sensor
databases, using small sketches. The defined scheme
is able to deal with duplicated data upon multi-path
routing and compute duplicate-sensitive aggregates, like
COUNT, SUM and AVERAGE. This algorithm is based on
the probabilistic counting sketches technique introduced
by Flajolet and Martin [41] (FM), used to estimate the
number of distinct elements in a data collection. A
generalization of this technique is proposed to be ap-
plied to duplicate-sensitive aggregation functions (non-
idempotent), namely the SUM. Sketches apply a stochas-
tic transformation to these functions, allowing duplicate
insensitive aggregation over a transformed data repre-
sentation, at the cost of less accuracy.

The authors consider the use of multi-path routing to
support communication failures (links and nodes), pro-
viding several possible paths to reach a destination. Like
common tree-based approaches, the algorithm consists
of two phases: first, the sink propagates the aggregation
request across the whole network; second, the local
values are collected and aggregated along a multi-path
tree from the children to the root. In this particular
case, during the request propagation phase, all nodes
compute their distance (level) to the root and store the
level of their neighbors, establishing a hierarchical multi-
path routing topology (similar to the creation of multiple
routing trees). In the second phase, partial aggregates
are computed across the routing structure, using the
adapted counting sketch scheme, and sent to the upper
levels in successive rounds. Each round corresponds to
a hierarchy level, in which the received sketches from
child nodes are combined with the local one, until the
sink is reached. In the last round, the sink merges the
sketches of its neighbors and produces the final result,
applying an estimation function over the sketch.

Notice that, the use of an auxiliary structure to sum-
marize all data values (FM sketches), and corresponding
estimator will introduce an approximation error that will
be reflected in the final result. However, according to
this aggregation scheme, it is expected that data loss
(mitigated with the introduction of multiple alternative
paths) will have a higher impact in the result accuracy
than the approximation error introduced by the use of
sketches.

3.1.4 I-LEAG
This cluster-based aggregation approach, designated
as Instance-Local Efficient Aggregation on Graphs (I-
LEAG) [16], requires the pre-construction of a different
routing structure – Local Partition Hierarchy, which can be
viewed as a logical tree of local routing partitions. The
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routing structure is composed by a hierarchy of clus-
ters (partitions), with upper level partitions comprising
lower level ones. A single pivot is assigned to each parti-
tion, and the root of the tree corresponds to the pivot of
the highest level cluster (that includes all the network
graph). This algorithm emphasizes local computation
to perform aggregation, executed in sequential phases.
Each phase is associated to a level of the hierarchy, where
the algorithm is executed in parallel by all partitions of
the corresponding level (from lower to upper levels).

Basically, the algorithm proceeds as follow: each parti-
tion checks for local conflicts (different aggregation out-
puts between neighbors); detected conflicts are reported
to pivots, which compute the new aggregated value and
multicast the result to the partition; additionally, every
node forwards the received result to all neighbors that
do not belong to the partition; received values are used
to update the local aggregation value (if received from
a node in the current partition) or to update neighbor
aggregation output (if received from a neighbor of the
upper level partition), enabling the local detection of
further conflicts. Conflicts are only detected between
neighbors that belong to a different partition in the
previous phase, with different aggregation outputs from
those partitions. A timer is needed to ensure that all
messages sent during some phase reach their destination
by the end of the same phase.

Furthermore, two extensions of the algorithm were
proposed to continuously compute aggregates over a
fixed network where node inputs may change over time:
MultI-LEAG and DynI-LEAG [42]. MultI-LEAG mainly
corresponds to consecutive executions of I-LEAG, im-
proved to avoid sending messages when no input
changes are detected. Inputs are sampled at regular time
intervals and the result of the current sampling inter-
val is produced before the next one starts. DynI-LEAG
concurrently executes several instances of MultI-LEAG,
pipelining its phases (ensuring that every partition level
only execute a single MultI-LEAG phase at a time), and
more frequently sampling inputs to faster tracking of
changes, at the cost of a higher message complexity.
Despite the authors’ effort to efficiently perform aggre-
gation, these algorithms are restricted to static networks,
with fixed size, without considering the occurrence of
faults.

3.1.5 Tributary-Delta
This approach mixes the use of tree and multi-path
routing schemes to perform data aggregation, combining
the advantages of both towards provide a better accuracy
in the presence of communication failures [20]. Two dif-
ferent routing regions are defined: tributary (tree routing,
in analogy to the shape formed by rivers flowing into a
main stream) and delta (multi-path routing, in analogy
to the landform of a river flowing into the sea). The
idea is to use tributaries in regions with low message
loss rates to take advantage of the energy-efficiency and
accuracy of a traditional tree-based aggregation scheme,

and use deltas in zones where message loss has a higher
rate and impact (e.g., close to the sink where messages
carry values corresponding to several nodes readings) to
benefit from the multi-path redundancy of sketch based
schemes.

Two adaptation strategies (TD-Coarse and TD) are
proposed to shrink or expand the delta region, according
to the network conditions and a minimum percentage of
contributing nodes predefined by the user. Prior knowl-
edge of the network size is required, and the number
of contributing nodes needs to be counted, in order to
estimate the current participation percentage. Conver-
sion functions are also required to convert partial results
from the tributary into valid inputs to be used in the
delta region, by the multi-path algorithm. Experimental
results applying TAG [14] in tributaries and Synopses
Diffusion [43] (see Section 4.3) in deltas showed that this
hybrid approach performs better when compared to both
aggregation algorithms when used separately.

3.1.6 Other approaches
Several other hierarchy-based aggregation approaches
can be found in the literature, most of them differing
on the supporting routing structure, or on the way it
is built. Beside alternative variations of the hierarchic
routing topology, some optimization techniques to the
aggregation process can also be found, especially to
reduce the energy-consumption in WSN.

In [44] an aggregation scheme over Distributed Hash
Tables (DHT) is proposed. This approach is character-
ized by its tree construction protocol, which uses a
parental function to map a unique parent to each node,
building an aggregation tree in a bottom-up fashion,
unlike traditional approaches. The authors consider the
coexistence of multiple trees to increase the robustness
of the algorithm against faults, as well as the continuous
execution of a tree maintenance protocol to handle the
dynamic arrival and departure of nodes. Two operation
modes are proposed to perform data aggregation (and
data broadcast): default and on-demand mode. In the
default mode, the algorithm is executed in background,
taking advantage of messages exchanged by the tree
maintenance protocol and appending some additional
information to these messages. The on-demand mode
corresponds to the traditional aggregation scheme found
on tree-based algorithms.

Zhao et al. [45] proposed an approach to continuously
compute aggregates in WSN, for monitoring purposes.
They assume that the network continuously computes
several aggregates, from which at least one corresponds
to the min/max – computed using a simple diffusion
scheme. A tree is implicitly constructed during the dif-
fusion process, with the node with the min/max value
set as root, and is used for the computation of other
aggregates (e.g., average and count). In practice, two
different schemes are used: a digest diffusion algorithm
to compute idempotent aggregates which is used to
construct an aggregation tree, and a tree digest scheme
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similar to common hierarchy-based approaches that op-
erates over the tree routing structure created by the
previous technique.

Alternative hierarchic routing structures are found in
the literature to support aggregation, namely: a Breadth
First Search (BFS) tree is used in the Generic Aggregation
Protocol (GAP) [46] protocol to continuously compute
aggregates for network management purposes; the cre-
ation of a Group-Independent Spanning Tree (GIST)
based on the geographic distribution of sensors is de-
scribed in [47], taking into consideration the variation
of the group of sensors that may answer an aggregation
query. A previous group-aware optimization technique
has been proposed: Group-Aware Network Configu-
ration (GaNC) [48]. GaNC influences the routing tree
construction by enabling nodes to preferably set parents
from the same group (analyzing the GROUP BY clause
of the received aggregation queries) and according to
a maximum communication range, in order to decrease
message size and consequently reduce energy consump-
tion.

Some algorithms [49], [50], [51] based on swarm intel-
ligence techniques, more precisely ant colony optimiza-
tion, can also be found in the literature to construct opti-
mal aggregation trees, once more to improve the energy
efficiency of WSN. Ant colony optimization algorithms
are inspired in the foraging behavior of ants, leaving
pheromone trails that enable others to find the shortest
path to food. In this kind of approach, the aggrega-
tion structure is iteratively constructed by artificial ant
agents, consisting in the paths (from different sources to
the sink) with the higher pheromone values, and where
network nodes that belong to more than one path act as
aggregation points.

Some studies [52], [53] have shown that deciding
which node should act as a data aggregator or forwarder
has an important impact on the energy-consumption
and lifetime of WSN. A routing algorithm, designated
Adaptive Fusion Steiner Tree (AFST), that adaptively
decides which nodes should fuse (aggregate) data or
simply forward it is described in [52]. AFST evaluates
the cost of data fusion and transmission, during the
construction of the routing structure in order to mini-
mize energy consumption of data gathering. A further
extension to this scheme was proposed to handle node
arrival/departure, Online AFST [54], with the objective
of minimizing the cost and impact of dynamism in the
routing structure. In Low-Energy Adaptive Clustering
Hierarchy (LEACH) [53], [55], a cluster-based routing
protocol for data gathering in WSN, the random rota-
tion of cluster-heads over time is proposed in order to
distribute the energy consumption burden of collecting
and fusing cluster’s data.

Filtering strategies can also be applied to reduce
energy consumption in aggregation. For instance, A-
GAP [56] is an extension of GAP (previously referred)
that uses filters to provide a controllable accuracy in the
protocol. Local filters are added at each node in order

to control whether or not an update is sent. Updates
are discard according to a predefined accuracy objective,
resulting in a reduction in terms of communication
overhead (number of messages). Filters can dynamically
adjust along the execution of the protocol, allowing the
control of the trade-off between accuracy and overhead.
Another similar approach to reduce message transmis-
sions, under an allowable error value, is proposed in
[57] and uses adaptively adjusting filters according to
a Potential Gains Adjustment (PGA) strategy. A frame-
work called Temporal coherency-aware in-Network Ag-
gregation (TiNA) that filters reported sensor readings
according to their temporal coherency was proposed in
[48]. This framework operates on the top of existing
in-aggregation schemes (e.g., TAG). In particular, TiNA
defines an additional TOLERANCE clause to allow users
to specify the desired temporal coherency tolerance of
each aggregation query, and filter the reported sensor
data (i.e., readings within the range of the specified value
are suppressed).

3.2 Ring based approaches

Very few aggregation approaches are supported by a
ring communication structure. This particular type of
routing topology is typically out-competed by hierar-
chical approaches. For instance, the effect of failures
in a ring can be worst than on hierarchical topologies,
as a single point of failure can break the whole com-
munication chain. Furthermore, the time complexity of
rings when propagating data across the network is typi-
cally much higher, leading to slower data dissemination
speed. However, this kind of topology can be explored
in alternative ways that can in some sense circumvent
the aforementioned limitations.

