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Object detection and tracking is an essential preliminary task in event analysis systems (e.g. visual sur-
veillance). Typically objects are extracted and tagged, forming representative tracks of their activity. Tag-
ging is usually performed by probabilistic data association, however, in systems capturing disjoint areas
it is often not possible to establish such associations, as data may have been collected at different times or
in different locations. In this case, appearance matching is a valuable aid.

We propose using bag-of-visterms, i.e. an histogram of quantized local feature descriptors, to represent
and match tracked objects. This method has proven to be effective for object matching and classification
in image retrieval applications, where descriptors can be extracted a priori. An important difference in
event analysis systems is that relevant information is typically restricted to the foreground. Descriptors
can, therefore, be extracted faster, approaching real-time requirements. Also, unlike image retrieval,
objects can change over time and therefore their model needs to be updated continuously. Incremental
or adaptive learning is used to tackle this problem. Using independent tracks of 30 different persons, we
show that the bag-of-visterms representation effectively discriminates visual object tracks and that it pre-
sents high resilience to incorrect object segmentation. Additionally, this methodology allows the con-
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struction of scalable object models that can be used to match tracks across independent views.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In typical visual surveillance or ambient intelligence systems,
event analysis is based on the tracking and identification of visual
objects across multiple camera views. Objects are often captured
in more than one view and it is desirable that these multiple in-
stances of the same visual object can be automatically identified.
Consider the following visual surveillance scenario: a system
operator identifies a suspicious person crossing an area covered
by a given camera and would like to be informed of where and
when that person was previously captured by the system. To
accomplish this, the surveillance system would have to track that
person from the first moment it was captured by a camera and
across all cameras whose field of view overlaps the person’s path.
The captured visual objects can be as diverse as people walking,
riding a bicycle or doing other activities, cars crossing a road,
etc. The tracking of multiple visual objects in one (usually static)
view is a classic vision problem that has received much attention
and finds application not only in surveillance systems but also in
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other machine vision scenarios, such as robotics. Incidentally,
multiple-view tracking has only recently received much research
activity. The main advantages of using many cameras for tracking
in surveillance scenarios (Foresti et al., 2005; Wu et al., 2006) are
an arbitrarily large coverage of any given area since, for most
environments, a single camera is not able to provide adequate
coverage; and, tracking performance improvement, especially in
critical areas and where more robustness against occlusion is
desirable (Mittal and Davis, 2003).

While a single-camera tracker searches for correspondences
only between frames, the task of a multi-camera tracker is also
to establish correspondences between observations of objects
across cameras. The ultimate goal is to correctly tag all instances
of the same visual object at any given location and at any given
time instant.

Specific models can add constraints that simplify this task. For
example, for human tracking, Hu et al. (2004) rely on the defini-
tion of principal axis. Moreover, for generic object tracking, a
commonly used method is to find correspondences using feature
matching. Matching colour or other features may be performed
statistically using, for example, Kalman filtering (Utsumi and
Ohya, 2000) or Bayesian network inference (Nillius et al., 2006;
Qu et al., 2000). It is also possible to use camera calibration infor-
mation to learn more about the camera geometry and derive
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additional constraints. Cai and Aggarwal (1999) use relative cali-
bration between cameras and define correspondences using a
set of feature points in a Bayesian probability framework. Differ-
ent camera properties and illumination variations can contribute
to different appearances of the same object in different cameras.
To overcome this, Javed et al. (2005) proposed learning the sub-
space of inter-camera brightness transfer functions. Ross et al.
(2007), on the other hand, presented a method that incrementally
learns a subspace representation, adapting itself to appearance
changes.

An alternative (or complement) to the previous method is to use
a priori knowledge of the captured area’s geometry, building a 3D
model. Multiple cameras are used to recover the homographic rela-
tions between each camera view. In this case, it is possible to find
correspondences by projecting the location of each object in the
world coordinate system, and establishing equivalences between
objects that project to the same location at the same time. Like-
wise, equivalences between views are established by linking views
that have similar projected 3D location. For example, Black et al.
(2002) use this method as well as a combined 2D/3D Kalman filter
for object tracking. Creating the 3D model is not always a simple
task, and therefore these methods are mostly suitable for con-
trolled environments. Alternatively, alignment-based approaches
rely on recovering the geometric transformation between cameras
automatically. This can be done using spatial image alignment
methods and incorporating time information (Caspi and Irani,
2000) or by matching motion trajectories in different cameras
(Lee et al., 2000). Khan and Shah (2003) propose finding the limits
of the field of view of each camera that are visible by other cam-
eras. Also, Zhao et al. (2005) propose a ground-based fusion meth-
od for camera handover using space-time constraints and stereo
segmentation. However, using alignment requires overlapping
fields of view which is not always feasible. To avoid using overlap-
ping field of views, cameras are located in non-overlapping loca-
tions that nonetheless allow establishing path dependencies
between them using probabilistic models (Kettnaker and Zabih,
1999; Javed et al., 2003).

In summary, most approaches of multi-camera tracking have
one of the following rationales: different angles of the same area,
to improve tracking performance in cluttered environments; differ-
ent but overlapping areas, simplifying the camera handover of
tracked objects; or non-overlapping areas with some path correlation
between them, that can be previously defined or automatically
learned.

