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Abstract Nowadays, organizations are often faced with the development of complex
and innovative projects. This type of projects often involves performing tasks which
are subject to failure. Thus, in many such projects several possible alternative actions
are considered and performed simultaneously. Each alternative is characterized by
cost, duration, and probability of technical success. The cost of each alternative is
paid at the beginning of the alternative and the project payoff is obtained whenever
an alternative has been completed successfully. For this problem one wishes to find
the optimal schedule, i.e., the starting time of each alternative, such that the expected
net present value is maximized. This problem has been recently proposed in [22],
where a branch-and-bound approach is reported. Since the problem is NP-Hard,
here we propose to solve the problem using genetic algorithms.

1 Introduction

Companies must plan and optimize their activities in a uncertain environment. The
uncertainties may come from several different parts of their business. The uncertain-
ties most commonly addressed in the literature are related to the costs and returns
associated with the business. Regarding scheduling problems the most frequently
studied uncertainties are resource breakdowns and duration variability. However,
other sources of uncertainty exist. For example, Research and Development (R&D)
companies, highly dependent on innovation, also face uncertainty regarding the suc-
cess of their initiatives. These initiatives, usually called projects, may fail. Thus, in
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order to deal with this kind of uncertainty companies may have to consider sev-
eral alternative ways of developing their projects (see e.g. [27, 28]). In this type
of projects, the alternatives are of the same kind, although different, and pursue a
similar goal. For example, their execution may represent the repetition of trials until
success in one is achieved. Usually, the alternatives are related and some alterna-
tives may imply the execution of some other alternatives, i.e. there are precedence
relations between some of the alternatives.

This work addresses the scheduling of alternatives subject to technical failure, in
order to maximize the expected Net Present Value (NPV) of the projet. The NPV of
a project is the discounted value of the project cash flows. The NPV is affected by
the project schedule and in capital-intensive industries, the timing of expenditures
has a major impact on project feasibility and profitability.

Most of the relevant sources of literature considering activity failure come from
chemical engineering applications, where Grossmann and his colleagues have been
addressing such problem. In [25] a mixed integer linear programming model was
proposed to schedule the activities of a single product considering precedence con-
straints. Activities have associated a cost, a duration, and a probability of success.
The objective was to minimize the expected cost. This model was subsequently used
on a specific application [26]. In [20] the authors propose a two stage stochastic op-
timization approach to account for the uncertainty in the outcome of the trials. A
recent survey on optimization challenges and opportunities in the pharmaceutical
industry can be found in [19].

Other scheduling problems involving activity failures have been addressed, see
the survey in [7]. De Reyck and colleagues study the scheduling of activities with
uncertain outcomes, where project success is achieved only if all individual activ-
ities succeed. In [8], the authors have considered the project scheduling problem
with uncertain activity outcomes and known durations. This work was extended in
[6, 4] where activity durations are stochastic. More recently, in [2] the scheduling
of projects subject to failure has been considered. In this problem, several projects,
each consisting of several activities, have to be scheduled. If an activity of a project
fails, the project fails. The authors also consider resource constraints and the pos-
sibility of outsourcing. Modular projects, i.e., projects that include the execution of
several modules, each of which consisting of several activities, have been consid-
ered in [3, 5]. For such a project to be successful every module must succeed. A
module succeeds if at least one of its activities succeeds. In the former work, activ-
ity durations are deterministic and activities must be performed sequentially, while
in the latter the durations are stochastic and the resources unlimited.

Following on the work of Ranjbar and Morteza [23], we focus on a single firm
facing a R&D project or the development of a new product. There are several alter-
natives of executing the project and its success requires the successful execution of
at least one of the available alternatives. Each alternative consists of a single activity
and is characterized by a cost, a duration, and a probability of technical success. The
successful completion of the project provides a given payoff. These alternatives can
be pursued either in parallel or sequentially. The objective is to schedule the activ-
ities in such a way as to maximize the expected Net Present Value (eNPV) of the
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project. The eNPV takes into account the activity costs, the cash flows generated by
the successful completion of project, the activity durations and starting times, and
the probability of failure of each of the activities. Some alternatives may imply the
implementation of other alternatives. This is a recently proposed problem and it has
been addressed by exact methods only [22, 23]. Since this is a NP-hard problem
(see [23]), an exact algorithm without an exponential time complexity is unlikely to
exist. Thus, in here we propose a genetic algorithm since only heuristic methods are
able to solve real sized problems.