It is worth referring to an alternative approach de-
scribed by Horowitz and Malkhi [22], based on the
creation of a virtual ring to obtain an estimation of the
network size (i.e., COUNT) at each node. This technique
relies solely on the departure and arrival of nodes to esti-
mate the network size, without requiring any additional
communication. Each node of the network holds a single
successor link, forming a virtual ring. It is assumed that
each node possesses an accurate estimator. Upon the
arrival of a new node, a random successor among the
existing nodes, named contact point, is assigned to it.
During the joining process, the new node gets the contact
point estimator and increments it (by one). At the end
of the joining process, the two nodes (joining node and
contact point) will yield the new count estimate. Upon the
detection of a departure, the inverse process is executed.
This method provides a disperse estimate over the whole
network, with an expected accuracy that ranges from
n/2 to n2, where n represent the correct network size.
In the rest of this paper, we will always denote n as
the network size, unless explicitly indicated otherwise.
Despite the achieved low accuracy and considerable
result dispersion, this algorithm has a substantially low
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communication cost (i.e., communicates only upon ar-
rival/departure, without any further information dis-
semination; each joining node communicates only with
two nodes).

3.3 Flooding/Broadcast based approaches
Flooding/Broadcast based approaches promote the par-
ticipation of all network nodes in the data aggregation
process. The information is propagated from a single
node (usually a special one) to the whole network,
sending messages to all neighbors – “one to all”. This
communication pattern normally induces a high net-
work load, during the aggregation process, implying in
some cases a certain degree of centralization of data
exchanges. Tree-based approaches are traditional usage
examples of this communication pattern, but in this
case it is supported by a hierarchical routing topology.
Additional examples, which are not sustained by any
specific structured routing topology are described below.

3.3.1 Randomized Reports
A naive algorithm to perform aggregation consists in
broadcasting a request to the whole network (indepen-
dently from the existing routing topology), collecting the
values from all nodes and computing the result at the
starting node. This likely leads to network congestion
and an expected overload of the source node, due to
feedback implosion. However, a predefined response prob-
ability could be used to mitigate this drawback, such that
network nodes only decide to respond according to the
defined probability. Such probabilistic polling method was
proposed in [23] to estimate the network size. The source
node broadcasts a query request with a sampling prob-
ability p, that is used by all remaining nodes to decide
whether to reply or not. All the received responses are
counted by the querying node (during a predefined time
interval), knowing that it will receive a total number of
replies r according to the given probability. At the end,
the network size n̂ can be estimated at the source by
n̂ = r/p.

3.3.2 Other Approaches
A similar approach based on the same principle (sam-
pling probability) is proposed in [58], to approximate
the size of a single-hop radio network, considering the
occurrence of collisions. In each step, a transmission
succeeds if exactly a single station chooses to send a
message. Setting a probability p to decide if to send
a message at each node, the expression np(1 − p)n−1

gives the probability ps of a step being successful. The
previous expression is maximized for p = 1/n where
ps ≈ 1/e. It is expected that approximately t/e steps
will be successful, if the experiment is repeated inde-
pendently t times. Based on the previous probabilistic
observation, the algorithm counts the number of suc-
cessful steps along successive phases, to estimate the
network size. Different probability values (decreasing)

and number of trials (increasing) are used along each
consecutive phase, until the number of successful steps is
close to the expected value. Further improvements to this
algorithm have been proposed in [59], aiming at making
it immune against adversary attacks.

3.4 Random Walk based approaches
Random walk based approaches are usually associated
with a data sampling process towards estimating an
aggregation value, involving only a partial amount of
network nodes. Basically, this communication process
consists in the random circulation of a token. A message
is sequentially sent from one node to another randomly
selected neighbor – “one to one”, until a predefined
stopping criteria is met (e.g., maximum number of hops,
reach a selected node or return to the initial one). per-
forming a random walk across the network. Usually, a
small amount of messages are exchanged in this kind
of approach, since only a portion of the network is
involved in the aggregation process. Due to the par-
tial participation of the network, algorithms using this
communication pattern normally rely on probabilistic
methods to produce an approximation of the target ag-
gregation function. Probabilistic methods provide result
estimates with a known, bounded, error. If the execu-
tion conditions and the considered parameters of the
algorithm are stable, the estimation error is expected to
be maintained (with constant bounds) over time. This
kind of aggregation algorithms will always depict an
estimation error and do not tightly converge to the
correct aggregate value.

3.4.1 Random Tour
The random tour approach [24] is based on the execution
of a random walk to estimate a sum of functions of the
network nodes, Φ =

∑
i∈N φ(i), for a generic function

φ(i) where i denotes a node and N the set of nodes
(e.g., to estimate the network size, count: φ(i) = 1,
for all i ∈ N ). The estimate is computed from the
accumulation of local statistics into an initial message,
all of which are gathered during a random walk, starting
at an initiator node and proceeding until the message
returns to it. The initiator node i initializes a counter X
with the value φ(i)/di (where di denotes the degree of
node i, i.e. number of adjacent nodes). Upon message
reception, each node j increments the message counter
X by φ(j)/dj (i.e., X ← X + φ(j)/dj). In each iteration,
the message tagged with the counter is updated and
forwarded to a neighbor, chosen uniformly at random,
until it returns to the initial node. When the originator
receives back the message originally sent in the random
walk, it computes the estimate Φ̂ (of the sum Φ) by
Φ̂ = diX .

3.4.2 Other approaches
Other approaches based on random walks can be found
in the literature, but they are commonly tailored for



10

specific settings and to the computation of specific ag-
gregation functions, like COUNT (to estimate the network
or group size).

For instance, to accelerate self-stabilization in a group
communication system for ad-hoc networks, a scheme
to estimate the group size based on random walks is
proposed in [26] (first published in [25]). In this specific
case, a mobile agent (called scouter) performs a random
walk and collects information about live nodes to es-
timate the system size. The agent carries the set of all
visited nodes and a counter associated with each one
of them. Whenever the agent moves to a node, all the
counters are incremented by one except for the one of
the current node, which is set to zero. Large counter
values are associated with nodes that have been less
recently visited by the scouter, becoming more likely
to be suspected of nonexistence. Counters are bounded
by the scouter’s maximum number of moves, which is
set according to the expected cover time and a safety
function, before considering a corresponding node as not
connected. In particular, nodes are sorted in increasing
order of their counter value, and they are removed from
the scouter if the gap between successive nodes (kth and
k−1th) is greater than the number of moves required to
explore k connected elements in a random walk fashion.
After having the scouter perform a large enough number
of moves, the number of nodes in the system can be
estimated by simply counting the number of elements
kept in the set of visited nodes.

Other relevant approaches are based on the execu-
tion of random walks to collect samples, like Sample
& Collide [27], [24] and Capture-Recapture [28], they are
described in Section 4.5.

3.5 Gossip-based approaches

Commonly, gossip and epidemic communication are
indistinctly referred. However, in a relatively recent re-
view of gossiping in distributed systems [60] a slight
distinction between the two is made. In a nutshell, the
difference simply relies on the interaction directionality
of both protocols. The authors state that gossiping is
referred to “the probabilistic exchange of information
between two members”, and epidemic is referred to
“information dissemination where a node randomly
chooses another member”. Even so, the effect of both
protocols in terms of information spread is much alike,
and strongly related to epidemics. For this reason, in this
work no distinction will be made between gossip and
epidemic protocols.

Gossip communication protocols are strongly related
to epidemics, where an initial node (“infected”) sends a
message to a (random) subset of its neighbors (“to be
contaminated”), which repeat this propagation process
– “one to many”. With the right parameters, almost the
whole network will end up participating in this prop-
agation scheme. This communication pattern exhibits
interesting characteristics despite its simplicity, allowing

a robust (fault tolerant) and scalable information dissem-
ination all over the network, in a completely decentral-
ized fashion. Nevertheless, it is important to outline that
the robustness of gossip protocols may not be directly
attained by any algorithm based on a simple application
of this communication pattern. For instance, the algo-
rithm correctness may rely on principles and invariants
that may not be guaranteed by a straightforward and
incautious use of a gossip communication protocol, as
revealed in [61]. In general, gossip communication tends
to be as efficient as flooding, in terms of speed and
coverage, nonetheless it imposes a lower network traffic
load. In the context of aggregation, another difference
between gossip and flooding is that gossip is usually ap-
plied on a continuous basis, while flooding is issued one
time to request an aggregation result. We consider that
algorithms using nearest neighbor/local communication
(where each node communicates with all of its local
neighbors) are included in the gossip-based category.

3.5.1 Push-Sum Protocol
The push-sum protocol [29] is a simple gossip-based
protocol to compute aggregation functions, such as SUM
or AVERAGE, consisting in an iterative pairwise distribu-
tion of values throughout the whole network. In more
detail, along discrete times t, each node i maintains and
propagates information on a pair of values (sti, wti):
where sti represents the sum of the exchanged values,
and wti denotes the weight associated with this sum at
the given time t and node i.

In order to compute different aggregation functions,
it is enough to assign appropriate initial values to these
variables. E.g., considering vi as the initial input value at
node i, AVERAGE: s0i = vi and w0i = 1 for all nodes; SUM:
s0i = vi for all nodes, only one node starts with w0i = 1
and the remaining nodes assume w0i = 0; COUNT: s0i =
1 for all nodes, only one with w0i = 1 and the others
with w0i = 0.

In each iteration, a neighbor is chosen uniformly at
random, and half of the actual values are sent to the
target node and the other half to the node itself. Upon
receive, the local values are updated, adding each re-
ceived value from a pair to its current correspondent (i.e.,
pointwise sum of pairs). The estimate of the aggregation
function can be computed by all nodes, and is given at
each time t by sti/wti.

Figure 2 illustrates the execution of this algorithm at
nodes i and j to compute the AVERAGE function. Initially
(t = 0), the initial input values are vi = 1 and vj = 3,
the sum of exchanged values are s0i = vi = 1 and s0j =
vj = 3, and the weights are set to one at all nodes w0i =
w0j = 1. In this particular execution, it is considered
that node i randomly chooses node j and j picks another
arbitrary node. Then, half of the nodes current values, i.e.
(s0i/2, w0i/2) and (s0j/2, w0j/2), are sent to the chosen
target and themselves. Upon reception of the messages,
the state at each node is updated with the sum of the
received values, respectively s1i = 0.5 and w1i = 0.5 for
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Fig. 2. Execution example of the Push-Sum Protocol.

node i, and s1j = 0.5+1.5 = 2 and w1j = 0.5+0.5 = 1 for
node j. At the end of the depicted example, the estimate
of the AVERAGE will be 1 (0.5/0.5) for node i and 2 (2/1)
for j.