However, in many situations it is important to keep track of
persons or other video objects across independent areas, regardless
of the time of capture, where it is not possible to rely on the afore-
mentioned techniques. With this work, we propose using local fea-
ture and a bag-of-visterms (BOV) representation of objects which
can reliably identify different visual objects in a visual surveillance
scenario. Since the number of objects is unknown and existing ob-
jects can change their appearance, an incremental learning scheme
is also used. The main contributions of this paper are therefore: (1)
an efficient method of matching visual objects tracked across inde-
pendent views using local descriptors and the visual word para-
digm, (2) a scalable representation and learning of generic visual
objects, and (3) a base for a surveillance system interface browsa-
ble by object tracks.

The paper is organized as follows: First, related work is
discussed, as well as the options taken to accomplish our goals.
Section 3 presents the proposed method to describe, match and
learn new visual objects detected by a visual surveillance system.
Results are presented in Section 4. Finally, in Section 5 we discuss
how future extensions to this work can be used to interact
with generic tracking systems and we provide a conclusion in
Section 6.

2. Related work

Our work can be seen as a complement to classic tracking tech-
niques rather than a direct alternative. It takes as inputs the results
obtained by an object tracking algorithm and establishes corre-
spondences between objects, independently of their location and
the time of capture. Whereas most multi-camera tracking methods
rely on geometry models, overlapping fields of view or on corre-
lated paths between cameras, our method does not assume any
of these priors.

A recent proposal by Madden et al. (2007) finds some common
points with our work, namely the rationale of relying on feature
matching to find track correspondences across multiple cameras.
It also considers as inputs the segmentations and tags of each ob-
ject track detected system-wide but a different representation is
used. Scalability issues also are not approached, namely the storage
of descriptors of increasing number of objects of tracks. With a
very large number of tracks, the matching would require a one-
to-one comparison between tracks which may become easily
unfeasible - the authors only present results for a small number
of objects/tracks.

Object matching using appearance features is a well studied
problem, especially in the context of image retrieval. The joint
use of interest point detectors and local descriptors for object
detection, recognition and classification has grown significantly
(Lowe, 2004). Building on top of these descriptors, Sivic and
Zisserman (2003), Willamowski et al. (2004), and more recently
Quelhas et al. (2007), showed the usefulness of relating image
invariant local descriptors to visual words, or visterms. Sivic and
Zisserman (2003) successfully applied this approach to retrieve
shots from movies. They proposed a description scheme where
descriptors are extracted from local affine-invariant regions and
quantized in visterms, reducing noise sensitivity in matching. Ob-
jects are then matched and frames with similar content (i.e. visual
objects) can be retrieved efficiently using inverted files. Neverthe-
less, this work still proposes solving a problem closely related to
classic image retrieval and does not take into account inherent
constraints of real-time video capturing systems, such as scalabil-
ity - namely storage and computational restrictions.

In this article, we propose using local descriptors and the bag-of-
visterms paradigm for object representation to match tracks de-
tected in a visual surveillance scenario. For this specific case, we
are usually interested only in the foreground objects that are cap-
tured by the system. Taking this into consideration, two differences
arise when comparing this work to others like Sivic and Zisserman
(2003): (1) descriptor extraction can be restricted to the foreground,
which can greatly increase speed and (2) each object representation
can change over time - for instance, a person can have different
appearances, depending on the capture angle — which implies
updating each object model continuously. These particular charac-
teristics are explored and discussed throughout the rest of paper.

3. Scalable object matching and learning

In this section, we describe the proposed methodology to match
tracked objects across independent views, that can be scalable in
two distinct dimensions: an undetermined number of new objects
can be added at any given instant and, existing object representa-
tions can be updated to reflect changes in time. At the same time, it
needs to maintain performance at acceptable levels. As previously
stated, when trying to find correspondences between objects in
independent views, methods like alignment and path prediction
are not suitable. Feature matching is therefore the best alternative.

Fig. 1 depicts an example of a typical scenario we would like
to address: one person is detected and tracked; its description is
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Fig. 1. The same person is tracked at different instants, although captured by the same camera; due to incomplete appearance information it is labeled incorrectly but as new

information is acquired the label is corrected.

extracted and stored and an identification is assigned; in another
instant, the same person is again detected and tracked; even if ini-
tially a different identity is assigned, when more information is
processed, it is correctly identified. This process involves three dis-
tinct steps: (1) obtaining an object description, (2) creating and
updating a model of the objects, and (3) classifying the object, gi-
ven its captured track.

3.1. Describing visual objects

Choosing a representation scheme for visual objects which is
compact and representative at the same time is important to as-
sure a feasible solution to the object matching problem. The
descriptors used to represent objects need to accommodate differ-
ent appearances - due to different camera characteristics, capture
position, illumination variations, etc. Madden et al. (2007) ad-
dressed this by a compact colour histogram representation dubbed
major colour spectrum histogram representation (MCSHR) which
describes the object's main colours. An incremental MCSHR
(IMCSHR) is computed over a period of time to compensate for
small, short-term changes in the object’s pose. Finally, a transfor-
mation is applied to IMCSHR to compensate for illumination vari-
ations. The MCSHR description scheme is further discussed and
evaluated in Section 4.2. As an alternative to the representation
scheme used in our method, we also implemented MCSHR and
evaluated it on the dataset presented in detail in Section 4.