Section 2 defines and provides a mathematical programming model for this prob-
lem. Section 3 discusses the methodology proposed to solve the problem and in
Section 4 the computational experiments are reported. Finally in Section 5 some
conclusions are drawn.

2 Problem Definition and Formulation

Given a project for which there are several alternative ways of execution, one wishes
to determine the order in which these alternatives should be executed such that the
project expected net present value is maximized. Alternatives pursue a similar tar-
get and consist of one activity'. Activities should be executed without interruption
and are characterized by a cost, a duration, a set of precedence constraints, and a
probability of technical success. Activity costs are to be paid at the start of the ac-
tivity. The outcomes of the different tasks are considered to be independent. The
successful completion of a project provides a payoff and is achieved if at least one
alternative is successfully executed.

Before introducing the mathematical programming model, let us illustrate the
problem by resorting to the example used in [23]. Consider a project consisting of 5
alternatives, for which the information is given in Table 1. Note that the execution of
activity 4 requires activity 1 to be previously executed. Nevertheless, activity 4 can
be executed and be successful regardless of the outcome of the execution of activity
1. It is assumed a 5% monthly discount rate, a project deadline of 29 months, and a
project payoff, achieved in case of technological success, of 2770 dollars.

These alternatives can be scheduled in many different ways. The two extreme
ones being, the parallel and the sequential schedules. These schedules are given in
Fig. 1.

Note that, while the parallel schedule anticipates the project completion and thus
the net payoff is larger, it also leads to the highest costs since it starts activities
without waiting to find out if the previously started one has had success. Thus, in
this type of schedules some, in progress, alternatives of the project will be ignored.
For instances, if activity 5 has success activities 1 and 2, which have already been
initiated and paid for will be ignored. Here the costs are typically higher. In the serial
schedule, since only one activity is being performed at any time this risk does not

! Since each alternative consists of a single activity, here and hereafter we will use indifferently
alternative and activity.
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Table 1 Alternatives data (the costs are given in dollars and the duration in months).

Alternative Costs Duration PTS Precedent
number S (months) activities
1 51 8 0.73 -

2 31 6 0.62 -

3 87 3 0.91 2

4 28 7 0.57 1

5 80 4 0.86 -

eNPV=2058.96

Time 0 4 ] 8 9 15

eNPV=2083.61

Time 0 4 10 13 21 28

Fig. 1 Extreme Schedules: Parallel and Serial Schedules.

exist. Therefore, it is more conservative in terms of costs. However, in this case if an
alternative fails it takes longer to be able to have another tried and thus, the project
payoff is typically smaller since it is obtained later. Therefore, a trade-off between
costs and project payoff (project duration) must be searched for.

At time ¢ the project payoff C is obtained if and only if at least one of the activities
finishing at time 7 (A;) succeeds and all activities that have finished before time ¢
(By) have failed; otherwise the payoff had already been received. Thus, the expected
payoff at time ¢ is given by:

[Ta=pp)x|1-TT0=po) | xC. (1)
Jj€B; keA;

As said before, each activity i has a cost (¢;) associated to its execution that
must be paid upfront, i.e., at the time that the activity is started (s;). In addition, an
activity is only started if all activities that have finished before (By,) or at (Ay,) its
starting time have failed; otherwise the project had already been concluded. Thus,
the expected cost incurred with activity i at its starting time s; can be written as:

(l—pj)XCi. (2)
J€{Bs; UAs;}
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A summary of the notation used is provided in Table 2.

Table 2 Notation used for the mathematical programming model).

Symbols Description

N set of available alternatives.

i,j,k alternative indices.

¢ cost of alternative i.

d; duration of alternative i.

Di probability of technical success of alternative i.

bmax project deadline.

t time index.

C Project payoft.

r discount rate.

A set of precedence constraints.

B, auxiliary decision variable: set of alternatives finishing before .
A, auxiliary decision variable: set of alternatives finishing at 7.
Si decision variable: starting time of alternative i.