The accuracy of the produced result will tend to
increase progressively along each iteration, converging
to the correct value. As referred by the authors, the
correctness of this algorithm relies on a fundamental
property designated as mass conservation, stating that: the
global sum of all network values (local value of each
node plus the value in messages in transit) must remain
constant over time. Considering the crucial importance
of this property, the authors assume the existence of a
fault detection mechanism that allows nodes to detect
when a message did not reach its destination. In this situ-
ation, the “mass” is restored by sending the undelivered
message to the node itself. This algorithm is further gen-
eralized by the authors in the same work – push-synopses
protocol, in order to combine it with random sampling
to compute more “complex” aggregation functions (e.g.,
quantiles) in a distributed way.

3.5.2 Other approaches
In the last years, several gossip-based approaches have
been proposed, due to the appealing characteristics of
gossip communication: simplicity, scalability and robust-
ness. Several alternative algorithms inspired by the push-
sum protocol have been proposed, like: Push-Pull Gossip-
ing [62], [30] which provides an anti-entropy aggregation
technique (see section 4.2), or Gossip-based Generic Ag-
gregation Protocol (G-GAP) [63] that extended the push-
synopses protocol to tolerate non contiguous faults (i.e.,
only support faults if neighbors do not fail within the
same short time period).

Another aggregation algorithm supported by an in-
formation dissemination and group membership man-
agement protocol, called newscast protocol, is proposed
in [64]. This approach consists in the dissemination of
a cache of items (with a predefined size) maintained by
each network node. Periodically, each node randomly se-
lects a peer, considering the network addresses of nodes
available on the local cache entries. The cache entries
are exchanged between the two nodes and the received
information is merged into their local cache. The merge
operation discards the oldest items, keeping a predefined
number of the freshest ones, also ensuring that there

is at most one item from each node in the cache. An
estimate of the desired aggregate can be produced by
each network node, by applying the correct aggregation
function to the local cache of items.

3.6 Hybrid approaches
Hybrid approaches combine the use of different commu-
nication techniques to obtain improved results from their
synergy. Commonly, the use of a hierarchic topology
is mixed with gossip communication. Hierarchic based
schemes are efficient and accurate, but highly affected by
the occurrence of faults. On the other hand, gossip based
algorithms are more resilient to faults, but less efficient in
terms of overhead (requiring more message exchanges).
In general, this combination enables hybrid approaches
to achieve a fair trade-off between performance (in terms
of overhead and accuracy) and robustness, when per-
forming aggregation in more realistic environments.

3.6.1 (Chitnis et al., 2008)
Chitnis et al. [39] studied the problem of computing
aggregates in large-scale sensor networks in the presence
of faults, and analyzed the behavior of hierarchy-based
(i.e., TAG) and gossip-based (i.e., Push-Sum Protocol)
aggregation protocols. In particular, they observe that
tree-based aggregation is very efficient for very small
failures probabilities, but its performance drops rapidly
with increasing failure rates. On the other hand, a gossip
protocol is slightly slowed down (almost unaffected),
and is better to use with failures (compared to tree-
based). Considering these results, the authors proposed
an hybrid protocol with the intent of leveraging the
strengths of both analyzed mechanisms and minimizing
their weakness, in order to achieve a better performance
in faulty large-scale sensor networks.

This hybrid approach divides the network nodes in
groups, and a gossip-based aggregation is performed
within each group. A leader is elected for each group,
and an aggregation tree is constructed among leader
nodes (multi-hop routing may be required between lead-
ers) to perform a tree-based aggregation with the results
from each gossip group. The authors also defined and
solved an optimization problem to get the best combina-
tion between the two aggregation mechanisms, yielding
the optimal size of the groups according to the network
size and failure probability. However, in practice it re-
quires the pre-computation of the gossip group size (by
solving the referred optimization problem) before start-
ing to use of the protocol with optimal settings. Results
from simulations showed that the hybrid aggregation
approach usually outperforms the other two (tree-based
and gossip-based) 3.

An extension of the previous approach for heteroge-
neous sensor networks is later discussed in [65]. In this
case, it is considered that a few distinguished nodes,

3. Notice that only static network settings (no nodes arriving or
leaving) were considered by the authors.
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designated as microservers, which are more reliable and
less prone to failure than the remaining ones, are avail-
able in the network. The aggregation technique works
mostly like the one previously described for the homoge-
neous case, but with two differences that take advantage
of the reliability of microservers. First, microservers are
preferably chosen as group leaders. Second, microservers
are put on the top of the created aggregation tree that
may also be composed by other less reliable motes4. The
use of microservers in the aggregation tree increases its
robustness, and by putting them at the top reduces the
need the reconstruct the whole tree when a fault occurs.
The obtained evaluation results show that the aggrega-
tion process can be enhanced in heterogeneous networks,
when taking advantage of more reliable (although more
expensive) nodes.

3.6.2 Other Approaches
A more elaborated hybrid structure was previously de-
fined by Astrolabe [66]. Astrolabe is a DNS-like dis-
tributed management system that supports attribute ag-
gregation. It defines a hierarchy of zones (similar to
the DNS domain hierarchy), each one holding a list of
attributes called Management Information Base (MIB).
This structure can be viewed as a tree, each level com-
posed by non-overlapping zones, where leaf zones are
single hosts, each one running an Astrolabe agent, and
the root zone includes the whole network. Each zone
is uniquely identified by a name hierarchy (similarly
to DNS), assigning to each zone a unique string name
within the parent zone; the global unique name of
each zone is obtained by concatenating the name of
all its parent zones from the root with a predefined
separator. The zone hierarchy is implicitly defined by
the name administratively set to each agent. A gossip
protocol is executed between a set of elected agents
to maintain the existing zones. The MIB held by each
zone is computed by a set of aggregation functions that
produce a summary of the attributes from the child
zones. An aggregation function is defined by a SQL-
like program that have is code embedded in the MIB,
being set as a special attribute. Agents keep a local copy
of a subset of all MIBs, in particular of zones in the
path to the root and siblings, providing replication of the
aggregated information with weak consistency (eventual
consistency). A gossip protocol is used for agents to
exchange data about MIBs from other (sibling) zones and
within its zone, and update its state with the most recent
data.

Another hierarchical gossiping algorithm was intro-
duced by Gupta et al. [67], being one of the first to use
gossip for the distributed computation of aggregation
functions. According to the authors, the philosophy of
this approach is similar to Astrolabe, but uses a more
generic technique to construct the hierarchy, called Grid
Box Hierarchy. The hierarchy is created by assigning

4. Alternative designation of a wireless sensor node [14].

(random or topology aware) unique addresses to all
members, generated from a known hash function. The
most significant digits of the address are used to divide
nodes into different groups (grid boxes) and define the
hierarchy. Each level of the hierarchy corresponds to a set
of grid boxes, matching a different number of significant
digits. The aggregation process is carried out from the
bottom to the top of the hierarchy in consecutive gossip
phases (for each level of the hierarchy). In each phase:
members of the same grid box gossip their data, compute
the resulting aggregate after a predefined number of
rounds, and then move to the next phase. The protocol
terminates when nodes find themselves at the grid box
at the top of the hierarchy (last phase). Note that, this
approach does not rely on any leader election scheme to
set group aggregators, in fact the authors argue for the
inadequacy of such mechanism in unreliable networks
prone to message loss and node crashes.

Recently, an approach that combines a hierarchy-based
technique with random sampling was proposed in [68]
to approximate aggregation functions in large WSN.
This approach regulates the amount of collected data by
a sampling probability, aiming at reducing the energy
consumption to compute the aggregate. The sampling
probability is calculated from the input accuracy ex-
pressed by two parameters ε and δ, i.e. relative error
less than ε with probability greater than 1 − δ, and the
aggregation function, i.e. COUNT, SUM or AVERAGE. This
algorithm considers that the sensing nodes are orga-
nized in clusters, according to their geographic location,
and that cluster heads form a spanning tree rooted at
the sink. Basically, the aggregation proceeds as follow-
ing: first, the sink computes the sampling probability
p (according to ε and δ) and transmits it along with
the aggregation function to all cluster heads across the
spanning tree; then, cluster heads broadcast p to their
cluster and each node within it independently decides
to respond according to the received probability; sam-
ples are collect at each cluster head which computes a
partial result; finally, the partial results are aggregated
upward the tree (convergecast) until the sink is reached,
and where the final approximate result is computed.
This algorithm, referred by the authors as Bernoulli
Sampling on Clusters (BSC), mixes the application of a
common hierarchy based aggregation techniques such
as TAG (see Section 3.1) between cluster heads, with a
flooding/broadcast method like Randomized Reports (see
Section 3.3) to sample the values at each cluster.

4 COMPUTATION TAXONOMY
In terms of the computational principles in which the
existing aggregation algorithms are based on, the fol-
lowing main categories (see Table 4) were identified:
Hierarchical, Averaging, Sketches (hash or min-k based),
Digests, Deterministic, and Randomized. These categories
intrinsically support the computation of different kind
of aggregation functions, as depicted in Table 3. For in-
stance, Hierarchical approaches allow the computation of
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TABLE 3
Functions computed by aggregation technique

Decomposable Non Decomposable

DS DI DS DI

Hierarchical x x

Averaging x

Sketches x x

Digests x x x x

Deterministic COUNT

Randomized COUNT

DS: Duplicate Sensitive; DI: Duplicate Insensitive;

any decomposable function. Averaging techniques allow
the computation of all duplicate sensitive decomposable
functions that can be derived from the AVERAGE, by us-
ing specific initial input values and combining the results
from different instances of the algorithms. Sketches tech-
niques also allow the computation of duplicate sensitive
decomposable functions that can be derived from the
SUM function5.

Moreover, schemes based on hash sketches are na-
tively able to compute distinct counts (non decompos-
able duplicate insensitive), and those based on min-k
can be easily adapted to compute it (e.g., in extrema
propagation, see 4.3, using the input value as seed of a
pseudo-random generation function, so that duplicate
values will generate the same number). Digests support
the computation of any kind of aggregation function, as
this type of approach usually allows the estimation of
the whole data distribution (i.e., values and frequencies)
from which any function can be obtained. On the other
hand, some techniques are restricted to the computation
a single type of aggregation function, such as COUNT,
which is the case of the Deterministic, and Randomized
approaches.

