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Abstract  

MATLAB to C translation is foreseen to raise the overall abstrac-
tion level when mapping computations to embedded systems (pos-
sibly consisting of software and hardware components), and thus 
for increasing productivity and for providing an automated model-
driven design-flow. This paper describes recent work developed in 
the context of MATISSE, a MATLAB to C compiler targeting em-
bedded systems. We introduce several techniques to allow the effi-
cient generation of C code, such as weak types, primitives and ma-
trix views. We evaluate the compiler with a set of 9 publicly avail-
able benchmarks, targeting both embedded systems and a desktop 
system. We compare the execution time of the generated C code 
with the original code running on MATLAB, achieving a geometric 
mean speedup of 8.1, and qualitatively compare our results with 
the performance of related approaches. The use of the new tech-
niques allowed the compiler to achieve performance improvements 
of 46% on average. 

Categories and Subject Descriptors  D.3.4 [Programming Lan-
guages]: Processors – Code generation, Compilers, Optimization, 
Retargetable compilers D.2.2 [Software Engineering]: Design 
Tools and Techniques  

General Terms Algorithms, Performance, Languages. 

Keywords  MATLAB; source-to-source compilers; embedded 
systems  

1. Introduction 

MATLAB [1] is a de facto standard matrix-oriented high-level dy-
namic programming language and interactive numerical computing 
environment in many domains in engineering and science, includ-
ing embedded systems, as it is ubiquitously used by engineers to 
quickly develop and evaluate their solutions. In many embedded 
system settings, however, the use of a MATLAB runtime is infea-
sible, either because it is not available, or due to performance and/or 
resource constraints. 

To address this problem, a solution is to rely on the automatic 
translation of MATLAB to the target programming language as 

provided, e.g., by the MATLAB Coder [2], which translates 
MATLAB to C code. Despite the inherent advantages of this ap-
proach, it typically has the disadvantage of low support to control 
and guide the code translation. The code generation is typically 
based on directives (GUI based in the case of the MATLAB Coder 
[2]) addressing types, shapes and target microprocessor. When 
dealing with the myriad of target architectures and toolchains in 
embedded systems, this approach presents a low level of flexibility, 
e.g., as the style of the C code generated might need to be tuned to 
the toolchain as is the case when targeting C to hardware compilers 
(e.g., Vivado HLS, Catapult-C). A MATLAB compiler framework 
aware of both the target computing platform and the toolchain when 
generating C code can be very important during the development 
process and may increase productivity and significantly reduce 
maintenance costs. 

Our work is focused on addressing these aspects by providing a 
multitarget/multichain MATLAB compiler framework. Our ap-
proach relies on MATISSE, a compilation tool firstly presented in 
[3], which generates C code directly from MATLAB. We explore 
the use of Aspect-Oriented Programming (AOP) [4][5] concepts, 
using the LARA language [6][7] as a vehicle to convey information 
to the compiler. For instance, in previous work we have used 
LARA to help MATLAB compilation (e.g., to define the types and 
shapes of variables [3]). In this work we show that specializing C 
code for a given target can have a significant impact, and we see 
LARA as a way to communicate target-specific information with-
out modifying the original code. 

This paper describes the application of a number of techniques, 
such as weak-types, primitives and views with pointers in order to 
improve the performance achieved with the C code generated by 
MATISSE. 

The remainder of this paper is organized as follows. Section 2 
briefly presents the MATISSE compiler and describes some of the 
techniques and optimizations applied during MATLAB-to-C trans-
lation. Section 3 shows the experimental results, Section 4 presents 
the related work, and finally, Section 5 concludes the paper. 

