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ABSTRACT
While in the past the primary goal to optimize software was the
run time optimization, nowadays there is a growing awareness of
the need to reduce energy consumption. Additionally, a growing
number of developers wish to become more energy-aware when
programming and feel a lack of tools and the knowledge to do so.

In this paper we define a ranking of energy efficiency in pro-
gramming languages. We consider a set of computing problems
implemented in ten well-known programming languages, and mon-
itored the energy consumed when executing each language. Our
preliminary results show that although the fastest languages tend
to be the lowest consuming ones, there are other interesting cases
where slower languages are more energy efficient than faster ones.
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1 INTRODUCTION
The performance of computers was a main concern since their
creation in the previous century. Today, this is no exception and
performance is still the main goal for both computer manufacturers
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and software developers. In this century, however, the focus on
computer performance is changing: program’s execution time is
no longer the only concern in terms of computer performance. The
quick adoption of non-wired computer devices in recent years is
making energy consumption one of the main bottlenecks when
building computers and developing their software.

While computer manufacturers began developing energy effi-
cient hardware since the very beginning of the world wide adoption
of mobile computing devices, only recently has the software engi-
neering community started to become concerned about the energy
efficiency of software systems [23]. Today, this topic has become
an intensive area of research, where techniques to monitor energy
consumption by programs have been defined, such as the use of
consumption models in mobile devices [34], the use of estimations
as provided by the Intel RAPL [6, 8, 18], the Qualcomm TrepN
frameworks 1, or even the use of external energy measurement de-
vices [2, 19]. Using suchmonitoring frameworks, several techniques
have been proposed to reason about energy consumption in pro-
gramming languages, for example, analyzing the energy efficiency
of Java and Haskell data structures [16, 22, 25], analyzing how differ-
ent programming coding practices influence energy consumption
[28], studying the impact of testing techniques in software energy
consumption [14], etc.

An interesting question that frequently arises in the area of
software energy efficiency is whether a faster program is also an
energy efficient program, or not. Indeed, there are research papers
pointing in completely different directions, for example [1, 16, 22,
24, 31, 33].

This question also arises when comparing the performance of dif-
ferent programming languages. However, comparing programming
languages performance is an extremely complex task. Programs
written in different languages which implement exactly the same
computing problem may use different algorithms. Moreover, the
reused language libraries, the quality of the compiler, and its (ag-
gressive) optimizations all greatly influence the performance of the
resulting programs. Thus, a programming language may become
faster, not by changing its programs, but by "just" improving its li-
braries and/or its compiler (or virtual machine). Nevertheless there
is some work aiming at comparing performance of programming
languages, such as the "Computer Language Benchmarks Game"
(CLBG) project 2 which compares computer language performance,
in terms of execution time and memory consumption. It includes
a repository of programs written in different languages which im-
plement solutions to a set of predefined computing problems. This

1https://developer.qualcomm.com/software/trepn-power-profiler
2More information about the CLBG can be found here: http://benchmarksgame.alioth.
debian.org
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language benchmark project was developed to provide a runtime
ranking of programming languages.

In this paper we reuse the computing problems and solutions pro-
posed in CLBG to define a ranking of energy efficiency in program-
ming languages. We consider the computing problems of CLBG
implemented in ten well-known programming languages (C, C#,
Fortran, Go, Java, JRuby, Lua, OCaml, Perl, and Racket) in order to
answer the following questions: Is the fastest language, the most
energy efficient one? Are there languages which run slower, while
consuming less energy than others?

We developed a framework using an energy measurement tool
provided by Intel (RAPL), in order to monitor the the consumption
when executing a program. We have used this monitoring frame-
work to measure the energy of all executable programs included in
CLBG. Our preliminary results show that the C language is both
the fastest and greenest language, while also showing interesting
cases where slower languages are greener than others: for example,
when considering all the benchmarks, Lua is slower by, roughly
12%, than Perl, while consuming 53% less energy!

The remaining of this paper is structured as follows: Section 2
presents the computer language benchmark game. Section 3 de-
scribes the methodology we use to monitor the energy consumption
of the ten languages we consider in our study. We present the en-
ergy consumption of each program and we discuss the obtained
results. Section 4 details the threats to the validity of our study. In
Section 5 we describe related work, and in Section 6 we present the
conclusions of our work.

2 COMPUTER LANGUAGE BENCHMARK
GAME

In order to compare the performance, both in terms of execution
time and energy consumption, of different programming languages,
we need solutions/programs for the same problems expressed in
each of those languages. Developing programs written in different
programming languages (and programming paradigms) is both a
complex and time consuming task. Thus, in our study we reused
the repository of programs available in the "Computer Language
Benchmarks Game3" (CLBG) project. The project compares pro-
gramming language performance, in terms of runtime and memory
consumption, by implementing a solution to a set of computing
problems in different programming languages.