Besides determining the supported aggregation func-
tion, the computational technique on which an aggre-
gation algorithm is based constitutes a key element
when defining its behavior and performance, especially
in terms of accuracy and reliability. Hierarchical ap-
proaches are accurate and efficient in terms of message
and computational complexity, but not fault tolerant.
Averaging schemes are more reliable and also relatively
accurate (converge over time), although less efficient,
requiring more message exchanges. Approaches based
on the use of sketches are more reliable than hierarchical
schemes, adding some redundancy and providing fast
multi-path data propagation, however they introduce
an approximation error, depending on the number of
inputs and size of the used sketch. Digests essentially
consist in the reduction (compression) of all inputs into a

5. Note that, COUNT is the sum of all elements considering their
input value as equal to 1.

TABLE 4
Taxonomy from the computation perspective

Aggregation Basis/Principles Algorithms

Decomposable
Functions

Hierarchic

TAG [14], DAG [15],
I-LEAG [16],
Tributary-Delta [20],
(Chitnis et al., 2008) [39]

Averaging

Push-Sum Protocol [29],
Push-Pull Gossiping [30],
DRG [31],
Flow Updating [32], [33],
(Chitnis et al., 2008) [39]

Sketches

Sketches [17],
RIA-LC/DC [18], [19],
Extrema Propagation [34],
Tributary-Delta [20]

Complex
Functions

Digests
Q-Digest [21],
Equi-Depth[35],
Adam2 [36]

Counting

Deterministic (Dolev et al., 2002) [25], [26]

Randomized

Sa
m

pl
in

g

Random Tour [24],
Randomized Reports [23],
Sample & Collide [27], [24],
Capture-Recapture [28],
Hop-Sampling [37], [38],
Interval Density [37], [38],
(Kutylowski et al., 2002) [58]

Es
tim

at
or

(Horowitz and
Malkhi, 2003) [22]

fixed size data structure, using probabilistic methods and
losing some information. Consequently, digests provide
an approximation of the computed aggregation function,
not the exact result. Randomized schemes are also based
on probabilistic methods to compute the COUNT, mostly
by sampling and thus being inaccurate and lightweight
in terms of message complexity, as only a portion of
the network is asked to participate. On the other hand,
deterministic counting methods require gathering data
from the entire network, which can incur in scalability
issues.

In the following sections, the main principles and
characteristics of these distinct classes are explained in a
comprehensive way, and some important examples are
described. A taxonomy of the identified computational
principles is displayed in Table 4, associating them to the
most relevant distributed aggregation algorithms.

4.1 Hierarchical
Hierarchical approaches take direct advantage of the
decomposable property of some aggregation functions.
Inputs are divided into separate groups and the compu-
tation is distributed and hierarchical. Algorithms from
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this class depend on the initial creation of a hierarchic
communication structure (e.g., tree, cluster hierarchy),
where nodes can act as forwarders or aggregators. For-
warders simply transmit the received inputs to an upper
level node. Aggregators apply the target aggregation
function to all received input (and its own), and forward
the result to an upper level node. The correct result is
yield at the top of the hierarchy, being the aggregation
process carried out from the bottom to the top.

Algorithms from this class allow the computation of
any decomposable function, providing the exact result
(at a single node) if no faults occur. The global processing
and memory resources required are equivalent to the
ones used in a direct and centralized application of the
aggregation function, but distributed across the network.
However, these algorithms are not fault tolerant, e.g. a
single point of failure may lead to the loss of all data
beneath it.

Most of the algorithms from this category correspond
to the ones belonging to the hierarchical communication
class, like TAG [14], DAG [15], and I-LEAG [16]. Other
algorithms can be found combining a hierarchical com-
putation with another computation principle, namely:
Tributary-Delta [20] mix a common hierarchical compu-
tation, with the use sketches in regions close to the sink;
(Chitnis et al., 2008) [39] performs hierarchic aggregation
on the top of groups, and averaging is applied inside
each one. See sections 3.1 and 3.6 for more details about
the aforementioned algorithms.

4.2 Averaging

The Averaging class essentially consists in the iterative
computation of partial aggregates (averages), continu-
ously averaging and exchanging data among all active
nodes that will contribute to the calculation of the fi-
nal result. This kind of approach tends to be able to
reach a high accuracy, with all nodes converging to the
correct result along the execution of the algorithm. A
typical application of this method can be found in most
gossip-based approaches (section 3.5), where all nodes
continuously distribute a share of their value (averaged
from received values) with some random neighbor, con-
verging over time to the global network average, the
correct aggregation result. Algorithms from this category
are more reliable than hierarchic approaches, working
independently from the supporting network topology
and producing the result at all nodes. However, they
must respect an important principle, commonly desig-
nated as “mass conservation” in order to converge to
the correct result. This invariant states that the sum of
the aggregated values of all network nodes must remain
constant over time [29].

Algorithms based on this technique are able to com-
pute decomposable and duplicate-sensitive functions,
which can be derived from the average operation; using
different input initializations (e.g., COUNT), or combining
functions executed concurrently (e.g., SUM, obtained by

multiplying the results from an average and a count). In
terms of computational complexity, this method usually
involves the computation of simple arithmetic opera-
tions (i.e., addition and division), using few compu-
tational resources (processor and memory) and thus
depicting a fast execution at each node. This kind of
algorithm is able to produce (almost) exact results, de-
pending on their execution time. The minimum execu-
tion time required by these algorithms, in number of
iterations, to achieve a high accuracy, is influenced by the
network characteristics (i.e., size, degree of the network
graph, and topology) and the communication pattern
used to spread the partial averages. The robustness of
these types of aggregation algorithms is strongly related
with their ability to conserve the global “mass” of the
system. The loss of a partial aggregate (“mass”) due to
a node failure or a message loss introduces an error,
resulting in the subtraction of the lost value to the initial
global “mass” (leading to the non-contribution of the
lost amount to the calculation of the final result, and
therefore to the convergence to an incorrect value). In
this kind of methodology, it is important to enforce the
uphold of the “mass” conservation principle, assuming
itself as a main invariant to ensure the algorithms cor-
rectness.

This class of algorithms is also known as Distributed
Average Consensus in the area of Control Theory [69], [70],
[71], [72], where the studied algorithms mainly operate
like the Push-Sum Protocol (see Section 3.5) and Push-
Pull Gossiping. This field provides interesting theoretical
results on the performance of averaging techniques (e.g.,
optimized weights and convergence rates), but com-
monly consider impractical assumptions (e.g., assuming
instantaneous update of the topology information held
at each node).

4.2.1 Push-Pull Gossiping
The push-pull gossiping [62] algorithm performs an av-
eraging process, and it is gossip-based like the push-sum
protocol [29] (previously described in section 3.5). The
main difference in this scheme relies on the execution of
an anti-entropy aggregation process. The concept of anti-
entropy in epidemic algorithms is related to the regular
random selection of another node and the performance
of a mutual synchronization of information, exchanging
complete databases [73]. In particular, this algorithm
executes an epidemic protocol to perform a pairwise
exchange of aggregated values between neighbor nodes.
Periodically, each node randomly chooses a neighbor to
send its current value, and waits for the response with
the value of the neighbor. Then, it averages the sent
and received value, and calculates the new estimated
value. Each time a node receives a value from a neighbor,
it sends back its current one and computes the new
estimate (average), using the received and sent values
as parameters.

Figure 3 illustrates the push-pull process performed
by the algorithm. In this particular example, two nodes
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Fig. 3. Execution example of Push-Pull Gossiping.

are considered i and j, respectively with an initial value
vi = 1 and vj = 1. Then, it is assumed that node i
randomly chooses j to execute the push-pull process,
and it sends him a push message with its current value
1. Upon reception of the push message, j responds to
i with a pull message with its current value 3 and it
immediately updates its estimate with the average of the
received and sent value, i.e. vj = (1 + 3)/2 = 2. Upon
reception of the pull message, node i will also update its
estimate by averaging the received and current values,
i.e. vi = (3 + 1)/2 = 2.

In order to be adaptive and handle network changes
(nodes joining/leaving), the authors consider the exten-
sion of the algorithm with a restart mechanism (execut-
ing the protocol during a predefined number of cycles,
depending on the desired accuracy, and then restarting
a new cycle with fresh initial values). However, they do
not address the “mass” conservation problem – impact
of message losses or node failures.

A further study of this aggregation algorithm is dis-
cussed in [30], proposing a more mature solution that
covers some practical issues: splitting the algorithm
execution in two distinct threads; use of timeouts to
detect possible faults, ignoring data exchanges in those
situations; suggesting different versions of the algorithm
according to the aggregation function to compute; sug-
gesting the execution of several parallel instances of the
algorithm to increase its robustness.

4.2.2 DRG (Distributed Random Grouping)
This approach [31] essentially consists in the continuous
random creation of groups across the network, in which
aggregates are successively computed (averaged). DRG
was designed to take advantage of the broadcast nature
of wireless transmission, where all nodes within radio
range will be prone to hear a transmission. Thus, this
approach is specific for WSN. The algorithm defines
three different working modes for each node: leader,
member, and idle mode. According to the defined modes
and the performed state transitions, the execution of
the algorithm can be separated in three main steps.
First, each node in idle mode independently decides
to become a group leader (according to a predefined
probability), and consequently broadcast a Group Call
Message (GCM) to all its neighbors, subsequently wait-
ing for members to reply. Second, all nodes in idle mode

∑= 12t = 0

3

1

2 2

4

∑= 12t = 1

3

1

2 2

4

GCM

GCM

GCM
GCM

∑= 12t = 2

3

1

2 2

4

∑= 12t = 3

2

2

2 2

4

JACK(3)

JACK(1)

JACK(2) GAM(2)

GAM(2)

GAM(2)

GAM(2)

i

j

i

i i

j

j j

k k

k k

l l

l l

m m

m m

Fig. 4. Execution example of Distributed Random Group-
ing.

which received a GCM from a leader respond to the
first one with a Joining Acknowledgment (JACK) tagged
with their aggregate value, becoming members of that
group (updating their state mode accordingly). In the
third step, after gathering the group members’ values
from received JACKs, the leader computes (averages)
the group aggregate and broadcasts a Group Assignment
Message (GAM) with the result, returning to idle mode.
Each group member waits until it receives the resulting
group aggregate from the leader to update its local value
(with the one assigned in the GAM) and returns to idle
mode, not responding to any other request until then.

Figure 4 illustrates the execution of the algorithm to
compute the AVERAGE. In this particular example, node
i decides to become leader and sends a GCM to all its
neighbors. In the considered scenario, only nodes j, k
and l receive the message and reply to i with a JACK
message with their respective current value vj = 1, vk =
2 and vl = 3. After receiving JACK messages from its
neighbors, the leader i computes the group average from
the received values and its current value vi = 2, i.e. a =
(1 + 2 + 3 + 2)/4 = 2. Then, the leader updates its value
with the resulting average and sends a GAM with the
result to its neighbors so that the group members can
also update their value with the new average.

The repeated execution of this scheme – creation of
distributed random groups to perform in-group aggre-
gation – allows the eventual convergence of the estimate
produced at all nodes to the correct aggregation result, as
long as the groups overlap over time. The performance
of DRG is influenced by the predefined probability of a
node becoming a leader, which determines its capacity
to create groups (quantity and size of groups). Note
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that, in order to account for the occurrence of faults
and avoid consequent deadlock situations that could
arise in this algorithm, it is necessary to consider the
definition of some timeouts (for the leaders to wait for
JACKs, and the members to wait for a GAM). Intuitively,
one will notice that the values set for those timeouts
will highly influence the performance of the algorithm,
although this detail is not addressed by the authors.
An analysis of DRG on WSN with randomly chang-
ing graphs (modeling network dynamism) is provided
in [74], assuming that the graph only changes at the
beginning of each iteration of the algorithm. Unrealistic
assumption in practice, and a potential source of mass
loss.