2. The MATISSE Compiler 

MATISSE is a MATLAB compiler framework, which consists of 
a MATLAB-to-C compiler targeting embedded systems, and a 
LARA-controlled MATLAB weaver which allows transformations 
over MATLAB code and communication of user information. It 
can be used as a source-to-source code transformation and instru-
mentation tool (e.g., one can use LARA to insert and transform ar-
bitrary MATLAB code) allowing developers to quickly and relia-
bly generate reference C implementations, a key step in the devel-
opment of embedded applications. The transformation stage of the 
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compiler performs weaving actions such as insertion of code, defi-
nitions of types and shapes, and code specialization based on de-
fault values. The knowledge regarding data types and shapes, pro-
vided by LARA aspects, allows MATISSE to generate highly cus-
tomized C code that conforms to the requirements of a specific tar-
get. 

2.1 Weak Types 

On our initial experiments, we observed that the performance of the 
generated code could be significantly improved if we could reduce 
the number of cast operations. For instance, consider the MATLAB 
expressions in Figure 1(a) and suppose that variable s has been pre-
viously inferred as a single. When inferring the type of constant c 
we need some kind of default type. In the case of MATLAB, it uses 
double as the type of all numeric constants (MATISSE distin-
guishes between integer and real constants, and uses user-defined 
defaults). According to MATISSE semantics, the result of an addi-
tion between a single and a double should return a double. Consid-
ering the type of c is a double, we obtain the code r = c + (dou-
ble) s; where one cast is introduced. Note that if we generate the 
C code c + s, it still has an implicit cast operation introduced by 
the compiler. 

In the previous case, it will be beneficial if the constant has the 
same type of s. According to the type of s, the compiler should gen-
erate the code in Figure 1(b) or in Figure 1(c). We introduce the 
concept of weak type to refer to types that can be changed by type 
inference to lower or higher precision according to the needs. In 
Figure 1(a), by marking the type of the constant c as a weak double, 
the type inference system will determine that it is better to be a sin-
gle (Figure 1(c)) or a double (Figure 1(b)), and back-propagate the 
type. In our current approach the compiler coalesces the different 
types that might be inferred for each variable into a single type (e.g., 
single and weak double into single). Weak types are being used to 
help the compiler do type coalescing. Generally, the types of con-
stants in MATISSE are considered to be weak-types (this includes 
the types of functions that returns constants, such as zeros or ones). 

c = 1.5; 

r = c + s; 

double c, r, s; 

c = 1.5; 

r = c + s; 

single c, r, s; 

c = 1.5f; 

r = c + s; 

(a) (b) (c) 

Figure 1. Example to explain weak types: (a) MATLAB code; (b) 
C code resultant when s was inferred as a double; (c) C code re-
sultant when s was inferred as a single. 

However, weak-types should not always be ignored. For in-
stance, consider that variable s was inferred as an integer. If c, a 
constant of a floating-point type, is ignored, variable r will be in-
ferred as an integer, which probably is not what is intended. Alt-
hough a weak type does not provide guarantees about the type, it 
does have some information about what is expected of the type, and 
when doing type inference that information should be taken into 
account. For instance, in this case the type of c has the property 
Real. 

Figure 2 shows an algorithm for choosing which types should 
be considered for type inference for each expression. It starts with 
a list containing all the types of the expression (e.g., the input types 
of the addition, plus possibly a suggestion for the output type) and 
then splits the types into weak types and non-weak types. If one of 
the lists is empty, then all types are considered for type-inference. 
Otherwise, the algorithm collects the properties for all non-weak 
types. For each weak type, it then checks if it has properties that 

should be considered, in comparison with the properties of the non-
weak types; if the answer is affirmative, the weak type is used for 
type inference. MATISSE currently uses two properties, Real and 
DynamicallyAllocated, and we are currently working on the prop-
erty Range. The same type can have more than one property, and 
the type inference is enough flexible to deal with other properties 
that might be added. 

