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Abstract—The use of mobile robots is growing every day. Path
planning algorithms are needed to allow the coordination of
several robots, and make them travel with the least cost and
without collisions. With this emerged the interest in studying
some path planning algorithms, in order to better understand
the operation of each one when applied in this type of robots.
The objective of this paper is to present a state of the art survey
of some algorithms of path planning for mobile robots. A brief
introduction on mobile robots and trajectory planning algorithms
is made. After, the basis of each algorithm is explained, their
relative advantages and disadvantages are presented and are
mentioned areas of application for each of them. This study was
developed in order to implement some of these algorithms in
the near future, with the objective to find out their relative
advantages and disadvantages, and in which situations their
implementation is more adequate.

Index Terms—Algorithms, mobile robots, path planning.

I. INTRODUCTION

Mobile robots can be found in industry, military instal-
lations, security environments, and as consumer products,
whether for entertainment or to perform some work, such as
vacuum cleaning or cutting grass. They have the ability to
move around their environments and are not attached to a
physical location. According to the environment in which they
move, they can be classified into three types: (i) terrestrial
robots, usually have wheels, but some have legs, like humans,
quadruped animals or arthropods; (ii) aerial, usually referred
to as Unmanned Aerial Vehicles (UAV); and (iii) underwater,
often referred as Autonomous Underwater Vehicles (AUV) or
Remote Operated Vehicles (ROV) [1].

The path planning algorithms for these autonomous vehicles
can include aspects such as the planning of movements be-
tween obstacles and the coordination of movement with other
mobile robots. Thus, these algorithms aim at choosing the
route that usually takes less time and that presents less costs
for the mobile robots to accomplish the intended tasks [2].
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This paper is organized as follows. Section II presents some
path planning algorithms for different types of mobile robots.
Section III discusses the studied algorithms, their advantages
and disadvantages, and their application areas. The conclusions
and future work are drawn in Section IV.

II. PATH PLANNING ALGORITHMS

In this section, are described path planning algorithms that
can be applied to mobile robots, the relative advantages and
disadvantages of the analysed algorithms, as well as examples
of some areas in which they have been applied.

A. A star

The A star (A*) is a search method that uses a heuristic
function, h(n), where n represents a node n. To each node n
is associated an approximation h(n) of the cost of a path from
n to a goal node, while h∗(n) corresponds to the real distance
(cost) from n to a goal node. A heuristic h is consistent if
and only if: (i) h(n) = 0 (if n is the goal node); and (ii)
for all nodes and their successors n′, the estimated cost of
moving from node n to the goal node is not greater than the
cost of moving from node n to node n′ plus the estimated cost
of moving from node n′ to the goal node, as can be seen in
Equation 1 [3].

h(n) 6 c(n, n′) + h(n′) (1)

A heuristic h is admissible when h(n) underestimates
h∗(n), that is, it respects Equation 2 [3]. The heuristic to
be used may be the straight line distance, or the euclidean
distance [4].

h(n) 6 h∗(n) (2)

The other functions of this method are g(n), that denotes
the cost of the path from the start node to node n, and f(n),
which represents the estimated cost of the path passing through
n to reach the goal node. f(n) is defined as the sum of g(n)
with h(n), as in Equation 3 [3].

f(n) = g(n) + h(n) (3)

The main advantage of this algorithm results from the fact
that using the heuristic, the algorithm can quickly converge [5].978-1-7281-3558-8/19/$31.00 ©2019 IEEE



Fig. 1. Temporal graphs (left) and AGV positions (orange circles) in each
temporal layer of the TEA* algorithm (right) [9].

The disadvantages include (i) not consider obstacles for pre-
venting collisions [6]; and (ii) be slow in searching speed and
be of poor applicability in the large scale paths search [7].

The A* algorithm has been applied in several areas, among
which can be mentioned the areas of automation / robotics (for
trajectory planning of AGV in Smart Park [5]), medicine (for
needle penetration during surgery procedures [6]) and games
(for determining the paths in games [7], [8]).