The CLBG includes solutions for thirteen different problems,
written in twenty eight different programming languages. These
benchmarks have been used in several research works, to study
the dynamic behavior of non-Java JVM languages [15], to analyze
dynamic scripting languages [32] and compiler optimizations [30],
to benchmark a JIT compiler for PHP [11], and in the design of the
R language [20]. In fact, the repository of programs included in
CLBG are also particularly suitable to analyze the energy efficiency
of programming languages due to the following characteristics:

• The solutions do represent the state-of-the-art on how to
solve the thirteen problems in each of the programming
language. Indeed, the programs in the repository were
developed by experts in each of the languages considered.

3The word game in this benchmark means that programmers from different languages
contribute programs that compete (but try to remain comparable) with each others.

• The source code for the different program solutions is
available as open source, and consequently the solutions
(and their authors) are known. Thus, it is possible to see
that each program follows common programming practices
used by the respective programming language community.

• The solutions use the same underlying algorithm. There-
fore they may ignore programming language features that
would improve performance using a different algorithm.

• The inputs provided to the programs are known, and all
programs produce the same output for similar inputs (in
other words the programs are correct).

• Finally, the compiler version and options to compile/exe-
cute the program’s source code in each language is also
specified in the CLBG.

The considered programs in the CLBG cover different computing
problems, as described in Table 1.

Table 1: CLBG corpus of programs used in our study.

Benchmark Description Input

n-body
Double precision N-body
simulation 50M

fannkuch-redux
Indexed access to tiny integer
sequence 12

spectral norm
Eigenvalue using the power
method 5,500

mandelbrot
Generate Mandelbrot set portable
bitmap file 16,000

pidigits
Streaming arbitrary precision
arithmetic 10,000

regex redux
Match DNA 8mers and substitute
magic patterns

fasta
output

fasta
Generate and write random DNA
sequences 25M

k nucleotide
Hashtable update and k-nucleotide
strings

fasta
output

reverse
complement

Read DNA sequences, write their
reverse-complement

fasta
output

binary trees
Allocate, traverse and deallocate
many binary trees 21

chameneos
redux

Symmetrical thread rendezvous
requests 6M

meteor contest
Search for solutions to shape
packing puzzle 2,098

thread ring
Switch from thread to thread
passing one token 50M

Unfortunately, in the current state of the CLBG, not all imple-
mentations for these thirteen computing problems are available. In
our study we only consider the first ten computing problems, as
their implementations are the most commonly available.

3 ENERGY EFFICIENCY IN PROGRAMMING
LANGUAGES

In this section, we present our case study for comparing the energy
efficiency of different computer languages.

We start by describing the followed methodology and the tools
used to compare the energy efficiency of 10 different programming
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languages (Section 3.1). We chose to analyze the 10 following lan-
guages: C, C#, Fortran, Go, Java, JRuby, Lua,OCaml, Perl, and Racket.
We used the program solutions available in the CLBG, implemented
in these 10 languages, as the objects for our case study. Finally, we
present the obtained results for all 10 languages (Section 3.2).

3.1 Design and Execution
The CLBG proposes 13 benchmark problems to be solved in various
different languages. Of these 13 we chose the first 10 shown in
Table 1, as explained in the previous section.We gathered the source
code of the most efficient (i.e., fastest) benchmark solutions for the
10 benchmark problems, for each of our considered 10 programming
languages. As the CLBG lists the performance of each proposed
solution, we already knew which ones were the most efficient.

These benchmark solutions were compiled and executed accord-
ing to the information provided by the submission’s documentation
page. These documentation pages also provided information on the
compiler versions, and compilation/executions options.

To obtain energy measurements, we used Intel’s Running Aver-
age Power Limit (RAPL) tool [6], which has already been proven to
provide very accurate energy measurements [8, 26]. Each bench-
mark was measured 10 times, both energy consumption and execu-
tion time. By following this approach we aim to reduce the impact
of cold starts and cache effects, while also analyzing the consistency
of the measured results to check consistency and avoid outliers.

Since the RAPL tool is currently only usablewithin the C and Java
(through jRAPL [18]) languages, we needed to develop a measuring
framework to allow the energymeasurement of every language. Our
goal was to measure the energy consumed by the whole program,
and not by independent code blocks (such as methods), in order
to properly compare the languages. Therefore, we developed a
measuring framework written in the C language which measures
the execution of an external program, using the system function.
The overall process of this framework is described in Listing 1.

...
int main() {

...
for (i = 0 ; i < N ; i++){

time_before = getTime (...);
// performs initial energy measurement
rapl_before (...);

// executes the program
system(command);

// computes the difference between
//this measurement and the initial one
rapl_after (...);
time_elapsed = getTime (...) - time_before;
...

}
...