// Input: list of types from an expression 

List exprTypes  

// Output: list of types to be used in type in-

ference for the expression 

List inferenceTypes  

// Select non-weak types 

List nonWeakTypes = exprTypes.NonWeakTypes  

// Select weak types  

List weakTypes = exprTypes.WeakTypes 

// When there is no mix of weak and non-weak 

if nonWeakTypes.isEmpty || weakTypes.isEmpty  

  inferenceTypes.add(exprTypes) 
  return 

// Properties of non-weak types 

Map nonWeakPr = getProp(nonWeakTypes)  

// All non-weak types are used in inference  

inferenceTypes.add(nonWeakTypes)  

 

for each weakType in weakTypes 

  Map weakTypePr = getProp(weakType) 

  if considerWeakType(weakTypePr, nonWeakPr) 

    inferenceTypes.add(weakType) 

Figure 2. Algorithm to choose which types to use in type infer-
ence. 

2.2 MATISSE Primitives 

When generating code for a given core functionality set, such as 
some built-in and toolbox functions, MATISSE uses templates 
written in C or in MATLAB. However, sometimes it is not possible 
to write code that will be translated efficiently to C using pure 
MATLAB. Consider that we want to initialize a matrix using infor-
mation from other matrix (in MATLAB we can do it using the code 
in Figure 3 (a)). Also, before they are read (e.g., output of an ele-
ment-wise mapping operation – see Section 2.4). In this case, one 
can just allocate the memory and avoid initialization. Furthermore, 
there is a call to the function size (which creates a matrix) that 
could be avoided, since we can directly use the data in the matrix 
that is given as input. 

To enable the generation of more efficient code from MATLAB 
templates, MATISSE internally uses primitive functions that can be 
called from MATLAB code. Primitive functions are MATLAB 
functions that MATISSE understands and usually translates to 
more low-level C constructions. 

For instance, assuming we are using dynamic matrices, the 
MATLAB code in Figure 3 (a) is translated to the C code in Figure 
3 (b). Note that it allocates a new array for size, and calls a function 
that initializes the values to zero. If instead we use a strategy that 
maps the function zeros to the MATISSE primitive ma-
tisse_new_array_from_matrix (Figure 3 (c)) the C code gener-
ated will use a C function to allocate memory to a dynamic matrix 
(Figure 3 (d)). Also, it will directly read the shape information of 
matrix A, instead of allocation a new matrix with the shape of A. 

Examples of other primitives are matisse_change_shape, which 
changes the shape of a matrix directly, instead of creating a new 
matrix with the new shape, and matisse_to_real, which casts an el-
ement to the default real type defined in MATISSE. In addition 



there are primitives for debugging and exploration. For instance, 
matisse_probe accepts an arbitrary MATLAB expression and stat-
ically reports the output type inferred for that expression. 

MATISSE primitives are extensively used in the internal 
MATLAB templates that implement certain functions, and can also 
be mapped with LARA strategies and woven by MATISSE before 
generating the C code (i.e., it is possible to use them directly in any 
.M file, for instance during transformations with LARA aspects). 
MATISSE also provides a compatibility library with MATLAB im-
plementations of the primitives, so that MATLAB code which uses 
primitives can still run in MATLAB (for instance, to test the out-
puts). 

(a) C = zeros(size(A)); 

(b) zeros_double(size_d(A, &temp_m0), C); 

(c) C = matisse_new_array_from_matrix(A); 

(d) new_array(A->shape, A->dims, C); 

Figure 3. Example of a MATISSE primitive function: (a) original 
MATLAB code; (b) C code generated; (c) MATLAB code repre-
senting the mapping of function zeros to the MATISSE primitive 
matisse_new_array; (d) C code generated using the MATISSE 
primitive. 

2.3 Matrix Views 

A view is a section of a matrix, which is accessed using the colon 
operator (e.g., A(N:M)). Such accesses are very common in 
MATLAB, and the most straightforward way to implement them is 
to create a temporary matrix with a copy of the values in the range 
specified by the operator. In the other hand, if the range has a step 
of 1 we can avoid copying the values and just use a pointer to the 
beginning of the range (i.e., a matrix view). 