Local descriptors are widely used for image retrieval applica-
tions, and we now propose to apply local descriptors to object track
matching. For each object frame comprising the full object track, a
set of descriptors is extracted in specific keypoints. These points
are defined by a interest point detector (number of points depends
on the image content) or by a random point selection (number of
points is fixed and pre-defined). For object matching and classifica-
tion, the number of words extracted from the image is the most

important factor influencing performance (Nowak et al., 2006).
Since objects’ images are usually very small, interest point detec-
tors tend to select an insufficient number of points to efficiently
represent them. We used, therefore, random point selection from
a pyramid with regular grids, as suggested by Nowak et al.
(2006), since this method provides a dense representation of each
object image.

A 128-dimensional vector is extracted in each keypoint using
the SIFT descriptor developed by Lowe (1999). The descriptor is
then quantized to form visual words using a pre-defined vocabu-
lary. Features obtained by SIFT are invariant to image scale, rota-
tion, and robust to changes in viewpoints and illumination. For
most types of applications, it compares favourably with other local
descriptor schemes (Mikolajczyk and Schmid, 2005). When affine
invariance is required, SIFT is more prone to perform worse than
more complex affine-invariant descriptors.

3.1.1. Building the vocabulary

Most BOV approaches rely on k-means clustering of local
descriptors to create a vocabulary. The descriptor vectors of a
training set are extracted and quantized into a pre-defined number
of words. Nistér and Stewénius (2006) proposed an adaptation to
this approach which, instead of creating a “flat” vocabulary, creates
a hierarchical relation of visual words in the form of a vocabulary
tree. This allows a more efficient search which, in turn, enables
the use of large vocabularies. In our work, using a large vocabulary
is a key factor since we will not be using any information of the
geometric layout of visual words extracted from an image. On
the other hand, given the rate at which frames are acquired and
analysed, an efficient search of visual words is also required. This
trade-off needs to be taken into consideration when building the
vocabulary.

To build the vocabulary tree, an initial k-means clustering is
first run on the training data, defining k cluster centres. The data
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are then partitioned into k groups, where each group consists of
the descriptor vectors closest to a particular cluster center, forming
quantization cells, or words. The same process is then recursively
applied to each group of descriptor vectors, splitting each quanti-
zation cell into k new parts. The vocabulary tree is created level
by level, up to a maximum number of L levels.

When a new object’s image needs to be classified, each ex-
tracted descriptor is propagated down the tree by comparing the
descriptor vector at each level to the k candidate cluster centres
and choosing the closest one. At each level k dot products are per-
formed, resulting in a total of kL dot products. If k is not too large,
the vocabulary tree can be very efficient, compared to an equiva-
lent “flat” vocabulary defined by the total number nodes M in
the tree, which is given by

L1 _ 4

MoS kK
_; T k-1

To account for different relevancies of tree nodes, a weight w; is as-
signed to each node, and is defined by

-1 (M

w; = ln% (2)
where N is the total number of images in the model and N; is the
number of images having at least one path through node i, i.e., con-
taining the word represented by that node.

The training process of the tree uses a large set of descriptor
vectors in an unsupervised fashion. Two data sources have been
tested to build the vocabulary tree: (1) the segmented objects from
the dataset’s sequences (defined in Section 4.1) as training data
forming a specific vocabulary 75 and (2) object frames from a dif-
ferent source as training data forming a generic vocabulary 7. By
using both vocabularies, it is possible to assess the performance
impact of having a generic vocabulary to represent a wide variety
of objects.

3.1.2. Descriptor vector

All extracted 128-dimensional SIFT vectors are quantized in vi-
sual words using the vocabulary tree to define the final descriptor
vector. For a given object ¢, its segmented image I; at instant ¢ is
represented by

o(lf) = {x1,%2,...,x}, i€el,....M (3)
where M is the number of words in the vocabulary, given by Eq. (1).
Each element x; of (3) is the weighted histogram of the words de-

fined by the vocabulary; x; is, therefore, given by
Xi = mW; 4)

where n; is the number of input descriptors containing the visual
word i and w; is the weight defined by Eq. (2). Unless stated other-
wise, all experiments used a vocabulary with k=10 and L=4,
resulting in a representation vector of size M=11,110.

3.2. Adaptively updating and learning object models

In order to effectively update the previous model as new data
becomes available, the model should (1) be compact, that would
not imply having all previous history stored and (2) be scalable,
that would imply classifying visual objects that change in time,
while also having the ability to learn new ones. Recently, some
methods have been proposed to solve this problem, such as
Learn++ (Polikar et al., 2001). Learn++ draws its inspiration from
AdaBoost, which in turn relies on an ensemble of classifiers trained
using adaptive bootstrap techniques. It is iteratively updated by
new sets of data, possibly containing new classes. A modification
called Learn++.MT, proposed by Muhlbaier et al. (2004), improves

the performance when new classes are added. Learn++MT meets
the compact and scalable requirements, and was used to create
our visual object model. A brief description of it follows.

3.2.1. Learn++.MT algorithm

For each new dataset 2y, the inputs to Learn++.MT are (1) a se-
quence of training data instances x; and their correct labels y;, (2)
the classification algorithm BaseClassifier, and (3) Ty, the max-
imum number of classifiers.