B. Time Enhanced A*

The Time Enhanced A* (TEA*) is an extension of the A*,
used when there are multiple vehicles. It contains an additional
component – time. This component allows a better prediction
of the vehicles’ movements during the run time [9].

TEA* consists of an incremental algorithm that builds the
path of each vehicle considering the movements of other
mobile robots. This feature allows the algorithm to produce
conflict free routes and, at the same time, deal with deadlock
situations, since the paths are constantly recalculated and the
map information is updated at each iteration. This way, the
unpredictable events are considered in the input map, allowing
to avoid the main challenges of any multi-robot approach,
such as collisions and deadlocks [9]. Each node on the map
has three dimensions: the Cartesian coordinates (x, y) and a
representation of the discrete time. The time is represented
through temporal layers, k = [0;TMax], on which TMax

represents the maximum number of layers. Each temporal
graph is composed of a set of free and occupied/obstacles
nodes, as can be can see in Fig. 1 [9].

The path for each robot is calculated during the temporal
layers. In each temporal layer, the position of each vehicle
is known and shared with the other vehicles. This way, it is
possible to detect possible future collisions and avoid them at
the beginning of the paths’ calculation. Each robot can only
start and stop in nodes and a node can only be occupied by
one vehicle on each temporal layer [9].

The operation of the TEA* algorithm is similar to A*, since
for each AGV, during the path calculation, the next neighbor
node analyzed depends on a cost function, f(n), given by
the sum of two terms: the distance to the initial vertex, g(n),
and the distance to the end point, h(n). The main difference
between the two algorithms is that time is considered in TEA*,
resulting in two definitions, according to [9]:
• “Definition 1: The neighbor vertices of a vertex j in the

temporal layer k belong to the next temporal layer given

Fig. 2. Control diagram for each algorithm iteration in a multi-AGV
situation [9].

by k + 1” (Fig. 1), that is, the total number of temporal
layers depends of the number of iterations required to
reach the intended destination. The more complex the
map, the more iterations are needed.

• “Definition 2: The neighbor vertices of vertex j (vjadj)
include the vertex containing the AGV current position,
and all adjacent vertices in the next time component.”,
that is, the set of neighboring nodes includes not only
the adjacent nodes, but also the node corresponding to
the position in analysis. This property allows a vehicle to
maintain its position between consecutive time instants if
no neighbour node is free. In this case, it is not considered
a zero value for the euclidean distance; instead a constant
heuristic value corresponding to the stopped movement is
assigned.

Fig. 2 depicts the control diagram of the TEA* operation,
for each iteration of the algorithm, in a multi-AGV context.
The initial positions of the AGV are placed as obstacles, in
the first time layer (k = 0), allowing a vehicle to consider the
positions of the other vehicles as nodes occupied. In order to
avoid deadlocks, those nodes are placed as obstacles only in
k = 0, 1, that is, in the first two time layers. Next, is analyzed
what the AGV has to do (missions) and the path for each of
the vehicles is calculated using the TEA*. The coordinates of
the next node, in the second time layer (k = 1), are transmitted
to the respective AGV. Before moving to the next mission, the
full path is converted as obstacle to the following missions and
respective AGV. With this in mind, it is possible to coordinate
the vehicles, while avoiding collisions [9].

This algorithm is yet little explored. The only advantage
reported is that it considers obstacles in order to avoid col-
lisions, unlike A*. An example of its application is in AGV
fleet management [9].

C. Rapidly exploring Random Tree

The Rapidly exploring Random Tree (RRT) algorithm in-
crementally constructs a search tree in the configuration space
until the goal configuration can be connected to one of its
nodes. The operation of the RRT, exemplified in Fig. 3,
involves the iterative execution of the following steps [10]:

1) A random configuration, qrand, is sampled in the con-
figuration space.

2) The tree is searched for a configuration qnear, which is
the nearest node in the tree to qrand.

3) A new configuration qnew is created by moving a
predefined distance d from qnear in the direction of
qrand.