The project net value is then obtained by subtracting all expected costs from
all expected payoffs. However, since we are maximizing the project expected net
present value, the costs and payoffs given by equations (1) and (2) need to be dis-
counted. The scheduling decisions are only constrained by the precedence relations
amongst the alternatives. Therefore, the complete mathematical model is as given
in equations (3) to (5).

Minimize % [T -p)x (1= T[(1=p0) | xCxe™
=1 \jeB, ke,
(I—pj) xcixe ™ 3)
JE€{Bs; UAy; }
Subject to
si+d; <sj, VjeAandVieN. (4)
s; €N, Vie NT, )

3 Methodology

In this section, we provide an overview of the proposed solution process. This is
followed by a discussion on the proposed Biased Random-Key Genetic Algorithm
(BRKGA), including detailed descriptions of the solution encoding and decoding
procedures, evolutionary process, and fitness function.
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3.1 Overview

The new approach is based on a constructive heuristic algorithm which inserts ac-
tivities, one at a time, in a partial schedule for the problem. Once all the activities
are inserted, a solution is obtained. The new approach proposed in this paper com-
bines a BRKGA with a novel insertion decoding procedure. The role of the genetic
algorithm is to evolve the encoded solutions, or chromosomes, which represent the
parameters that will be used by the solution builder to construct a schedule. For
each chromosome, the following phases are applied to decode the chromosome:

1. Decoding of the parameters: this first phase decodes the chromosome into a se-
quence of activities, as well as each activity scheduling mode (SM). The former
determines the activities to be started, while the latter determines whether each
activity is scheduled forward or backward.

2. Construction of a solution: The second phase makes use of the activities and
SMs defined in phase 1 and uses the solution builder procedure to construct a
schedule.

3. Fitness evaluation: The final phase computes the fitness of the solution, by com-
puting the expected net present value as given in equation (3).

Fig. 2 illustrates the sequence of decoding steps applied to each chromosome
generated by the BRKGA. The remainder of this section describes in detail the
genetic algorithm.
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Fig. 2 Architecture of the algorithm.
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3.2 Biased random-key genetic algorithm

Random-key genetic algorithms (RKGA) or genetic algorithms with random keys
were introduced in [1] for solving sequencing or optimization problems whose solu-
tions can be represented as permutations. In a RKGA, chromosomes are represented
as vectors of randomly generated real numbers in the interval [0, 1]. A deterministic
algorithm, the decoder, takes as input a chromosome and associates with it a so-
lution of the combinatorial optimization problem for which an objective value or
fitness value can be computed.

RKGAs are particularly attractive for sequencing problems and/or when the chro-
mosomes have several parts (see for example [15], [18], [16], [17], [11], [13], [10],
[24], and [12]). Unlike traditional GAs, which need to use special repair procedures
to handle permutations or sequences, RKGAs move all the feasibility issues into the
objective evaluation procedure and guarantee that all offspring formed by crossover
result into feasible solutions. When the chromosomes have several parts, traditional
GAs need to use different genetic operators for each part. However, since RKGAs
use the parameterized uniform crossover of [29] (instead of the traditional one-
point or two-point crossovers), they do not need to have different genetic operators
for each part.

A RKGA evolves a population of random-key vectors over a number of genera-
tions (iterations). The initial population is made up of p vectors of r random keys.
Each component of the solution vector, or random key, is generated independently
at random in the real interval [0, 1]. After the fitness of each individual is computed
by the decoder in generation g, the population is partitioned into two groups of indi-
viduals: a small group of p, elite individuals, i.e., those with the best fitness values,
and the remaining set of p — p, non-elite individuals. To evolve a population g, a
new generation of individuals is produced. All elite individuals of the population of
generation g are copied without modification to the population of generation g+ 1.
RKGAs implement mutation by introducing mutants into the population. A mutant
is a vector of random keys generated in the same way that an element of the initial
population is generated. At each generation, a small number p,, of mutants is in-
troduced into the population. With p, + p,, individuals accounted for in population
g+ 1, p— p.— pm additional individuals need to be generated to complete the p
individuals that make up population g + 1. This is done by producing p — p, — pm
offspring solutions through the process of mating or crossover.