As in typical boosting learning algorithms, data are drawn
according to a distribution D,. For the first set, D is initialized as
a uniform distribution. From the second set onwards, this distribu-
tion is updated according to the performance of the ensemble on
the new data. Ty classifiers are added to the ensemble when a
new dataset is added. For each new classifier, a subset of 2, is
drawn, according to D;, and evaluated against the new classifier
to obtain the hypothesis h.. The classifier error is estimated by
€ = Y in ey, De (i) and if & >3, a new subset is drawn, discarding
the classifier. A dynamic weight voting (DWV) algorithm is then
called to obtain a composite hypothesis H; It represents the
ensemble decision of all classifiers trained until now. The distribu-
tion D is updated according to the performance of H;. This process
is repeated until all new Ty classifiers have been trained.

The essential difference from Learn++.MT to its parent method
is the voting scheme. As in Learn++, voting is based on the weights
assigned to each classifier but with DWV these weights are modi-
fied according to the classification of the specific testing instance.
This is achieved by adjusting weights of classifiers that have not
been trained with a given class. The adjustment is proportional
to the ensemble’s confidence on that class.

3.3. Classifying objects

The goal of object classification is to attribute a known label to
each input object frame comprising that object’s track. This can be
seen as a multi-class classification problem, with a variable num-
ber of classes. As described previously, we use the Learn++MT
algorithm to handle class variability, and opted to use support vec-
tor machines (SVMs) (Burges, 1998) as its BaseClassifier.

SVMs are commonly used in machine learning problems, espe-
cially with large dimensional input spaces — which is the case for
the object classification problem. Standard SVMs rely on margin
optimization to learn a decision function h(x), such that, if x be-
longs to the target class, h(x) is large and positive; otherwise,
h(x) is negative. SVMs are thus binary classifiers but can be adapted
to multi-class problems; we opted for the one-against-one ap-
proach, where n(n — 1)/2 models are constructed for a n-class
problem. Additionally, we used linear kernel SVMs, mainly for pro-
cessing speed purposes. Specific kernels could alternatively be
used, such as the pyramid match kernel proposed by Grauman
and Darrell (2005) for multi-resolution histograms.

3.4. Summary

In summary, the main steps involved in the proposed solution
for the surveillance scenario from Fig. 1 are (1) detect objects,
including segmenting and tracking them for each view, (2) obtain
a compact object description, yet sufficiently discriminative, and
(3) compare the object with the current visual object model, updat-
ing it if appropriate. A block representation of these steps is shown
in Fig. 2. While the first step is performed independently for each
camera/view, the third step aggregates inputs from all views. The
second step, on the other hand, combines object description which
is performed independently for each view, and a common part to
all views. This common part consists of obtaining a histogram rep-
resentation of the visterms found in each object. A vocabulary of
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Fig. 2. Block representation of the method: objects detected in each view are first segmented and tracked; a description is extracted and quantized by a common global

vocabulary; finally, the visual object model is updated accordingly.

visterms, with which object descriptors are compared, is obtained
a priori and is kept unchanged.

Multiple appearances of an object are detected by matching a
newly tracked object with the visual object model. The matching
process takes the object tracks (i.e. sequences of segmented
images) detected by any given tracking algorithm as inputs and
finds multiple object occurrences. From an application point of
view, it would act as a linking mechanism between sequences.
An operator analysing a sequence containing an object would have
the ability to know every other appearance of that object, and the
possibility to jump to another sequence, pinpointed by time and
location. Numerous other possibilities would than be possible, like
using the previous knowledge of camera location (if any) to repre-
sent graphically the known path of an object/person.

4. Experimental setup and results
4.1. Dataset

In order to assess the performance of our methodology, a data-
set was created. The dataset 23, consists of individual sequences
containing 30 visual objects from the Shopping Center dataset of
the EC Funded CAVIAR project IST 2001 37540.! We extracted each
visual object from the 26 sequences that comprise the original set,
using the provided CVML-based ground-truth information. The
ground-truth consists of a bounding box defined in each frame, for
each object.

The total number of images used to train and test the complete
system is 14,506. This number includes 30 individual tracks of 30
different persons. Fig. 3 shows all visual objects composing the
dataset. Individual tracks were extracted from the original video
according to the bounding box defined in the ground-truth. These
tracks include images with partial occlusions as well as severe
occlusions by other persons (see Fig. 7 for an example). Addition-
ally, we tested different tracks of the same person, captured at dif-
ferent instants and areas (see Fig. 4 for an example); they were
however not used for training.

The generic vocabulary 7"y was created with the PASCAL visual
object classes (VOC) database.? All objects tagged as PASperson
and all its variants (Sitting, Standing and Walking) were ex-

! http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
2 http://www.pascal-network.org/challenges/VOC/.

tracted from the VOC 2006 contest (Everingham et al., 2006) dataset;
these images formed the generic dataset ,. The total number of
images for this vocabulary training set is 2688.

The dataset 23, was further partitioned into subsets &', i e
{1,2,...,5} to test the learning adaptability of the system. Each
subset represents a time interval of 5s (150 frames at 30 fps) of
accumulated data. In Fig. 5, a representation of how the subsets
are created is depicted. Note that no frames are repeated between
sets and that all frames from 234 are included in the subsets, such
that U{% ' = 73 and N}% ' = 0. This incremental dataset simu-
lates a typical visual surveillance scenario where objects are de-
tected at different time instants. Initially only some objects are
represented but, as new subsets are added new objects are added.
Likewise, objects previously detected can no longer be represented
in future subsets.