4) If qnew is a valid configuration that falls in Cfree

(unobstructed space), and if the local path between it



Fig. 3. Example of the RRT operation at an intermediate stage during its
construction [10].

and qnear is collision-free, then qnew is added to the tree
as a new node and an edge is created between qnew and
qnear. However, if qnew falls in Cobs (obstacle space),
and if the local path between it and qnear has collisions,
then is not created an edge between qnew and qnear.

These steps are repeated until the goal configuration can
be connected to the tree or is reached a maximum number of
iterations, or a given number of nodes in the tree, or a given
running time [10], [11]. That is, the goal is to execute the
whole process from qinit (starting point) to qgoal (end point).

The most common metric for the nearest-neighbor selection
is the Euclidean distance between points. In this case, the
expansion pattern of the tree is modeled by the Voronoi
diagram over the nodes within the tree. The probability of
a node being expanded is directly proportional to the volume
of its corresponding Voronoi region. Nodes that have a larger
Voronoi region (i.e. the portion of the space that is closer
to the node than to other nodes of the tree) are more likely
to be chosen for expansion and are referred to as major
nodes. This way, the tree is pulled towards unexplored areas,
spreading rapidly in the configuration space (as the Voronoi
regions of samples become approximately equal in size, the
exploratory behavior gradually shifts from expansion of the
tree to refinement). In the case of the Euclidean metric, these
nodes tend to lie on the outside of the tree during the initial
exploration. Conversely, inner or minor nodes have smaller
Voronoi regions and often lie on the inside of the tree. Once the
tree has explored the state space, these become major nodes as
the algorithm begins to fill in the space. This phenomenon of
favoring some nodes over others is referred to as the Voronoi
bias, and yields an initial preference towards the exploration
of the state space [12], [13].

Summing up, the efficiency of RRT stems from the Voronoi
bias property which promotes tree growth towards unexplored
regions. Therefore, the key is the determination of the distance
metric which computes the nearest-neighbour in the RRT
algorithm [14]. In holonomic planning, the Euclidean distance
is an ideal metric to generate a Voronoi bias because any node
which is the closest from the sampled points can be expanded.
If there exists differential constraints, however, which limit the
evolution of the system states, the Euclidean distance measure
fails to capture the true distance. Fig. 4 exhibits this problem.
A state Xr is drawn randomly in Fig. 4a. Here, Xs is an

initial state of the system and X1...X8 are existing nodes in
the current tree. If Euclidean distance is used for the distance
metric, X2 is chosen as the closest node from Xr as shown
in Fig. 4b. However, this is not true for the system which
has differential constraints. Instead, X4 is the closest node
from Xr if the nonholonomic constraints are considered as
in Fig. 4c. From this example, it can be seen that the true
distance metric is extremely important to the RRT planner
under differential constraints [14].

The relative advantages of this algorithm are that it: (i)
is successful at solving path-planning problems in high-
dimensional spaces [15]; (ii) can be implemented for real-time,
online planning [16]; and (iii) avoids wandering around in
explored regions [17]. The disadvantages are that: (i) it is not
appropriate when road planning involves narrow passages [18];
and (ii) the solution obtained is sub-optimal, since the planning
process is merely a random exploration of the space [19].

The RRT algorithm has already been applied in various
areas, such as, molecular biology ( [10], [11], [17], [20]),
automation / robotics ( [12], [21]) including path planning
for mobile robots ( [14], [22]–[42], medicine (for steerable
needles in 3D environments with obstacles [43]) and human-
system interaction [44]. The practical applications just referred
are based on the RRT algorithm; however, they do not use their
standard/basic version, but variants of this or the conjugation
with other algorithms, in order to overcome their disadvantages
and/or to be able to acquire characteristics that fit to each
problem under consideration.