However, it is not always possible to use matrix views, for in-
stance, when the potential view is on the right hand of an assign-
ment, over a local variable, and the recipient is an output of the 
function (e.g., output_var = local_var(N:M)). The problem with 
this case is that when using a view with pointers, output_var will 
point to the values in local_var. However, after the function ends, 
local_var is freed and output_var will point to nothing. Although 
currently MATISSE detects this case and uses a view by copy, we 
are considering the use of a reference-counting mechanism to avoid 
copies in cases like this. 

2.4 Transforming Element-Wise Mapping Operations 

Certain MATLAB operators and functions (e.g., addition, subtrac-
tion, square root) perform element-wise mapping operations. These 
operations output a matrix with the same size as the input matrix or 
matrices, and each element of the output depends on the element of 
the input matrices that is on the corresponding position. In the pres-
ence of chained-operations, allocating a new matrix for each oper-
ation is inefficient. Thus, if MATISSE identifies a chain of function 
calls as being mapping operations, it rewrites them to for loops (see 
Figure 4). The for loop is more efficient to implement in C and it 
also exposes parallelism. 

Note that some functions are mapping operations depending on 
the types of input. For instance, the multiplication operator (*) is 
element-wise if one of the operands is a scalar, but not if both are 
matrices. 

2.5 Algebraic Analysis for Ranges Determination 

Figure 5 shows a segment of code which uses arithmetic expres-
sions to determine a range of values for matrix A. To be able to 
generate code using static memory allocation, we need to know the 
size of all matrices at compile time, which in the case of matrix B, 
implies knowing the number of elements in the range for matrix A. 

The number of elements in a range of values is given by the 
equation end – start + 1, which for the range in matrix A corre-
sponds to the expression (N×M×i) - (N×M×(i-1) + 1) + 1. MA-
TISSE generates the expression and then applies an algebraic 
solver (it currently uses the library Symja [8]) to calculate the num-
ber of elements in the range (N×M, in this case). If N and M are stat-
ically known, MATISSE then substitutes the expressions to con-
stants, and is able to generate a static version of the code. 

(a) R = sqrt((A .* A) + (B .* B)); 

(b) 
sqrt_e((add_e(((mult_e(A, A, temp_m0))), 

((mult_e(B, B, temp_m1))), temp_m2)), R); 

(c) for(i = 0; i < numel_A; i++){ 

  R[i] = sqrt(A[i]*A[i] + B[i]*B[i]); 

} 

(d) sqrt_e((add_e(((mult_e(A, A, &temp_m0))), 

((mult_e(B, B, &temp_m1))), &temp_m2)), R); 

(e) new_array_helper_f(A->shape, A->dims, R); 

for(i = 0; i < A->length; i++){ 

  (*R)->data[i] = sqrt( 

           A->data[i]*A->data[i] +  

           B->data[i]*B->data[i]); 

} 

Figure 4. Element-wise example: (a) a MATLAB statement of el-
ement-wise operations; (b) the equivalent C with static allocation 
when element-wise transformation is disabled and (c) enabled; (d) 
the equivalent C with dynamic allocation when element-wise 
transformation is disabled and (e) enabled. 

B = A(N*M*(i-1)+1:N*M*i); 

Figure 5. Example of code that uses expressions to determine 
ranges. 

2.6 Using Third Party Libraries 

Using third party libraries is important for generating high-perfor-
mance code. For instance, the benchmark closure, which spends 
most of its execution time in matrix multiplication operations, can 
run orders of magnitude slower if instead of BLAS [9] we use a 
simple matrix multiplication implementation. It is also important to 
control when libraries and which ones should be used or not. For 
small matrix sizes the use of BLAS can be less efficient than a sim-
ple matrix multiplication version. MATISSE addresses these as-
pects using LARA strategies and including support to interface to 
third-party libraries (at the moment the support allows the use of 
BLAS). Further improvements will focus on the specification of li-
brary interfaces to make MATISSE more flexible. 