4.2. Discriminative capability

To test the discriminative capability of the representation
scheme, 739 was divided in random training (fixed size) and vali-
dation (remaining) set partitions. We tested two representation
schemes: MCSHR (Madden et al., 2007) and bag-of-visterms using
a vocabulary tree defined from SIFT descriptors, which we desig-
nate hierarchical bag-of-visterms (HBOV). Both consist of a
descriptor vector for each image but, while HBOV defines a fixed-
size vector, MCSHR’s size is variable. Due to this, evaluation con-
sisted of a majority voting classification procedure. Each descriptor
vector extracted from the test set images is compared with the
training set descriptor vectors and votes are cast for the 10 closest
matching, using a 1-norm distance metric. Results are obtained
using a 5-fold cross validation. The SVM-based classification meth-
od described in Section 3.3 will only be used later.

The vocabulary for the HBOV was trained with dataset &5, i.e.,
with the same dataset to be described by the vocabulary. We
tested two different vocabulary tree sizes: 125 leaf visual words
(k=5 and L=3) and 10,000 leaf visual words (k=10 and L =4).
The overall results are shown in Table 1.

The HBOV representation presents much better results, even
with a descriptor size similar to the ones obtained with MCSHR.
If we increase the vocabulary size, and hence the descriptor size,
the results are further improved. Moreover, classification perfor-
mance with MCSHR is less resilient to similar objects, as denoted
in the confusion matrix shown in Fig. 6a in opposition to Fig. 6c.
With HBOV, and especially with a larger vocabulary, all classes
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Fig. 3. Images of all 30 visual objects used in the dataset. First row shows Person[01-10], second row shows Person[11-20] and third row shows Person[21-30]. The
dataset consists of a total of 14,506 images, with an average of 468.5 images per person.

Fig. 4. Same visual object captured at different instants, by different cameras.

person ID
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D1III
D5

Fig. 5. Subsets &', i € {1,2,...,5} created to test incremental learning of objects.
Each object starts to be captured in a given instant and leaves the field of view at
another instant - the time interval when objects are is represented by the bars. Each
dataset corresponds to 5 s of activity.

... 29 30

subsets
SRS

™

Table 1
Average classification rate and standard deviations using MCSHR and HBOV with
different descriptor sizes

Vocabulary Classification rate Descriptor size
MCSHR 71.6 (17.7) Variable, ~200
HBOV-125 82.9(13.1) Fixed, 155
HBOV-10000 95.0 (5.2) Fixed, 11,110

present a very high classification performance, which clearly
shows both the discriminative capability and stability of the
representation scheme described in Section 3. The MCSHR scheme
is used as a comparison baseline for the remaining experiments.

Since it is required that the descriptors are extracted in the
shortest amount of time possible, it is also important to evaluate
the time cost. For non-optimized implementations, while MCSHR
descriptors can be extracted at a rate of approximately 3.7 typical
track images per second,®> HBOV-125 can be processed at 2.9 images
per second and HBOV-10000 at 2.7 images per second. As expected,
due to higher complexity, the HBOV extraction process is slower but
nevertheless an optimized real-time implementation is equally fea-
sible. Note that most of the time consumed in obtaining a HBOV
description for an image is spent extracting the SIFT descriptor vec-
tor (=~2/3 of the total time). Due to this, the difference between
HBOV-10000 and HBOV-125 is not very significant.

Despite a relatively high time cost, this method meets the needs
of a real-time surveillance system since an optimized implementa-
tion could explore parallelization, redundancy of track images in
short periods of time (<1 s) and inactivity.

3 Results obtained with a C++ implementation running on a Pentium IV 3.4 GHz
with 1GB of RAM.



L.F. Teixeira, L. Corte-Real/Pattern Recognition Letters 30 (2009) 157-167

4.3. Impact of using a generic vocabulary

The appearance of objects captured by a surveillance system is
typically not known a priori. Hence, it is useful to create a vocabu-
lary from images that are not directly related to the captured visual
objects. We analyse the performance of such generic vocabulary
with a similar setup as before. For each image of the generic data-
set 9, 128-size SIFT descriptors were extracted in the points de-
fined by a Laplacian of Gaussians (LoG) interest point detector
(Lowe, 2004). The input for the vocabulary tree construction algo-
rithm described in Section 3.1.1 consisted of the concatenation of
all descriptor vectors from all images.

The dataset &3y was again divided in random training and val-
idation partitions. In Table 2, we show the average performance of
different types of vocabularies using in each case a single multi-
class SVM. While the first four vocabularies were created with
dataset 239, the last four were created with the generic dataset
9. For both groups we tested four different vocabulary sizes:
125 leaf words, with k=5 and L=3; 625 leaf words, with k=5

163

and L = 4; 1000 leaf words, with k=10 and L = 3; and, 10,000 leaf
words, with k=10 and L = 4. Results show that the use of a generic
dataset to train the vocabulary does not affect significantly its
performance.

All experiments henceforth use 73, Also, the SVM-based
model trained with s, using #;>°, will be designated ..