D. Time Windows

In dynamic routing a calculated path depends on the number
of currently active AGV missions and their priorities. The
Time Windows (TW) method allows to determine the shortest
path using time windows (Fig. 5). This method checks the
mission candidate paths by using the time windows to verify
if certain paths are feasible. Viability of a particular path is
evaluated by a time windows insertion followed by a time
windows overlap (conflict) test. In the case of conflict, the
algorithm iteratively reinserts time windows until conflicts
disappear or an overlap is present only on the paths origin
arc, indicating that the candidate path is not feasible. The
procedure is repeated for all candidate paths and the result
is a set of executable paths. The final task of the algorithm is
to choose the shortest one among executable paths in terms
of a time required for a vehicle in mission to get from the
origin to the destination arc. When a new mission is requested
at a given time, is searched a idle vehicle to assign it to that
mission (with an initial mission priority). As a goal of dynamic
routing is to determine the shortest path for certain mission
under the current state of the system, all candidate paths should
be checked for feasibility [45].

The applications areas for Time Windows encompass AGV
(for dynamic routing in multi-AGV systems [45]), logistics
(in vehicle routing problem [46]–[58], pickup and delivery
problems [59], [60], Home Health Care (HHC) [61], [62] and
petrol station replenishment problems [63]).



(a) (b) (c)

Fig. 4. A state Xr is drawn randomly where Xs is an initial state of the system and X1...X8 are existing nodes in the current tree (a), the Euclidean distance
is a ideal metric to generate Voronoi bias in holonomic planning but it does not incorporate differential constraints of the system (b) and in nonholonomic
planning, a new distance metric which incorporates limitations of the system is needed to compute the real distance (c) [14].

Fig. 5. Example of time windows in a vector form [45].

Fig. 6. Example of the orderly numbered grid environment representa-
tion [64].

According to what was described above, it is possible to
verify that the Time Windows algorithm is applied in various
vehicle routing problems in order to be able to optimize the
solution to those problems.

E. Genetic Algorithms

Genetic Algorithms (GA) are a parallel and global search
technique that emulates natural genetic operators. As it simul-
taneously evaluates many points in the parameter space, it is
more likely to converge to the global optimal [64].

Many path planning methods use a grid-based model to
represent the environment space, leading to two possible rep-
resentations: (i) through an orderly numbered grid, as shown
in Figure 6, or (ii) through the (x,y) coordinates plane [64].

Fig. 7. Decimal coded genes of a chromosome [64].

A chromosome represents a candidate solution for the path
planning problem. A chromosome representing a path encodes
a starting node, a target node and the nodes through which
the mobile robot travels. These nodes, or steps, in the path are
called genes of the chromosome. A valid path consists of a
sequence of grid labels which begins at the starting node and
ends at the target node, as shown in Figure 7 [64].

The initial population is generally generated randomly.
Thus, some of the generated chromosomes may include infea-
sible paths intersecting an obstacle. An optimal, or near opti-
mal, solution can be found by genetic operators, even though
the initial population includes infeasible paths. However, this
reduces the search capability of the algorithm and increases
the time to find the solution. Additionally, crossover of two
infeasible chromosomes may generate new infeasible paths.
To solve this problem, each chromosome must be checked
whether it intersects an obstacle, when generating the initial
population. If it does, the intersected gene on the chromosome
is changed randomly, until a feasible one is found [64].

The optimal path may be the shortest one, or the one requir-
ing the least time or less energy to be traversed. Generally, in
path planning problems, the objective function is considered
as the shortest path. In [64], the objective function value of a
chromosome used in the GA is given by Equations 4 and 5:

f =

{∑n−1
i=1 d(pi, pi+1), for feasible paths∑n−1
i=1 d(pi, pi+1) + penalty, for infeasible paths

(4)

d(pi, pi+1) =
√

(x(i+1) − xi)2 + (y(i+1) − yi)2 (5)

being, f the fitness function, pi the ith gene of the chromo-
some, n the length of the chromosome, d the distance between



Fig. 8. Single-point crossover [64].

two nodes, xi and yi the robot current position, and x(i+1) and
y(i+1) the robot next position. The direction of the robot path
is given by equation 6 [64]:

α = tan−1
(y(i+1) − yi)

(x(i+1) − xi)
(6)

The objective function value is defined as the sum of
distances between each node in a path. If there is an obstacle
in the robot path, a penalty is added to the objective function
value. The penalty value should be greater than the maximum
path length on the environment. In order to find an optimal
path, the algorithm searches for the chromosome with the least
value for the objective function [64].