4.2.3 Flow Updating
Flow Updating [32] is a recent aggregation technique
that is inspired in the concept of network flow (from
graph theory). Unlike common averaging approaches,
that start with the initial input value and iteratively
change it by exchanging “mass” along the execution
of the algorithm, this approach keeps the initial input
unchanged, exchanging and updating flows associated
to neighbor nodes. The key idea is to explore the concept
of flow, and instead of storing the current average at
each node in a variable compute it from the input value
and the contribution of the flows along the edges to the
neighbors. In a sense, flows represent the value that must
be transferred between two adjacent nodes for them to
produce the same estimate, and are skew symmetric (i.e.,
the flow value from i to j is the opposite from j to i:
fij = −fji). For example: considering a network with
two directly connected nodes i and j with initial input
values vi = 1 and vj = 3, for them to produce the same
average a = 1+3

2 = 2, the flows at node i and j must
be respectively set to fij = vi − a = 1 − 2 = −1 and
fji = vj − a = 3− 2 = 1 = −fij .

In more detail, each node i stores a flow value fij
to each neighbor j, besides its input value vi which
is unchanged by the algorithm. Periodically, each node
computes a new estimate e′i by averaging the ones
received from neighbors ej with its own ei (obtained by
subtracting all flows to its input value). The flows fij to
each neighbor j are then locally updated in order to pro-
duce the new estimate result, adding the difference be-
tween the new estimate and the one previously received
to the respective flow value. Afterwards, the node sends
in a message the flows fij to each neighbor j, as well as
the new estimate. Upon reception of a message, node j
updates its flow fji with the symmetric value addressed
to him −fij , and keeps the received estimate to further
compute the next average. The iterative execution of this
process across the whole network allows the estimate of
all nodes to converge to the global average of the input
values.

This approach distinguishes itself from the existing
averaging algorithms by its fault-tolerant capabilities. It
solves the mass conservation problem observed on other

averaging approaches when subject to message loss, that
affect their correctness leading them to converge to a
wrong value. Other approaches require additional mech-
anism to detect and restore the lost mass, which is often
not feasible in practice. In contrast, Flow Updating is by
design able to support message loss, only delaying con-
vergence without affecting the convergence to the correct
value, without requiring any additional mechanism. This
is achieved by keeping the input values unchanged and
performing idempotent flow updates which guarantee
their skew symmetric properties. Moreover, it has been
shown that this approach is resilient to node crash
and able to support churn (without requiring protocol
restarts), self-adapting to network changes [33]. Recently,
a variation of this technique called Mass Distribution
with Flow Updating (MDFU) was proposed [75], that
provides a convergence proof and characterization of the
convergence time under stochastic message loss.

4.2.4 Other Approaches
A well-known averaging approach, the Push-Sum (push-
synopses) Protocol [29] has already been described in
Section 3.5. In the last years, other approaches inspired
in the Push-Sum Protocol have been proposed, intending
to be more efficient in terms of performance and robust-
ness. Kashyap et al.[76] reduced the number of messages
needed (communication overhead) to compute an aggre-
gation function at the cost of an increase in the number
of rounds. Gossip-based Generic Aggregation Protocol
(G-GAP) [63] extended the push-synopses protocol [29] to
support discontinuous failures (no adjacent node can fail
within a period of 2 rounds) by restoring the mass loss
resulting from failures (temporarily storing at each node
previous data contributions). Recently, LimoSense [77]
introduced effective strategies to avoid mass loss. How-
ever, the mechanism that balances mass growth can lead
to divisions by zero under some message sequences.

Dimakis et al. [78], [79] proposed an algorithm to
improve the convergence time in random geometric
networks. This scheme is similar to push-pull gossip-
ing [62], differing in the peer selection methods. Instead
of selecting a one-hop node as target of the averaging
step, peers are selected according to their geographical
location. In particular, a location is randomly chosen
and the node closer to that local is selected. A greedy
geographic routing process is used to reach the node
at the target location, assuming that nodes known their
own geographic location.

Two averaging algorithms for asynchronous and dy-
namic networks were proposed in [80]. The core of the
proposed schemes is based on a pairwise update, sim-
ilarly to the push-pull gossiping (although not referred
by the authors), addressing practical concerns that arise
in asynchronous settings. In the first proposed algorithm
nodes implement a blocking scheme to avoid the inter-
ference of other nodes in the update step and guarantee
mass conservation. Additionally, a deadlock avoidance
mechanism is considered, by imposing a sender-receiver
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relation on each link based on nodes Unique Identifiers
(UID). An extension to the first algorithm is proposed to
cope with churn. The blocking mechanism (maintaining
the directed relationship between nodes) is removed,
and an additional variable is used to account for changes
in each neighbor. When a node leaves the network, all
its neighbors subtract the value associated with it from
their state.

4.3 Sketches

The main principle in this kind of aggregation algorithm
is the use of an auxiliary data structure with a fixed
size, holding a sketch of all network values. The input
values of each node are used to create sketches that are
aggregated across the network, using specific operations
to update and merge them. Sketches are order and
duplicate insensitive, enabling them to be aggregated
through multiple paths, being independent from the
routing topology. This kind of technique is based on the
application of a probabilistic method, generally allowing
the estimation of the sum of the values held in the sketch.

Sketching techniques can be based on different meth-
ods, with different accuracy bounds and computational
complexities. Algorithms from this class are mostly
based on the application (with some improvements) of
two main ideas: hash sketches [41], [81], [82], [83] and k-
mins sketches [84].

Hash sketches allow the probabilistic counting of the
number of distinct elements in a multiset (cardinality of
the support set). This type of sketch essentially consists
in a map of bits, initially set to zero, where each item is
mapped into a position in the binary valued map (gen-
erally involving a uniform hashing function) setting that
bit to one. The distinct count is estimated by checking
the position of the most significant bit that is set to one
(leftmost), or counting the number of bits that are set to
zero in the sketch. The first hash sketching technique was
proposed by Flajolet and Martin [41], and is commonly
designated as FM sketches (uniformly hashes items into
an integer, and maps only the less significant bit 1 of its
bitmap representation to the sketch). In this first study,
the authors also proposed the Probabilistic Counting
with Stochastic Averaging (PCSA) algorithm to reduce
the variance of the produced estimate, using multiple
sketches and averaging their estimate (distributing the
hash of an element to only one of the sketches). Another
approach, Linear Counting [81] uses a hash function to
directly map each element into a position of the sketch
(setting that bit to 1), and use the count of the number of
zeros to produce an estimate. A further improvement to
PCSA, designated LogLog, was described in [82], reduc-
ing required memory resources (an optimized version
super-LogLog is also proposed, improving accuracy and
optimizing memory usage applying a truncation and
restriction rule). HyperLogLog [83] recently improved
LogLog, consuming less memory to achieve a matching
accuracy.

The k-mins sketches method was first introduced to
determine the size of the transitive closure in directed
graphs [84]. It consists of assigning k independent ran-
dom ranks to each item according to a distribution that
depends on its weight, and keeping in a vector of the
minimum ranks in the set. The obtained k-vector of the
minimum ranks is used by an estimator to produce an
approximate result. In other words, it can be said that
k-mins sketches reduce the estimation of the sum to the
determination of minimums of a collection of random
numbers (generated using the sum operands as input
parameter of the random distribution from which they
are drawn). An improved alternative to k-mins sketches,
designated bottom-k sketches, was recently proposed in
[85].

The computational cost of sketching is dependent
on the complexity of the operations involved in the
creation and update of the sketches (e.g., hash func-
tions, random number generation, minimum/maximum
determination), and the resources used by the estimator
to produce a result. Algorithms based on sketches are
not accurate, being based on probabilistic methods and
introducing an error factor in the computed aggregation
function. There is a trade-off between the accuracy and
the size of the sketches. The greater the sketch size the
tighter are the accuracy bounds of the produced esti-
mate, although requiring additional memory resources
and a larger processing time. These kind of aggregation
algorithms tend to be fast, although conditioned by the
dissemination protocol used to propagate the sketches,
being able to produce an approximate result after a
number of iterations close to the minimum theoretical
bound (the network diameter).

4.3.1 RIA-LC/DC
Fan and Chen [18] proposed a multi-path routing aggre-
gation approach for WSN based on the use of Linear
Counting (LC) sketches [81], which they later named
Robust In-network Aggregation using LC-sketches (RIA-
LC) [19]. The algorithm proceeds in two phases, similar
to those in multipath hierarchy-based approaches (see
Section 3.1). In the first phase, the aggregation request
(query) is spread from the sink throughout the whole
network, creating a multipath routing hierarchy. In the
second phase, starting at the lower level of the hierarchy,
nodes respond to the aggregation request by creating
a LC-sketch corresponding to its current local readings
and sending it to the nodes at the upper level. All
received sketches are combined with the local one (using
the OR operation), and the result is sent to the next level
until the top of the hierarchy is reached, where the sink
computes the aggregate estimate from the resulting LC-
sketch.

Equation 1 is used to estimate the number of distinct
items represented in a LC-sketch, where m is the size of
the allocated bit vector, and z is the count of the number
of bits with value equal to zero. In order to allow the
computation of the SUM, each node creates a sketch by
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mapping a number of distinct items corresponding to
its input value. For example, assuming that each node
has a unique ID, if the node i has an input equal to
3, it maps the items (IDi, 1), (IDi, 2), and (IDi, 3) into
the LC-sketch. In more detail, in this case the use of
a hash function from the original LC-sketch design (to
map duplicated items to the same bit) is replaced by a
uniform random generator (since there are no duplicate
items), randomly setting to 1 a number of bits equal to
the input value.

n̂ = −m ln (z/m) (1)

The authors show by theoretical comparison and ex-
perimental evaluation that their approach outperforms,
in terms of space and time requirements, approaches
based on FM sketches [41], namely Sketches [17] (see
3.1). They also claim a higher accuracy and lower
variance when compared with existing sketch schemes.
Moreover, they tackle some practical issues, like message
size constraints, avoiding the use of hash functions, and
enabling the specification of an approximation error.

Afterwards, the authors improved RIA-LC by consid-
ering the use of sketches with variable sizes instead of
fixed size sketches, referring to the new technique as
Robust In-network Aggregation using Dynamic Count-
ing sketches (RIA-DC) [19]. The authors observed that
the large preallocated sketches used in RIA-LC were
wasting space, since at the beginning of the computation
must of the bits are set to zero. In RIA-DC the initial
size of sketches is variable and depends on the local
sensor reading. Along the aggregation process the size
of the sketches is adjusted (gradually increasing toward
the sink), in order to satisfy a given accuracy constrain.
RIA-DC decreases message overhead and energy con-
sumption compared to RIA-LC, while keeping similar
accuracy properties.