3. Experimental Results 

We present here an evaluation of the MATISSE compiler using a 
set of MATLAB programs obtained from various sources. We con-
sider three platforms for our experiments:  



 PC – a desktop PC with a 2.66 GHz Core 2 Quad processor, 
Windows 7 64-bit, 12 GB of RAM;  

 ODROID – an ODROIDXU+E board, with an Exynos 5410 
SoC with an 1.6 GHz ARM’s big.LITTLE configuration, 1 
GB of RAM;  

 BeagleBoard – a BeagleBoard-XM revB running Ubuntu 
12.10 32-bit, with a 1 GHz ARM Cortex-A8 and 512 MB of 
RAM.  

We use GNU gcc 4.8 on all platforms, MATLAB R2014a on 
the desktop, and OpenBLAS v0.2.12 as the BLAS library. We have 
also made available an online version of MATISSE [10]. 

3.1 MATLAB vs C Results 

Figure 7 compares the performance between C code generated by 
MATISSE and C code generated by MEGHA [11]. Although ME-
GHA focuses on generating CUDA-enabled code, they also present 
good C performance. We tried to replicate in MATISSE the exper-
imental setup used by Prasad et al. [11], by using input matrices 
with the same sizes, and adjusting inputs in certain cases so that we 
could get approximate absolute MATLAB execution times for the 
same benchmarks. Although it is not possible to directly compare 
the results, since the hardware and the software used in the experi-
ments are different, the relative performance to MATLAB can give 
an indication of the performance of the C code. Also, consider that 
the C code currently generated by MATISSE does not target mul-
ticore architectures, and one of the planned steps is to generate C 
code with OpenMP directives. 

In general, MATISSE achieves speedups in line with the ones 
published for MEGHA for C code (8.1 and 5.6 of geometric 
mean for MATISSE and MEGHA, respectively). The case where 
there was a greater difference between MEGHA and MATISSE, 
when considering the biggest inputs, was editdist (a 2.8 in perfor-
mance). We think this might have to do with editdist being the only 
example that can be implemented using only integers, a case that 
MATISSE can optimize aggressively using aspects. 

The closure example is dominated by matrix multiplication and 
since both MATLAB and MEGHA use BLAS to perform matrix 
multiplications, the performance is roughly the same. 

Since the Core2Quad is relatively an old processor (i.e., 2008), 
we ran the same benchmarks using a processor with a newer archi-
tecture, to validate the data in more modern PC processors (i.e., an 
AMD A10-7850K 4.10GHz, from 2014). Although there were dif-
ferences in speedups of more than 160% on some of the individual 
benchmarks with larger datasets (either faster or slower), we meas-
ured a similar geometric mean speedup of 8.0. 

3.2 Matrix Views Results 

We used a synthetic benchmark (copy_vs_ptr) to test the potential 
of using views with pointers instead of views by copy (see Section 
2.3). When we enable the use of views with pointers, we obtain 
speedups of 1.8, 1.4 and 1.5 for the PC, ODROID and Beagle-
Board, respectively. We associate the higher speedups on the PC as 
in this system there is a bigger penalty for copying data. The PC 
also achieved better performance on other benchmarks after ena-
bling views with pointers, such as closure (1.6), fdtd (1.3), and 
nbody3d (1.3). 

3.3 Third-Party Libraries and Target-Specific Parameters 

The benchmark closure spends most of its execution time in ma-
trix multiplication operations, and can run orders of magnitude 
slower if instead of BLAS we use a simple, straight forward, ver-
sion of matrix multiplication (e.g., 94 times slower on PC when 
N is 1,024). Figure 6 shows the impact on performance speedup of 

the BLAS version of the closure benchmark over a simple imple-
mentation for different input sizes. Using the library for certain in-
put sizes can cause slowdowns. However, the threshold to decide if 
it is more advantageous to use BLAS changes with the target plat-
form: on the PC, the use of BLAS provides clear speedups when 
the input size is 16, but on the BeagleBoard, for an input size of 32 
it is still slower to use BLAS. The speedup using BLAS in the PC 
decreases from 2.6 to 1.3 for values of N between 16 and 32. 
When we observe the behavior of both implementations separately, 
the behavior of the simple algorithm is more predictable, while the 
behavior using BLAS is more dependent on the data sizes. BLAS 
is a very complex and highly optimized package, whose internals 
can change from version to version.  