The main principle of the GA is that the best genes
on the chromosomes should survive and be transferred to
new generations. A selection procedure needs to be done to
determine the best chromosomes. This process consists in the
following three steps [64]:

1) Objective function values of all chromosomes are com-
puted.

2) Fitness values are assigned to chromosomes according to
their objective function values. In [64], the rank based
fitness assignment is used instead of the proportional
assignment method. This prevents a few better chromo-
somes to be dominant in the population.

3) Chromosomes are selected according to their fitness
values and then placed into a mating pool to produce
new chromosomes.

Normally, crossover combines the features of two parent
chromosomes to form two offsprings. In Fig. 8, single-point
crossover operator is illustrated, and the genes of the two “par-
ent” chromosomes after the crossover point are changed [64].

All candidate chromosomes in the population are subjected
to the random mutation after the crossover operation. This is
a random bit-wise binary complement operation or a random
small change in a gene, depending on the coding of chro-
mosomes, applied uniformly to all genes of all individuals
in the population, with a probability equal to the mutation
rate. The mutation operation increases the diversity of the
population and avoids the premature convergence. It expands
the search space to regions that may not be close to the current
population, thus ensuring a global search [64].

In conventional GA, random mutation is the most com-
monly used operator. However, random mutation can cause
generation of infeasible paths. Even though a chromosome is
feasible before the mutation operation, the new node changed
by the mutation may have an obstacle and therefore it consti-

Fig. 9. Infeasible path [64].

tutes an infeasible path (see Fig. 9). This makes the optimiza-
tion slower and increases the number of generations [64].

To overcome this problem, several studies concerned with
the improvement of mutation operation have been done in the
literature. The authors of those studies, as well as the method
proposed by each author, are described in [64].

GA have been applied in mobile robots ( [64]–[70]),
timetabling problems ( [71]–[73]), sensor networks ( [74]),
building trade systems ( [75]), logistics ( [76], [77]), automo-
bile industry ( [78]) and cloud computing ( [79]–[83]). Among
the mentioned references, what is often referred to is that to
increase the speed of convergence of GA and to apply them
with modifications that help the case study in question.

III. DISCUSSION

Table I summarizes the application areas of each algorithm
considered in this contribution. All studied algorithms are
applied to mobile robots path planning, and there are other
areas of application common to them. It is also seen that GA
are used in more areas, followed by A* and RRT, and finally
the TW and TEA*.

According to this survey, it was noticed that the most used
algorithms for mobile robots path planning are A*, RRT, TW
and AG. On the other hand, the least studied one is the TEA*,
since only one case study was found in the literature ( [9]).

Regarding their relative advantages and disadvantages, the
TEA* presents advantages in relation to the A*, since it allows
the planning of routes in multiple mobile robots systems. In
the remaining algorithms it is difficult to ascertain their relative
advantages and disadvantages, since each case study presents
specific and different characteristics; however, all are adequate
to solve problems of path planning in mobile robots.

According to what has been presented, it is possible to
realize that the standard algorithms are often used. Typically,
they are used after some improvement or in conjunction
with another algorithm, according to the needs of each case
study. For instance, throughout the research on GA were
found cases that reconciled this type of algorithm with Time
Windows ( [49], [52], [54], [84]–[89]) and A* ( [90]).



TABLE I
APPLICATION AREAS OF THE ALGORITHMS

Algorithms Mobile Robots Medicine Games Molecular biology Timetabling problem Logistics Cloud Computing

A* X X X
TEA* X
RRT X X X
TW X X
GA X X X X

IV. CONCLUSIONS AND FUTURE WORK

This paper presented some algorithms used in the path
planning of mobile robots. For each one, its operation was
briefly described, some of its advantages and disadvantages
were analyzed, and were presented some of its possible
application areas. It was possible to conclude that there are
several modifications that can be made to make each of these
algorithms more efficient, and they can be associated with
other algorithms to solve particular problems, as exemplified
in several of the referred case studies. Next is planned to
implement some of these algorithms in AGV fleets, to find
out their relative advantages and disadvantages and in which
situations their implementation is more adequate.
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