Recently, another variant of the described schemes
was proposed by the same authors, referred as Scalable
Counting (SC) [86], that reduces the space requirements
(i.e., size of the transmitted sketches) to obtain the same
accuracy guarantees.

4.3.2 Extrema Propagation
This approach reduces the computation of an aggrega-
tion function, more precisely the sum of positive real
numbers, to the determination of the minimum (or
maximum) of a collection of random numbers [34], [87].
Initially, a vector xi of k random number is created
at each network node i. Random numbers are gener-
ated according to a known random distribution (e.g.,
Exponential or Gaussian), using the node initial value
vi as the input parameter for the random generation
function (e.g., as the rate of an exponential distribution).
Then, the execution of the aggregation algorithm simply
consists in the computation of the pointwise minimum
(or alternatively maximum) between all exchanged vec-
tors. This technique supports the use of any information

spreading algorithm as a subroutine to propagate the
vectors, since the calculation of minimums is order and
duplicate insensitive. In particular, the authors consider
that at each round all nodes send their resulting vector
to all their neighbors.

At each node, the obtained vector is used as a sample
to produce an approximation of the aggregation result,
applying a maximum likelihood estimator derived from
the extreme value theory (branch of statistics dealing
with the extreme deviation from the median of a prob-
abilistic distribution). For example, considering the gen-
eration at each node of k random numbers with an
exponential distribution of rate vi and the use of the
minimum function to aggregate the vectors. Equation 2
gives the estimator for the SUM of all vi from the sample
of minimums xi[1], ...xi[k] in the vector xi, with variance
SUM2/(k − 2):

ŜUM =
k − 1∑k
j=1 xi[j]

(2)

This algorithm is focused on obtaining a fast estimate,
rater than an accurate one. Although, the accuracy of
this aggregation algorithm can be improved by using
vectors of larger size, adjusting k to the desired relative
accuracy (e.g., k = 387 for a maximum relative error
of 10%). A further extension to the protocol to allow
the determination of the network diameter has been
proposed in [88]. In addition to the use of minimal or
maximal values, other estimators can also be designed
from the average or range of suitable distributions [89].

4.3.3 Other Approaches
A representative approach based on FM sketches has
already been described in section 3.1 – Sketches [17]. In
this multi-path approach, a generalization of PCSA is
used to distinguish the same aggregates received from
multiple paths, and subsequently manage to compute
duplicate-sensitive aggregation functions. Other similar
approaches, based on hash sketches, can be found in the
literature: like Synopsis Diffusion [43] and Wildfire [90].
These approaches apply essentially the same aggregation
process, operating in two phases (request/response) and
only differing on small details.

Synopsis Diffusion [43] is an aggregation approach for
WSN close to the one proposed by Sketches [17]. In a
sense, this work presents a more generic framework re-
lying on the use of duplicate insensitive summaries (i.e.,
hash sketches), which they called Order- and Duplicate-
Insensitive (ODI) synopses. They generically define the
synopses functions (i.e., generation, fusion and evalu-
ation) required to compute aggregation functions, and
provide examples of ODI synopses to compute more
“complex” aggregates (i.e., not decomposable aggrega-
tion functions). For instance, besides the scheme based
on FM sketches, they propose other data structures (and
respective functions) to uniformly sample sensor read-
ings and compute other samplings based aggregation
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functions. The authors also tackled additional practical
concerns. Namely, they explored the possibility to im-
plicitly acknowledge ODI synopses to infer messages
losses, and suggested simple heuristics to modify the
established routing topology (assigning nodes to another
hierarchic level), in order to reduce loss rate.

Wildfire [90] is based on the use of FM sketches to
estimate SUM, but it is targeted at dynamic networks.
Despite the fact of operating in two phases like previ-
ous hash sketch approaches, and unlike them, it does
not establish any specific routing structure to aggregate
sketches. After receiving the query, nodes start combin-
ing the received sketches with their current one, and then
send the result if it differs from the previous one.

A distributed implementation of some basic hash
sketches schemes has been proposed in [91], [92]. Dis-
tributed Hash Sketches (DHS) is supported by a DHT,
taking advantage of the load balancing properties, and
scalability of such structure. More specifically, the au-
thors describe how to build DHS based on PCSA [41]
and supper-LogLog [82].

Mosk-Aoyama and Shah [93], [94] proposed an algo-
rithm, called COMP, to compute the sum of values from
individual function (referred as separable functions).
This algorithm is very similar to Extrema Propagation
but less generic, as it is restricted to the properties of
exponential random variables distribution. Furthermore,
COMP uses a biased estimator, being less accurate for
small sketch sizes than Extrema Propagation that uses
unbiased ones.

4.4 Digests
This category includes algorithms that allow the com-
putation of more complex aggregation functions, like
quantiles (e.g., median) and frequency distributions (e.g.,
mode), in addition to common aggregation functions
(e.g., count, average and sum). Basically, algorithms from
this class produce a digest that summarizes the system
data distribution (e.g., histogram). The resulting digest
is then used to approximate the desired aggregation
functions. We refer to a digest as a data structure with a
bounded size, that holds an approximation of the statis-
tical distribution of input values in the whole network.
This data structure commonly corresponds to a set of
values or ranges with an associated counter.

Digests provide a fair approximation of the data dis-
tribution, not holding an exact representation of all the
system values for efficiency and scalability reasons. The
accuracy of the result yield from a digest depends on its
quality (i.e., used data representation) and size. Digests
allow the computation of a wider range of aggregation
functions, but usually require more resources and are
less accurate than the other more specialized approaches.

4.4.1 Q-Digest
An aggregation scheme that allows the approximation
of complex aggregation function in WSN is proposed

in [21]. This approach is based on the construction and
dissemination of q-digests (quantile digests) along a hier-
archical routing topology (without routing loops and du-
plicated messages). A q-digest consists of a set of buck-
ets, hierarchically organized, and their corresponding
count (frequency of the values contained by the bucket).
Buckets are defined by a range of values [a, b] and can
have different sizes, depending on the distribution of
values they represent. Each node maintains a q-digest
of the data available to it (from its children). Q-digests
are built in a bottom-up fashion, by merging received
digests from child nodes, and further compressing the
resulting q-digest according to a specific compression
factor (less frequent values are grouped in large buckets).
Aggregation functions are computed by manipulating
(e.g., sorting q-digest nodes) and traversing the q-digest
structure according to specific criteria that depends on
the function to be computed.

The authors provide an experimental evaluation,
where they showed that q-digest allows the approxi-
mation of quantile queries using fixed message sizes,
saving bandwidth and power when compared to a naive
scheme that collects all the data. The naive scheme
obtains an exact result, but with increasing message
size along the routing hierarchy. Obviously, there is a
trade-off between the obtained accuracy and the message
size used. The authors suggested a way to compute
the confidence factor associated with a q-digest (i.e., the
error associated to a query), but the effect of faults was
not considered in their study.

4.4.2 Equi-Depth

A gossip-based approach to estimate the network dis-
tribution of values is described in [35]. This scheme is
based on the execution of a gossip protocol and the
application of specific merge functions to the exchanged
data, to restrict storage and communication costs. In
more detail, each node keeps a list of k values (digest),
initially set with its input value. At each round, nodes get
the list of values from a randomly chosen neighbor and
merge it with its own, applying a specific procedure. The
results from the execution of several rounds produce an
approximation of the network distribution of values (i.e.,
histogram). Four merging techniques were considered
and analyzed by the authors: swap, concise counting, equi-
width histograms, and equi-depth histograms.

Swap simply consists in randomly picking k values
from the two lists (half from each one of them) and dis-
carding the rest. Although simple, by discarding half of
the available data in each merge important information
is likely to be lost.

Concise counting associates a tuple, value and count,
to each list entry. The merge process consists in sorting
the tuples (by value), and individually merging the
tuples with the closest values, in order to keep a fixed
list size. Tuples are merged by randomly choosing one
of the values and adding their counts.
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The equi-width technique breaks the range of possible
values into bins of equal size, associating a counter to
each one. Initially, nodes consider the range from 0 to the
current input value, as the extremes are not known. Bins
are dynamically resized when new extremes are found:
all bins are mapped into larger ones, based on their
middle value and the range of the new bin, adding their
counter to the new mapped bin. This technique requires
only the storage of the extreme values and counts, since
all bins have an equal width, reducing the volume
of data that needs to be stored and exchanged when
compared to other techniques (e.g., concise counting).
However, equi-width can provide very inaccurate results
for severely skewed distributions.

In equi-depth, bins are divided not to be of the same
width but to contain approximately the same count.
Initially, fixed size bins are set, each represented by a pair
〈value, counter〉, dividing the range from 0 to the input
value. Whenever data is exchanged, all pairs (received
and owned) are ordered, and consecutive bins that yield
the smallest combined bins (in terms of count) are
merged, repeating the process until the desired number
of bins is obtained. Bin merging consists in adding the
counters and using the arithmetic weighted mean as
value. This method intends to minimize the counting
disparity across bins.

In order to deal with changes of the nodes input values
over time, the authors consider the execution of the
protocol in phases, restarting it. The authors experimen-
tally evaluated their protocol comparing the previous
merging techniques. The obtained results showed that
equi-depth outperformed the other approaches, provid-
ing a consistent trade-off between accuracy and storage
requirements for all tested distributions. The authors also
evaluated the effect of duplicates, from the execution
of the gossip protocol. They argue from the obtained
results that although duplicates bias the estimated re-
sult, it is more advantageous (simpler and efficient) to
assume their presence than trying to remove them. The
occurrence of faults and change of the input values were
not evaluated.

4.4.3 Adam2
Adam2 is a gossip-based algorithm to estimate the sta-
tistical distribution of values across a decentralized sys-
tem [36]. More precisely, this scheme approximates the
Cumulative Distribution Functions (CDF) of an attribute,
which can then be used to derive other aggregates. In
this case, a “digest” is composed by a set Hi of k pairs
of values (xk, fk), where xk represents an interpolation
point and fk is the fraction of nodes with value less or
equal than xk. At a high abstraction level, it can be said
that the algorithm simply executes several instances of
an averaging protocol (i.e., Push-Pull Gossiping [30]) to
estimate the fraction of nodes in each pair of the CDF.