4.4. Object representation adaptability

In the previous section, each person’s data used to train the
model consisted of information collected from a single track. How-
ever, it is important to know how the classification performance
stands with new captured tracks. For that purpose we used .#3¢
model to classify several different tracks. Table 3 shows the results
obtained for eight new different tracks of six different persons. The
first three new tracks have a similar viewing angle to the tracks
used for training; the five other new tracks have a very different
viewing angle and most of the time only the person’s profile is vis-
ible (an example of both camera angles is shown in Fig. 4). The

a confusion matrix b confusion matrix
Person01 65.2 Person01 90.2
Person02 97.2 Person02 81.9
Person03 88.8 Person03 86.0
Person04 90.8 Person04 69.3
Person05 65.4 Person05 97.1
Person06 58.9 Person06 82.4
Person07 83.9 Person07 84.6
Person08 93.8 Person08 93.0
Person09 68.8 Person09 93.2
Person10 50.3 Person10 85.6
Person11 38.0 Personii 96.7
Person12 84.1 Person12 75.6
Person13 87.1 Person13 90.8
Person14 83.8 Personi4 90.5
Personi5 88.9 Person15 60.5
Person16 62.2 Person16 73.6
Person17 40.8 Person17 98.1
Person18 56.8 Person18 78.5
Person19 67.1 Person19 99.5
Person20 62.9 Person20 52.9
Person21 51.0 Person21 62.4
Person22 91.1 Person22 96.3
Person23 68.6 Person23 89.7
Person24 82.3 Person24 67.5
Person25 914 Person25 96.8
Person26 72.0 Person26 73.3
Person27 85.9 Person27 88.9
Person28 80.1 Person28 94.9
Person29 50.7 Person29 773
Person30 39.2 Person30 59.9
71.6 82.9
C confusion matrix
Person01 98.4
Person02 99.1
Person03 94.3
Person04 90.3
Person05 98.9
Person06 98.9
Person07 97.4
Person08 100.0
Person09 98.7
Person10 89.8
Person11 99.8
Person12 89.2
Person13 95.8
Person14 95.8
Person15 93.7
Person16 91.7
Person17 98.7
Person18 94.7
Person19 100.0
Person20 78.2
Person21 95.3
Person22 98.6
Person23 99.1
Person24 94.1
Person25 98.2
Person26 97.0
Person27 94.1
Person28 99.6
Person29 87.5
Person30 83.5
95.0

Fig. 6. Visual representation of the object classification confusion matrices with different representation schemes: (a) MCSHR, (b) HBOV-125 and (c) HBOV-10000.
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Table 2

Average classification rate and standard deviations when using different vocabularies
- specific 7'y and generic 7"y vocabularies, with tree sizes of 125, 625, 1000 and
10,000 leaf words

Vocabulary Classification rate
Baseline 71.6 (17.7)
e 82.9 (13.1)
V§25 92.7 (7.1)
41000 93.6 (6.3)
i 1°°°° 95.0 (5.2)
V‘25 78.7 (14.8)
“ngs 91.4 (7.9)
%00" 91.6 (6.4)
%0 o0 93.3 (6.2)
Table 3
Classification rate of different tracks using .#3o
Person ID  Baseline Previous model .#3q Updated model  # Of frames
Similar view angle
01 57.5(5.1) 76.8(0.8) 93.4 (2.9) 331
12 84.3(2.6) 71.6(1.0) 95.9 (2.3) 293
20 119 (3.9) 43.1(0.5) 83.4(2.2) 422
Different view angle
01 19.6 (8.4) 50.1 (0.6) 89.6 (3.7) 280
06 141 (1.5)  12.7(1.7) 97.2 (2.5) 86
12 709 (6.1) 12.0(1.3) 83.8 (4.7) 272
29 245 (2.5) 17.5(1.4) 93.1 (3.6) 146
30 14.7 (1.9) 26.8(1.4) 94.4 (2.3) 176

Results are obtained for (1) the baseline, (2) the model .#5, trained previously, and
(3) an updated model, including a sample of the new track.

classification performance using the baseline method is also pre-
sented. Unsurprisingly, the classification rate using the previous
model .#5, (second column) is much higher for the first set of
new tracks. However, if we update the model with a random sam-
ple containing 50 images from each new track and retrain the
model also with these samples, the results improve significantly
(third column).

These results show that, given a correct model update, the vi-
sual object representation effectively adapts to the object’s
changes in time. Note also that the performance of the baseline
method has a high variability, presenting either a high or very
low classification performance. This confirms the conclusions
drawn previously regarding its discriminative capability.

4.5. Resilience to incorrect segmentation

Until now, all objects were tested with the respective segmen-
tations defined by the ground-truth’s bounding box. In a real sce-
nario, the only information about the object’s location is the
segmentation obtained using for example a background subtrac-
tion method. However, with such automatic segmentation meth-
ods errors occur more often. An example of an incorrect
segmentation is shown in Fig. 7. The segmentation shown in green
is very different from the true segmentation. It suffers from false
positives errors - the person shadow to the left — as well as false
negatives — part of the person is not correctly classified. Also, part
of the same person is merged with the segmentation shown in red.
It is clear that segmentation errors will inevitably penalise the
overall performance. In order to assess the effect of imperfect seg-
mentation on our classification performance, we used the segmen-
tation algorithm proposed by Teixeira et al. (2007) and classified
the segmented objects according to the ground-truth.