A BRKGA [14], differs from a RKGA in the way parents are selected for mating.
While in the RKGA of [1] both parents are selected at random from the entire current
population, in a BRKGAs each element is generated by combining a parent selected
at random from the elite partition of the current population with another from the rest
of the population, also randomly selected. Repetition in the selection of a parent is
allowed and therefore an individual can produce more than one offspring in the same
generation. As in RKGAs, parameterized uniform crossover is used to implement
mating in BRKGAs. Let p, be the probability that the vector component of an elite
parent is inherited by the offspring. For i = 1,...,r, the i-th component c(i) of the
offspring vector c takes on the value of the i-th component e(i) of the elite parent e
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with probability p, and the value of the i-th component &(i) of the non-elite parent
¢ with probability 1 — p,.

Once the next population is complete, the corresponding fitness values are com-
puted for all of the newly created random-key vectors and the population is parti-
tioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization prob-
lem indirectly by searching the r-dimensional continuous hypercube, using the de-
coder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

To specify a BRKGA, one simply needs to specify how solutions are encoded
and decoded and how their corresponding fitness values are computed. This is done
in the next sections.

3.2.1 Chromosome representation and decoding

A chromosome encodes a solution to the problem as a vector of random keys. In a
direct representation, a chromosome represents a solution to the original problem,
and is called genotype, while in an indirect representation it does not and special
procedures are needed to obtain from it a solution called a phenotype. In the present
context, the solutions will be represented indirectly by parameters that are later used
by a decoding procedure to obtain a solution. To obtain the solution (phenotype) we
use the decoding procedures described in Section 3.2.2.

In this paper, a solution to the problem is represented indirectly by the chro-
mosome structure given in Fig. 3, where n is the number of activities. Overall the
chromosome has n+ (n— 1)2n genes.

Chromosome = ( gene,, ..., geney ,
genep.s , .- » geNen.n, 9eNenines , --- , 9€N€Hsnsn
genep,napznet s -+ s 9eNenymaonan s 98Ny Mo2nsn+r » 98NN 22NN+ )

Fig. 3 Chromosome representation.

The genes in blue are used by the solution builder (decoding procedure) to deter-
mine which activity or activities are to be scheduled at each iteration into the partial
schedule and the genes in red are used to decide whether the activity chosen is go-
ing to be scheduled forward or backward. Note that in the first iteration the activities
must always be scheduled forward. An activity is considered schedulable if all of its
predecessors have already been scheduled and if its blue gene value is greater than
or equal to 0.5. If the value of the red gene is greater than or equal to 0.5 then the
chosen activity is scheduled backward; otherwise it is scheduled forward.

The decoding (mapping) of each chromosome into a schedule is performed by
the solution builder, which described in the next section.
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3.2.2 Solution builder

The solution builder follows a sequential process that inserts activities into a partial
schedule. The order in which activities are inserted into the partial scheduled and
the corresponding mode (forward or backward) are evolved by the BRKGA. The
solution builder is comprised of the following two main steps:

1. Selection of activities to be inserted;
2. Selection of the mode used for the insertion in the partial solution of the activities
selected in step 1.

The possible insertion times for scheduling an activity are provided by the start-
ing (S) or ending times (E) of the activities already scheduled. Amongst these, we
are only interested on the ones that are feasible regarding the precedence relations
between activities.

To illustrate how the solution builder works we used again the example provided
in Table 1. A solution will be constructed using the chromosome in Fig. 4.

1 2 3 4 5

Act Act SIE Act SIE Act SIE Act SIE
0.7 02 0.4 012 0.41 0.12 0.41 0.4 0.23
0.2 01 0.3 0.9 0.3 0.09 0.03 0.55 0.58
0.1 0.33 0.3 0.23 0.3 0.63 0.37 0.6 0.55
0.25 0.46 0.2 0.26 0.2 0.76 0.14 0.5 0.95
0.14 0.85 0.62 0.15 0.62 0.05 0.62 0.4 012

Fig. 4 Chromosome example used in the illustration of the solution builder.

Initially only time zero is available for scheduling one or more activities. Ac-
cording to the precedence constraints the activities which are schedulable are 1, 2,
and 5. However, only activity 1 has a blue gene value greater than or equal to 0.5
(0.7), so activity 1 is the only one selected for insertion into the partial schedule.
Since this activity is scheduled at time 0, it must be scheduled forward. At this point
the partial schedule looks like the one given in Fig. 5.