In more detail, each node can decide to start an
instance of Adam2 according to a predefined probability
1

n̂iR
, where n̂i is the current network size estimate at

node i and R is an input parameter that regulates the
aggregation instances frequency (i.e., on average one
every R rounds). Each instance is uniquely identified by
its starting node. Initially, the starting node i initializes
the interpolation set Hi in the following way: fractions
fk are set to 1 if the node attribute reading vi is less
or equal than the corresponding interpolation value xk,
otherwise it is set to 0. Nodes store a set of interpolation
points Hi for each running algorithm instance (initiated
by a node i). Upon learning about a new instance, a
node j initializes Hi setting fk = 1 if aj ≤ xk and
fk = 0 otherwise, and starts participating in the protocol.
A push-pull like aggregation is then performed, where
nodes randomly choose a neighbor to exchange their
set Hi, which are subsequently merged by averaging
the fractions at each interpolation point. Over time, the
fractions will eventually converge at each node to the
correct result associated to each pair. After a predefined
number of rounds (time-to-live), the CDF is approximated
by interpolating the points of the resulting set Hi.

Note that, Adam2 concurrently estimates (by averag-
ing) other aggregation functions besides CDF, namely
COUNT to determine the network size, and MIN/MAX to
find the extreme attribute values. The result from these
aggregation functions are later used as input values of
the next instances of the algorithm to tune and optimize
its execution (i.e., calculate the instance starting proba-
bility, and set new interpolation points).

Like in Push-Pull Gossiping [62], [30], Adam2 han-
dles dynamism (i.e., attribute changes and churn) by
continuously starting new instances of the algorithm –
restart mechanism. The authors evaluated the algorithm
by simulation, comparing it with previous techniques
to compute complex aggregates (e.g., Equi-Depth). The
obtained results showed than Adam2 outperforms the
compared approaches, exhibiting better accuracy.

4.4.4 Other Approaches
One of the first algorithms to compute complex aggre-
gation functions in WSN was introduced by Greenwald
and Khanna [95]. Their approach is similar to the one
previously described for Q-Digest: nodes compute quan-
tile summaries (digest) that are merged in a bottom-up
fashion along a tree topology, until the root is reached.

Another gossip-based scheme to estimate the distri-
bution of input readings, and able to detect outliers,
was introduced in [96], [97]. In a nutshell, this approach
operates like the push-sum protocol [29] (described in
Section 3.5), but manipulates a set of clusters (digests)
instead of a single value, applying a specific clustering
procedure.

Recently, a novel algorithm named Spectra [98] was
introduced to estimate the distribution function of a
value (more precisely its CDF). Basically, this approach
works similarly to Adam2 but replaces the Push-Pull
Gossiping [30], the technique at is core, by the Flow
Updating [33] scheme. Spectra provides an improved
performance and robustness when compared to Adam2,
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inheriting the characteristic of the flow updating mech-
anism, supporting high-levels of message loss and self-
adapting to network change (without requiring restarts).

In general, existing aggregation approaches can be ex-
tended to compute more complex aggregation functions,
for instance combining them with an additional sam-
pling technique. However, this additional functionality
is not part of the essence of their core algorithm, bearing
different characteristics (e.g., accuracy) and concerns.
Some examples can be found in [29] where push-sum is
extended with a push-random protocol to obtain random
samples, and in [99] which introduces algorithms to es-
timate several spatially-decaying aggregation functions.

4.5 Counting (Deterministic/Randomized)
This category refers to a restricted set of distributed
algorithms, designed to compute a specific aggregation
function: COUNT6. Recall that COUNT allows the deter-
mination of important properties in the design of some
distributed applications. For instance, in this context it
finds a common practical application in the determina-
tion of the size of the system (or group), or to count the
number of votes in an election process.

According to the computational principles, from
which all the approaches of this class are founded, two
sub-classes of counting algorithms have been identified:
deterministic and randomized. Deterministic algorithms cor-
respond to those that precisely count the number of
target elements. The randomized sub-class refers to algo-
rithms that rely on the use of some randomized principle
and probabilistic method to produce an estimate. This
type of algorithm is usually based on the execution
of some sampling technique to provide a probabilistic
approximation to the size of the sample population.
Nonetheless, a few algorithms are found that do not
collect samples for size estimation, applying instead
a probabilistic estimator over some observed events or
known system properties.

Algorithms based on sampling are strongly influenced
by the probabilistic method used to obtain the result,
inheriting its properties. The accuracy of the algorithm
corresponds to the one provided by the used prob-
abilistic method, being bounded by the error factor
associated with it. Several probabilistic methods have
been applied to samples to yield a counting estimation,
namely: birthday problem [100] – paradox that refers to the
probability of two elements sampled out of a population
not being repeated, inspired from the probability of two
people out of a group not having a matching birthday
(exemplifying results: from a random group of 23 people
the probability of two of them been born on the same
day of the year is about 50%, and is greater than 99%
for a group of 57 persons); capture-recapture [101] –
probabilistic method based on the repeated capture of

6. Although other classes of algorithms (e.g., averaging) can also be
used for COUNT, this category refers to approaches confined to the
computation of this aggregation function.

samples from a closed population (population that main-
tains a fixed size during the sampling process), where
the number of repeated elements between samples are
accounted to provide an estimate of the population size;
fundamental probabilistic methods – application of Bernoulli
based sampling methods [68], and other basic probabilis-
tic concepts on some sampled statistical information, like
the distances between nodes (number of hops) or the
number of messages successfully sent/received, in order
to estimate de size of the network.

In all cases, typically sampling is performed at a
single node, and it can take several rounds to collect
a single sample. Moreover, an estimation error is always
present, even if no faults occur. For example, in Sample
& Collide [27], [24] the estimation error can reach 20%,
and a sampling step takes d̄T (where d̄ is the average
connection degree and T is a predefined timer that must
be sufficiently large to provide a good sample quality),
needing to be repeated until l sample collisions are
observed.

As previously referred, in some cases a size esti-
mate can be obtained by directly applying an esti-
mator on some available system knowledge (observed
events or other known properties), without any previous
sampling. For instance, in the approach proposed by
Horowitz and Malkhi [22] (see section 3.2) an estimator
function is used at each node to estimate the network
size, based on the observation of two events (nodes join-
ing or leaving the network), incrementing/decrementing
the estimator. Other approaches like the one proposed in
[102], [103] provide a size estimate based on knowledge
of the routing structure, in this particular case counting
the number of high degree nodes. Note that, this kind
of techniques does not provide accurate result, in most
cases yielding a rough approximation to the correct
value.

4.5.1 Deterministic
Dolev et al. [25], [26] proposed a deterministic counting
approach to estimate the size of a group. This scheme is
based on the circulation of a token across the network,
where the information from visited nodes is stored at
each passage (updating their counters). The token per-
forms a random walk (see section 3.4) in order to count
the number of nodes. Notice that, a random walk can
be seen as a probabilistic sampling process, however in
this case the idea is to continuously reach all available
nodes (not sample a portion of them). Moreover, here,
the size is estimated by a simple deterministic count of
the number of valid elements stored in the token (not by
the application of a probabilistic estimator).

In the case of large network, the data that might
be stored in the token can correspond to a propor-
tionally large amount of information, which needs to
be transmitted from node to node, and consequently
may originate a performance bottleneck. A single visit
to all network nodes is required to produce an exact
estimation, however it is hard to determine if all nodes
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have been visited (since the network size is unknown).
Moreover, the loss of the token due to a single failure
will compromise the whole process, which depends on
its existence.

4.5.2 Sample & Collide
This approach [27], [24] addresses the problem of count-
ing the number of peers in a P2P overlay network,
inspired by a birthday problem technique (first proposed
by Bawa et al. on a technical report [23]). The application
of this probabilistic method requires the collection of
uniform random samples. To this end, the authors pro-
posed a peer sampling algorithm based on the execution
of a continuous time random walk, in order to obtain
unbiased samples (asymptotically uniform). The sam-
pling routine proceeds in the following way: an initiator
node i sets a timer with a predefined value T , which
is sent in a sampling message to a randomly selected
neighbor; upon receiving a sampling message, the target
node (or the initiator after setting the timer) picks a
random number U uniformly distributed within the
interval [0, 1], and decrements the timer by log (1/U)/di
(i.e., T ← T − log (1/U)/di, where di is the degree of
node i); if the resulting value is less or equal than zero
(T ≤ 0) then the node is sampled, its identification is
returned to the initiator and the process stops; otherwise
the sampling message is sent to one of its neighbors,
chosen uniformly at random. The quality of the obtained
samples (approximation to a uniform random sampling)
depends on the value T initially set to the timer.

The described sampling step (to sample one peer)
must be repeated until one of the nodes is repeatedly
sampled a predefined number of times l (i.e., l sample
collisions are observed). After concluding this sampling
process, the network size n is estimated using a Maxi-
mum Likelihood (ML) method. The ML estimate can be
computed by solving Equation 3, where Cl corresponds
to the total number of samples until one is repeated l
times, using a standard bisection search. Alternatively,
the result can be approximated within

√
n of the ML-

estimator by Equation 4 (asymptotically unbiased esti-
mator), which is computationally more efficient.

Cl−l−1∑
i=0

i

n− 1
− l = 0 (3)

n̂ = C2
l /2l (4)

The accuracy of the produced result is determined by
the parameter l, and its fidelity depends on the ability of
the sampling method at providing uniformly distributed
random samples (T must be sufficiently large).

4.5.3 Capture-Recapture
Mane et al. [28] proposed an approach based on the
capture-recapture statistical method to estimate the size
of closed P2P networks (i.e., networks of fixed size,
with no peers joining or leaving during the process).

This method requires two or more independent ran-
dom samples from the analyzed population, and further
counting of the number of repeated individuals that
appear in each sample. The authors use random walks to
obtain independent random samples. Considering a two-
sample strategy, two random walks are performed from
a source node, one in each sampling phase (capture and
recapture). In more detail, each random walk proceeds in
the following way: the source node sends a message to a
randomly selected neighbor, which at his turn forwards
the message to another randomly chosen neighbor; the
process is repeated until a predefined maximum number
of hops is reached (parameter: time-to-live) or the mes-
sage gets back to a node that has already participated
in the current random walk. During this process, the
information about the traversed path (i.e., the UIDs of all
participating nodes) is kept in the forwarded message.
When one of the random walks stopping criteria is met,
the message is sent back to the source node with the list
of the “captured” nodes, following the reverse traversed
path (stored in the message). The information received
at the source node from the sampling steps is used to
compute the estimate n̂ of the network size, applying
Equation 5 (where n1 is the number of nodes caught
in the first sample, n2 is the number of nodes caught
in the second sample, and n12 represent the number of
recaptured nodes, i.e. caught in both samples).

n̂ =
((n1 + 1)× (n2 + 1))

(n12 + 1)
(5)

4.5.4 Hop-Sampling
One of the approaches proposed by Kostoulas et al. [37],
[38] to estimate the size of dynamic groups is based on
sampling the receipt times (hop counts) of some nodes
from an initiator. Receipt times are obtained across the
group from a gossip propagation started by a single
node, the initiator, that will further sample the resulting
hop counts of some nodes to produce an estimate of
the group size. In more detail, the protocol proceeds as
following: the initiator starts the process by sending an
initiating message (to itself); upon receiving the initiating
message nodes start participating in the protocol, peri-
odically forwarding it to a number (gossipTo) of other
targets, until a predefined number of rounds (gossipFor)
is exceeded, or a maximum quantity of messages (gos-
sipUntil) have been received; gossip targets are chosen
uniformly at random from the available membership, ex-
cluding nodes in a locally maintained list (fromList) from
which a message has already been received; exchanged
messages carry the distance to the initiator node, which
is measured in number of hops; each node keeps the
received minimum number of hops (MyHopCount), and
sends the current value incremented by one.