Another benchmark using matrix multiplications is nbody3. In 
this case, if one sets a low enough threshold MATISSE will use 
BLAS in all cases of matrix multiplication and have a 9% perfor-
mance degradation as result, for the tested input sizes.  

MATISSE allows the specification of strategies for statically 
deciding about the use of a certain implementation (future work 
will consider the runtime selection of implementations). The num-
ber of elements of a matrix is an example of a parameter that can 
be possibly discovered by auto-tuning, and that can be defined ex-
ternally as a target-dependent optimization in a LARA aspect. We 
take the pragmatic approach of treating this kind of libraries as a 
black-box, and our future work will focus on how to automatically 
discover the parameters which better suit a given target. 

   
Figure 6. Speedups of closure using BLAS over the use of simple 
implementations for matrix multiplication according to data sizes. 

3.4 Element-Wise Mapping Operations 

If a program spends a significant amount of time using element-
wise operations, transforming such operations to for loops can yield 
significant improvements (see Table 1). The benchmark hypote-
nuse (see Figure 4) spends almost all of its runtime doing element-
wise operations, and can be used as an indicator of the maximum 
improvement we can obtain from such transformation. In the case 
of the PC and ODROID, we achieved a speedup of 3.7 and 3.2, 
respectively. In the BeagleBoard the benchmark achieved a signif-
icantly lower gain, 1.6. Inspecting the assembly of this bench-
mark, we concluded that the speedups come from the C compiler 
being able to vectorize the code automatically after transforming 
the operations to for loops, using special instructions available in 
the processors (SSE in the case of PC, and NEON in the ARM Cor-
tex-A15 used in the Exynos 5410 of the ODROID board). The 
higher overheads in function calling, the worse code locality and 
the lack of support to vectorization in the BeagleBoard processor 
contributed to the lower speedups. 
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3.5 MATISSE Primitives 

On the PC the use of the MATISSE primitives has some impact in 
the performance, while in the other platforms used there are virtu-
ally no difference (see Table 2). We think this happens because im-
provements of current primitives are related to avoiding setting 
newly allocated memory (matisse_new_array_from_matrix). Since 
in the PC the cost of memory operations is higher when compared 
with the other tested platforms, this kind of optimizations are more 
noticeable. 

Table 1. Speedups achieved when applying the element-wise to 
for transformation. 

Benchmark 
Platform 

PC ODROID BeagleBoard 

capacitor 1.3 1.0 1.0 

hypotenuse 3.7 3.2 1.6 

nbody1d 1.8 1.1 1.2 

Table 2. Speedups obtained when using MATISSE primitives. 

Benchmark 
Platform 

PC ODROID BeagleBoard 

capacitor 1.5 1.04 1.04 

crnich 1.3 1.02 1.02 

hypotenuse 1.3 1.14 1.01 

nbody1d 1.3 1.06 1.02 

4. Related Work 

The popularity of the MATLAB language is also reflected in the 
similar languages that have been proposed (e.g., Octave [12]). 
Given the importance of MATLAB there have been research efforts 
to improve the execution of JIT MATLAB compilers. A recent ex-
ample is the compiler presented in [13] which performs function 
specialization based on the runtime knowledge of the types of the 
arguments of the functions. Yet, the need to avoid a MATLAB 
runtime system in most embedded systems has led to the develop-
ment and research on how to best translate MATLAB programs 
into equivalent C code. 