The next time to be considered for insertion is time 8. Only activities 2, 4, and 5
can be considered since due to the precedence constraints activity 3 cannot yet be
scheduled. According to the second column only activity 5 has a blue gene value
greater than or equal to 0.5 (0.85), thus only activity 5 can be scheduled. Given that
the value in sub-column S/E of column 2 for activity 5 is 0.62 (> 0.5), then activity
5 is scheduled backward. At this point the partial schedule looks like the one given
in Fig. 6.

The next time to be considered for insertion is time 4, the only one available
not yet considered. According to the precedence constraints only activity 2 can be



10 Dalila B.M.M. Fontes and José Fernando Gongalves

0 8

Fig. 5 Step 1 of solution builder - Partial schedule after inserting activity 1.

0 4 8

Fig. 6 Step 2 of solution builder - Partial schedule after inserting activity 5.

started and its blue gene has a value greater than or equal to 0.5 (0.9), thus activity
2 is inserted into the partial schedule. Since the value in sub-column S/E of column
3 for activity 2 is smaller than 0.5 (0.3), then activity 2 is scheduled forward. The
partial schedule obtained is illustrated in Fig. 7.

0 4 8 10

Fig. 7 Step 3 of solution builder - Partial schedule after inserting activity 2.

The next time to be considered for insertion is time 10. According to the prece-
dence constraints and the fourth column of the chromosome, the activities which
can be started are activities 3 and 4. Since the value for both in sub-column S/E is
smaller than 0.5 (0.37 and 0.14, respectively), both are scheduled forward. Given
that there are no more activities to be scheduled the final schedule is the one given
in Fig. 8.
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Fig. 8 Step 4 of solution builder - Final schedule after inserting activities 3 and 4.

Finally, the fitness of the solution, i.e., the project expected net present value, is
computed according to equation (3) and in this case it is 1702.87 dollars.

4 Computational Experiments

The methodology proposed here was tested on the randomly generated test problem
instances used by Ranjbar and Morteza [23].

The 60 problem instances used have been generated using RanGen ([9]). Four
different problem sizes and three different order strength values®> have been con-
sidered. For each of these 12 combinations five problem instances were generated
by choosing uniform random values for durations, costs, and PTS in the intervals
[1,10], [10,100], and [0.5,1], respectively. For each problem instance the payoff has
been chosen to be 5 times the sum of the alternatives cost and the discount rate was
set to 5%.

The genetic algorithm has been coded using C++ and the experiments have been
carried out on a computer with an Intel Core i7-2630QM @2.0 GHZ CPU running
the Linux operating system with Fedora release 16.

We compare the best solutions obtained with the genetic algorithm with those of
the branch and bound developed by Ranjbar and Morteza [23]. The BRKGA was
able to find an optimal solution to 47 of the 60 problem instances considered. The
computational time required by the BRKGA was always below 10 seconds and on
average was about 7 seconds.

The BRKGA proposed here, when compared to the best alternative method [23],
provides an enormous improvement since it improves substantially the computa-
tional time performance. In addition, it finds very good solutions, actually optimal
for most problems. It should be noticed that for the worst case class of problems
(problems with 12 alternatives and order strength of 0.4), the alternative method

2 The number of precedence-related activity pairs divided by the theoretically maximum number
of such pairs in the network [21].



12 Dalila B.M.M. Fontes and José Fernando Gongalves

takes around 1 hour and 45 minutes. The optimality gaps are always below 2.5%
and the average optimality gap for the 60 problems solved is below 0.2%.

5 Conclusions

We have presented a genetic algorithm for scheduling projects with alternative tasks
subject to technical failure. This is a newly proposed problem and thus far only
branch-and-bound algorithms have been proposed. Results obtained compare favor-
ably with the ones reported in current literature.

The genetic algorithm proposed finds nearly optimal solutions, actually optimal
for most solved problem instances. In addition, the computational time requirements
are greatly improved. Specially, for larger size problem instances. The magnitude of
the improvement grows with problem size. For the 12 alternative problems with
order strength of 0.4 the BRKGA requires less than 10 seconds, while the literature
reports about 1 hour and 44 minutes. Nevertheless, the average gap is only about
0.2%.
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