In Table 4, the confusion matrix of a model trained and tested
with the images obtained with background subtraction algorithm
is shown. The model consists only of the four classes of objects
considered in this scenario and in this case a good discrimination
is achieved.

If we test the object images extracted with the background seg-
mentation algorithm with .43, model, results deteriorate. In Table
5, we summarise the results obtained with this model and the
baseline, both using as inputs the segmentation algorithm and
the ground-truth. Despite a smaller classification rate of the first
three visual objects, all are successfully discriminated. The baseline
representation method shows a significantly worse performance,
probably due to its less resilience to occlusions and incorrect seg-
mentation of objects. Interestingly, the results for Person20 are
better probably due to a good overall track segmentation. In the-
ory, with a perfect segmentation, a better object description is

Table 4

Confusion matrix of the tracks segmented using a background subtraction algorithm
True class Estimated class # Of frames

01 05 06 20

01 96.8 0.0 3.0 0.1 356

05 1.7 98.0 0.1 0.2 601

06 1.1 0.8 96.5 1.6 390

20 1.1 0.7 0.2 98.0 1246

Fig. 7. Incorrect segmentation example. From left to right: Person0l (blue segmentation), Person20 (red segmentation), and Person06 (green segmentation). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 5
Average classification rates and standard deviations using the segmented tracks
(second and third columns) and the ground-truth (fourth and fifth columns)

Person ID Segmentation Ground-truth

Baseline M 30 Baseline M 30
01 51.5(2.4) 95.1 (0.2) 65.2 (2.1) 97.5 (1.5)
05 39.4 (3.5) 94.9 (0.5) 65.4 (1.7) 99.0 (0.1)
06 30.8 (1.7) 96.4 (0.5) 58.9 (1.9) 98.8 (0.8)
20 35.0 (2.1) 76.1 (0.1) 62.9 (2.3) 73.5 (2.5)

For each case, results are shown for the baseline and the .#39 model.

achieved since the background is removed while the object is kept,
but this is often not the case.

4.6. Incremental model learning

One of the requirements defined earlier for the object model
was that it should be adaptable to changes. In a visual surveillance
scenario, the objects’ appearances can vary, depending on the
viewing angle they are captured. We need, therefore, a way to
incorporate these changes in the model. The straightforward ap-
proach to accommodate this variability of incoming data is to
recreate a new model whenever a new set of data is available (sim-
ilar to the approach tested in Section 4.4). When, for instance, new
data become available, the previous model is forgotten and a new
model is trained with that data, as well as with previous data. This
approach, despite being simple, is unfeasible in real systems since
it requires ever increasing storage resources, as well as computa-
tional resources. Nevertheless, this approach provides a perfor-
mance reference to which our incremental learning will be
compared to. The experimental setup consisted of training a model
based on a multi-class SVM for all the data available until that mo-
ment. The incoming data consist of the subsets &' defined in Sec-
tion 4.1 and represented in Fig. 5.

The incremental learning approach described in Section 3.2 was
tested in a similar fashion as the model rebuild approach. However,

Table 6

Classification rate for the simplified model update - at each new set a new model is
built using all current available data; classification performance is kept at a very high
rate

Subset Type of model update # Of frames
Retrain all Incremental

! 98.9 (2.0) 83.9 (16.8) 1864

7?2 97.5 (5.0) 455 (34.2) 2813

73 98.1 (2.8) 58.0 (22.4) 3158

24 95.9 (6.0) 37.7 (16.9) 2770

5 91.0 (8.5) 47.7 (13.1) 1951

Test set 98.0 (2.9) 52.2 (20.5) 1500

Table 7

in this case, whenever a new set of data becomes available, only
that set’s data is provided to the classifier. The model is then up-
dated, providing that new classes that appear are learnt and classi-
fication performance of other classes is kept. The number of
classifiers added to Learn++.MT when a new set is added was of
Tk =4,

We evaluated the two update methods using a 5-fold cross-
validation, and the overall results are shown in Table 6. For each
subset, the total number of frames is also shown. Comparing the
classification rates, it is clear that performance drops significantly
if we use an incremental model update instead of the simplified
approach. With a large number of new classes appearing in each
new incoming data, the model is not able to adapt as promptly.
Nevertheless, the overall classification rate of object images

|
|
: object tagging with :
| classic tracking has |
less reliability

hT 24

object exits FOV

Fig. 8. Scenarios where typical tracking methods often fail to correctly track/ide-
ntify an object. (a) Object occludes another object — as objects cross the tracking
algorithm can incorrectly assign the label A to B’ and B to A'. (b) Object exits and re-
enters FOV - the track A’, corresponding to the re-entrance of the object, would
have a new assigned tag.