The translation of MATLAB to other programming languages 
is not recent. For instance, DeRose and Padua developed the FAL-
CON environment [14][15] that translates MATLAB to 
FORTRAN90 code. They leverage an aggressive use of static and 
type inference for base types (doubles and complex) as well as 
shape (or rank) of the matrices. Other researchers have explored the 
reuse of storage for array variables across a MATLAB code thus 
reducing the memory footprint of the corresponding C reference 
code [16]. Joisha et al. [17][18] focused on type and shape infer-
ence techniques. Researchers have also relied on a mix of type in-
ference approaches and user’s provided information. For instance, 
[19][20] use annotations to specify data types and shapes and sim-
ple type inference analysis and target VHDL code specification for 
hardware synthesis onto FPGAs.  

The Sable Lab at McGill University have done extensive work 
around the MATLAB language [21], including an AOP-extension 
[22], a virtual machine [23] and code generators for several lan-
guages, such as Fortran95 [24] and X10 [25]. One of their focus is 
on having formal descriptions of MATLAB semantics. Although 
this is out of MATISSE scope, they describe several analysis and 
transformations that are relevant to our current work, and that we 
want to implement in the future (e.g., kind analysis [26], language 
simplification [27]). 

MATLAB Coder [2] is Mathworks solution for MATLAB to C 
compilation. They support a large subset of MATLAB, and allow 

the code to be customized through directives and options. However, 
the customization is fairly coarse-grained, and finer control (e.g., 
addressing types, shapes, and target) is supported by direct modifi-
cation of the MATLAB source code. When dealing with the myriad 
of target architectures and toolchains in embedded systems, this ap-
proach presents a low level of flexibility, e.g., as the style of the C 
code generator might need to be tuned to the toolchain as is the case 
when targeting C to hardware compilers. 

MATISSE differs from the previous approaches in several as-
pects. First, its focus is on exploring several C implementations for 
multitarget solutions, unlike other approaches which have a larger 
focus on the MATLAB language itself and how to generate a single 
correct implementation [21]. In the multitarget context, it is very 
important to have a high degree of customization of the generated 
code. As an example, MATISSE allows defining the type of any 
variable in the code, unlike Coder, which only allows to set the 
types of the function inputs [2]. MATISSE main goal is to custom-
ize the output code without modifying the source code, hence the 
use of AOP concepts to control the customization. Furthermore, 
since MATISSE mainly targets embedded systems, it considers that 
the generated code will be run in environments where a MATLAB-
compatible runtime might not be available, unlike hybrid ap-
proaches [28]. Orthogonally to the work presented in this paper, the 
MATISSE compiler is being extended with OpenCL generation 
[29], and to the best of our knowledge, it is the first tool that gen-
erates OpenCL kernels from MATLAB. 

5. Conclusion 

This paper presented recent improvements in MATISSE, a multi-
target/multichain compiler framework for compiling MATLAB to 
low level programming languages such as C. MATISSE relies on 
LARA aspects for specifying data types, shapes, and code instru-
mentation and specialization. The compiler includes a type and 
shape inference stage and is able to generate MATLAB and C code. 
We presented some transformations and optimizations performed 
by the compiler. The results reveal that transformations such as de-
tecting element-wise operations and operations such as matrix mul-
tiplications justify the use of a higher abstraction such as MATLAB 
as a starting point for specialized implementations in C. The exper-
iments reveal promising performance results, achieving a geomet-
ric mean speedup of 8 over execution in MATLAB when consid-
ering a set of benchmarks previously used in literature. These re-
sults indicate a possible improvement when compared with a re-
lated state-of-the-art MATLAB compiler. 

Ongoing work is focused on further optimizations for generat-
ing C code and on enhancing the flexibility of the code generators 
for efficient multitarget/multichain, such as generating C tailored 
for hardware generation through High-Level Synthesis tools, and 
on enhancing the OpenCL backend for GPUs and FPGAs. 
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Figure 7. Speedup of C code vs MATLAB, for C generated by MATISSE and MEGHA [11]. 
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