After concluding the described gossip process, waiting
for a predefined number of rounds (gossipResult), the
initiator samples the number of hops (MyHopCount)
from some nodes that are selected uniformly at random.
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The average of the sampled hop counts is then used to
estimate the logarithm of the size of the group (log(n)).
In alternatively to the previous sampling process, where
nodes wait for the initiator sample request, nodes can
decide themselves to send their hop count value back to
the initiator node, according to a predefined probability
to allow only a reduced fraction of nodes to respond.

4.5.5 Interval Density
A second approach to estimate the size of a dynamic
group has been proposed in [37], [38]. This algorithm
measures the density of the process identifier space,
determining the number of unique identifiers within a
subinterval of this space. The initiator node passively
collects information about existing identifiers, snooping
the information of complementary protocols running on
the network. The node identifiers are randomized by
applying a hash function to each one, and mapped to a
point in the real interval [0, 1]. The initiator estimates the
group size by determining the number of sampled iden-
tifiers X lying in a subinterval I of [0, 1], returning X/I .
Notice that, this kind of approach assumes a uniformly
random distribution of the identifiers, or use strategies
to reduce the existing correlation between them, in order
to avoid biased estimations.

4.5.6 Other Approaches
Some counting approaches that are based on a central-
ized probabilistic polling to collect samples were pre-
viously described in this work (in section 3.3), namely:
randomized reports that illustrate the basic idea of proba-
bilistic polling, and another approach [58] that samples
the number of message successfully sent in a single-hop
wireless network (further improved in [59]).

Other probabilistic polling algorithms are also avail-
able in the specific context of multicast groups, to esti-
mate their membership size. For example, in [104] some
older mechanisms were analyzed and extended, and
in [105] an algorithm using an estimator based on the
Kalman filter theory was proposed to estimate the size
of dynamic multicast groups.

5 SUMMARY AND PRACTICAL GUIDELINES

Here, we summarize the properties of the main classes of
algorithms, stating their advantages and disadvantages
(see Table 5), and give some guidelines about their use
in specific settings.

Hierarchy-based approaches (see 3.1 and 4.1) require
a specific routing structure (e.g., a spanning tree) to
operate, and thus are limited by the ability of such
structure to cope with churn and link failures. How-
ever, this kind of approach is very cheap in terms of
exchanged messages, requiring only 2N − 1 messages7

to compute the correct average at the sink, i.e. two

7. This is for scenarios where radio broadcast is used to transmit
data, such as in WSN. Otherwise, approximately d̄(2N − 1) messages
are required, where d̄ is the average degree.

messages for each N nodes (except for the sink), one
to broadcast the aggregation request to its child nodes
and another to send the result to its parent. In terms of
time, the aggregation process takes 2h rounds (at most
2D, with D representing the network diameter), where
h is the height of the routing hierarchy, i.e. h rounds to
spread the aggregation request and another h rounds
to aggregate the results from child nodes to parents.
This kind of technique is commonly used in energy-
constrained environments (i.e., WSN), taking advantage
of the reduced messages exchanges. Therefore, we would
only recommend the application of such aggregation
schemes to fault free scenarios, which is often not the
case. This kind of approach can be significantly affected
by the occurrence of a single failure, losing all the subtree
data and greatly impacting the result produced at the
sink. For this reason, in scenarios where faults might
occur and without regarding energy efficiency, sketch
techniques should be preferred, at least providing some
path redundancy to reach the sink (at the cost of a k
factor increase in terms of messages, with k representing
the number of alternative routing paths).

Sketch based approaches (see 4.3) can be applied
independently from the underlying routing topology,
and thus their use is adequate in fault prone scenarios
where only a fair approximation of the aggregate is
required. This kind of technique is fast, the closest to
the theoretical minimum, requiring only D rounds for
all nodes to obtain the estimation result, and achieving
this at a total cost of d̄ND messages (i.e., each N nodes
send at most one message to each d neighbors at each
round)8. This kind of approach is adequate for faulty
scenarios, especially if one privileges obtaining a fast
estimate rather than a precise one. Nonetheless, if a
precise estimation is required in a faulty environment,
another type of aggregation approach should be chosen,
namely an averaging technique.

Averaging algorithms (see 3.5 and 4.2) work indepen-
dently from the routing topology, and have the particu-
larity of producing results that converge over time to the
correct value, being able to output results at all nodes
with high accuracies even in faulty environments. The
execution time of this kind of algorithms depends on
the target accuracy, converging exponentially with linear
rounds (at an approximately constant convergence factor
between each round), with all nodes sending from one
to d message at each round. This kind of approach is
slower and consequently requires more messages (al-
though smaller) than sketches, but can exhibit better
properties in terms of fault-tolerance, especially to cope
with churn. Nevertheless, one should be very careful
when choosing the appropriate averaging approach to
use, as in practice many exhibit dependability issues
(not converging to the correct value) and very few are
effectively able to operate on dynamic networks.

8. In the case of WSN, with radio broadcast the total message cost
is reduced to ND.
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TABLE 5
Summary of the characteristics of main data aggregation classes

Advantage Disadvantage Requirements

Hierarchical
- accurate (if no faults occur); - result at a single node; - specific routing structure
- optimal message load; - not fault-tolerant; (e.g., spanning tree);

- very fast;
- limited accuracy

(by the sketches size);

- local knowledge of neighbor IDs,
Sketches - result at all nodes; or global UIDs;

- fault-tolerant; - random number generator;

Averaging

- accurate (converge over time);

- fair message load; - local knowledge of neighbor IDs;
- result at all nodes;
- fault-tolerant;
- support network changes;

- reduced message load
(partial network participation);

- not accurate
Randomized - result at a single node; - global UIDs;

- not fault-tolerant

Digests
- computation of complex

aggregates;
- result at all nodes;

- limited accuracy
(by the digests size);

- resources needed
(e.g., larger messages);

- local knowledge of neighbor IDs;

Randomized (aka sampling) aggregation techniques
(see 3.4 and 4.5) do not seem to bring any advan-
tages when compared to the other kind of approaches.
This kind of approach provides an irregular approxima-
tion at a single node, not being accurate and usually
restricted to the computation of a single aggregation
function: COUNT. Furthermore, the random walk based
approaches are usually slow, taking several rounds to
obtain a sample, and are unreliable as the random walk
token might get lost in a faulty environment.

In terms of dynamism, few of the described ap-
proaches are tailored to operate on dynamic settings,
commonly relying on a restart mechanism (i.e., periodi-
cally resetting the computation) to handle network and
value changes. In fact, in such settings no algorithm is
able to provide an exact value of the aggregate at a
specific time instant, as changes can happen during the
computation (snapshot validity [90]). Hierarchy-based
approaches are completely dependent on a topology
maintenance and recovery scheme to work on dynamic
settings. The efficiency of such protocol will directly
influence the performance of the aggregation algorithm,
consuming additional resources to monitor the network
in order to detect changes. Moreover, the topology adap-
tation process (parent switching) can cause temporary
disconnections that can still significantly affect the aggre-
gation process. Approaches that operate independently
from the network topology, like sketches and averaging
schemes, remove the burden of such maintenance proto-
col to adapt to churn. Sketch based approaches are “fast”
but cannot be applied continuously without resetting the
computation, as in the case of nodes departure (even
when announced) it is not trivial (if not impossible) to re-
move items from such structures [?]. From the averaging

class, only the few that perform idempotent operations
between nodes are able to efficiently and continuously
(without restarts) work on dynamic settings, converging
to the new average resulting from the global “mass”
change due to the arrival/departure of nodes or change
of the measured input values.

One should notice that most of the existing approaches
only allow the computation of simple aggregation func-
tions, such as AVERAGE, SUM and COUNT, or others that
can be derived from their combination (by executing
multiple instances of the used algorithm). In many cases,
this kind of aggregation functions is enough, but in
many other situations the computation of more complex
aggregation functions is more useful. A simple example
can be found considering some load balancing applica-
tion that aims to distribute equitably the global load of a
system. In this case, the knowledge of the total or aver-
age load does not provide enough information to assess
the distribution of the system load, i.e. determine if some
processing nodes are overloaded or idle. Even the com-
putation of the maximum and minimum is insufficient,
although it allows the detection of a gap across the global
load distribution, as it does not provide information
about the number of processes at each load level. In this
situation, an estimation of the (statistical) load distribu-
tion is required to provide the desired information and
reveal outlier values. Other examples can be found in the
context of monitoring applications. For instance, in WSN
estimating the distribution of the monitored attribute can
be very useful to distinguish isolated sensor anomalies
from the occurrence of a relevant event characterized by
a certain amount of abnormal values. Few approaches
are available to compute more complex aggregates and
able to approximate the statistical distribution of some
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attribute (see 4.4). Existing algorithms from this class
(i.e., digests) are more resource consuming and less
accurate than other approaches, so that their application
should be carefully evaluated despite their additional
value.

6 FINAL REMARKS AND FUTURE DIRECTIONS

This survey was organized around three main contribu-
tions. First, it provides a formal definition of the target
aggregation problem, defining different types of aggre-
gations functions and their main properties. Second, a
taxonomy of the existing algorithms is proposed, from
two perspectives: communication and computation, and
the most relevant algorithms are succinctly described.
Finally, a summary of the characteristics of the main
approaches is provided, giving some guidelines about
their suitability to different scenarios.

Distributed data aggregation has been an active field
of research in the last decade, and a huge diverse amount
of techniques can be found in the literature. For this
reasons, this survey intends to be an important time
saving instrument, for those that desire to get a quick
and comprehensive overview of the state of the art
on distributed data aggregation. Moreover, by carefully
highlighting the strengths and limitations of the more
pertinent approaches, this study can provide a useful
assistance to help readers choose which technique to
apply in specific settings.

Currently, there is no ideal general solution to the
distributed computation of an aggregation function, all
existing techniques have their drawbacks (some more
than others as depicted by Table 5). Therefore, more
research in this field will be expected in the next few
years. In particular, due to the added value of comput-
ing complex aggregates, new algorithms might arise to
estimate the statistical distribution of values, as the few
existing approaches exhibit some limitations in terms of
accuracy and resource consumption. Additional research
efforts should be made in this field to improve the sup-
port to churn, message loss, and continuous estimation
of mutable input values.
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