Classification performance rate based on incremental learning; each subset may not contain images from a given person and, if this is the case, no classification rate is presented

Subset Person ID 30-Class result
01 02 04 05 08 11 15 17 19 20 23 24 27 27 30
72 - 81.3 46.2 62.7 - 86.8 614 1000 957 740 - 85.1 97.7 96.2 1000 83.9(16.8)
2? 44 724 38.3 49.9 2.8 87.1 50.6 84.1 163 397 723 417 91.5 99.6 73.5 45.5(34.2)
7?3 69.2 272 - 371 714 1000 - 699 - - 414 832 65.6 69.1 723  58.0(224)
a4 202 - - 643 494 834 - 639 - - 38.1 37.0 222 - 29.8  37.7(16.9)
23 - - - 374 - 66.7 - 385 - - 217 244 - - 232 47.7(13.1)
Test set 300 740 54.0 80.0 420 96.0 50.0 820 720 320 300 520 52.0 82.0 56.0 52.2(20.5)
Track classification ~ 75.0 75.0 100.0 100.0 66.7 100.0 100.0 100.0 50.0 66.7 500 60.0 1000 1000 100.0 76.2 (24.3)

For brevity, results are presented only for some object classes. The last line shows the results for track classification; track segments are associated to each set and are
classified by a simple rule: the most representative visual object among that segment’s frames. The overall correct track classification is 76.2%.
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Fig. 9. Common tracking error using a state-of-the-art particle filtering tracker (Chateau et al., 2005). The tracker changes targets because the new target has a higher

classifier score then the initial one.

reaches around 50%, which is an acceptable value given the num-
ber of object classes. Also, an increase of performance in the last
subset suggests that with more data the model adapts adequately.
Table 7 shows the partial results for each subset. Note that only the
performance results for half of the classes are shown for brevity
(no particular choice).

A better measure of performance of our system is how success-
fully can the system classify the whole track. In our case, track clas-
sification is performed for each time window. The window, or
segment, comprises a large number of images — 150 in this case
- and a simple classification rule can be applied: a segment is clas-
sified as the visual object gathering the largest amount of frames
labeled as that object. The last line in Table 7 shows the results
for track classification, with an overall correct classification rate
of 76.2%. Note that this result is for the model that resulted from
all incremental updates.

5. Integration with tracking

Until now we assumed that captured tracks were the inputs for
our method and no further interaction happened. However, track
matching can be integrated with the tracking algorithm to improve
the overall performance. The interaction between both can be
twofold:

(1) Tracking helps build the database - the same person can
have a different description depending on the view angle.
By tracking a person with more than one camera with over-
lapping fields of viewing, for example, we can provide more
information to the database, knowing that it's the same
person.

(2) Object matching can correct incorrect tagging — matching
can help disambiguate two tracks when, for example, two
or more objects cross in the field of view.

While the first interaction is largely explored in our approach,
the second interaction is discussed in this section.

Consider the scenario depicted in Fig. 8a. Objects A and B are
tracked across a single field of view (FOV) and at some point in
time both tracks cross. Without depth information or another view
over the same area, disambiguating the tracks can be difficult. As
objects get closer, typical segmentation outputs a single large com-
bined object. When objects eventually are again farther apart the
tracking system should to assign A and B to A’ and B’, respectively,
but errors often occur. An example of this using a particle filtering
tracker from Chateau et al. (2005) is depicted in Fig. 9. Using a track
matching method inconsistent assignments could be detected and
corrected.

Another similar problem occurs when a tracked object leaves
the field of view and re-enters later, as depicted in Fig. 8b. In most

tracking systems, the track corresponding to the re-entrance of the
object would have a new tag assigned to it. The same object would
then have two different identities. By comparing the visual repre-
sentation of the new track with the visual objects model would
correct the previous assignment.

The second type of interaction can also be extended to multi-
ple independent views, where typical tracking methods cannot be
used. A track produced by the tracking algorithm at a given view
is matched with a global model. An existing tag is assigned to it,
or a new one, if the object is not known. In multi-camera systems
with overlapping FOVs, the spatial information can be a useful to
aid in matching. Although this is a possibility, it is not explored
in this work as we do not assume any dependence between
views.

6. Conclusion

Event analysis systems based on visual information rely on an
important preliminary step — object segmentation and tracking.
Most current tracking techniques perform multi-target tracking
in a single view. There are also many proposed algorithms that per-
form tracking across multiple views but usually some dependency
between the views is assumed.

In this paper, we presented a combined representation scheme
and incremental object model to find matches between visual ob-
ject tracks. We relax the assumption of dependence between
views, since: (1) no calibration information is used, (2) no spatial
registration is made, and (3) no correlation is assumed between
tracks detected by different cameras. The scheme was experimen-
tally validated for a surveillance scenario using a publicly available
dataset.

The description scheme relies on SIFT local descriptors and a
text-like bag-of-words representation. Object images are identified
by a histogram of visual words that are identified in the image. The
vocabulary is constructed once using a generic dataset which, as
our results show, performed closely to a vocabulary constructed
with data from the images of tracked objects. Results show that
this object representation scheme can be used to aid tracking of
generic objects in visual surveillance systems, since it can discrim-
inate a large quantity of different visual objects very well, and can
be adapted to reflect object changes. It also presented a good resil-
ience to incorrect segmentations when extracting the visual ob-
jects from complex scenes. The object model is updated through
incremental learning, avoiding excessive data storage while main-
taining performance and allowing new objects to be learnt by the
system. To test the ability of our incremental learning to adapt to
new data, we evaluated our model on a challenging scenario where
data is processed in chunks as it becomes available. Results
showed that our model has the ability to adapt to object modifica-
tions and to learn new objects.
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In summary, the proposed methodology achieved an overall
classification performance of 76.2% correct assignments for a clas-
sification problem of tracks from 30 different persons in a dataset
that contained more than 14,000 images. This work can be a step
forward to have a visual surveillance system capable of establish-
ing connections between tracked objects across an arbitrarily com-
plex camera system, independent of the camera location and time
of capture.
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