}

Listing 1: Overall process of the energy measuring framework.

As we can see, both the execution time and energy are mea-
sured for every execution of command. This variable holds a string
describing how to execute a particular benchmark, in a particu-
lar language. For example, for executing the binary trees bench-
mark in the C language, the value of the command variable will be
"./binarytrees.o 21", where binarytrees.o is the name of the ex-
ecutable file resulting of prior compilation, and 21 is the argument
provided to the binary trees benchmark. For interpreted languages

(such as Perl) or languages which require a virtual machine to be
executed (such as Java), the path to the interpreter/virtual machine
is also provided. To execute the fasta benchmark in Perl, the variable
command would be "/usr/bin/perl fasta.perl 25000000".

Before advancing, we needed to certify that there would be
minimal or no overhead from our measuring framework using the
system function. To do so, we measured the energy consumption
of both a C and Java language program, using RAPL and jRAPL
respectively, and compared the results to the measurements from
our C language energy measuring framework. The differences were
insignificant, consistent, and negligible. Therefore, we may use
our C language energy measurement framework without worry of
overheads or imprecise measurements.

In a few cases, we were not able to generate the results for
all of the 10 benchmarks solutions. This was due to one of three
reasons: (1) there was no available source code for the missing
benchmark, (2) the implementation contained errors, or (3) there
were missing libraries which could not be found. Nevertheless,
by choosing these 10 languages, we assure that every benchmark
problem is implemented in at least 70% of our chosen languages,
and that all programming paradigms are included.

We ran these studies on a desktop with the following specifica-
tions: Linux Ubuntu Server 16.10 operating system, kernel version
4.8.0-22-generic, with 16GB of RAM, a Haswell Intel(R) Core(TM)
i5-4460 CPU@ 3.20GHz. After measuring each benchmark solution
10 times, we extracted and treated the CPU energetic consumption
values and carefully analyzed the results to check for consistency
and accurate measurements as described in Section 4.

3.2 Results and Discussion
This section presents the obtained results in our study, followed by
an analysis and discussion of these results. Each table, from Table 2
to Table 6, represents the results from a particular benchmark,
where each row represents one of the 10 considered languages. The
values in each line, from left to right, include the average values
for the Energy consumed (Joules), Time of execution (milliseconds),
and Ratio (ratio between Energy and Time). This ratio can also be
seen as the average Power consumed in Kilowatts (kW). In these
tables, the programming languages are ordered in regards to their
energy consumption, from lowest to highest.

Table 7 shows the global results (summation) for Energy and
Time normalized to the C language. So for example, C# consumes
2.21x more energy than C, while taking 2.44x more to finish. In this
table, the left side orders the programming language in regards to
their energy consumption while the right orders the language in
regards to their execution time.

In some cases, across all tables from Table 2 to Table 7, the
programming language name will have an ↑x or ↓x symbol. This
states that the language would go up by x positions (↑x ) or down
by x positions (↓x ) if ordered by the execution time. For example
in Table 3, Fortran is the most energy efficient language, but would
fall off 3 positions down if ordered by the execution time.

To further understand these values, we also generated graphs
for each of the benchmarks (Figures 1 - 8). Each graph contains the
results of each language relative for a benchmark, consisting of a
combination of three parts: a bar chart, a line chart and a scatter plot.
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Table 2: Results for binary-trees and fannkuch-redux

binary-trees fannkuch-redux
Energy Time Ratio Energy Time Ratio

C 36.06 1124.67 0.032 C 201.11 6076.28 0.033
Fortran 63.56 2112.17 0.030 Ocaml 258.20 7895.43 0.033
Ocaml↓1 84.63 3525.47 0.024 Java 291.46 8240.84 0.035
Java↑1 96.09 3305.65 0.029 Fortran↓1 295.56 8665.26 0.034

Racket↓1 115.45 11260.66 0.010 Go↑1 298.01 8487.00 0.035
C#↑1 155.19 10797.15 0.014 C# 373.13 10839.74 0.034
Go 588.14 16291.66 0.036 Racket 1836.00 43680.23 0.042

Jruby 617.96 19276.14 0.032 Lua↓2 6732.44 634877.63 0.011
Lua↓1 1841.62 209217.00 0.009 Jruby↑1 7242.76 219148.25 0.033
Perl↑1 3276.56 96097.28 0.034 Perl↑1 10526.19 249357.50 0.042

Table 3: Results for fasta and k-nucleotide

fasta k-nucleotide
Energy Time Ratio Energy Time Ratio

Fortran↓3 23.54 1661.43 0.014 C 81.20 2958.04 0.027
C↑1 25.22 973.27 0.026 Java 127.32 4116.17 0.031

Java↑1 32.73 1248.89 0.026 C# 189.55 7138.50 0.027
Ocaml↓2 32.97 3170.54 0.010 Go 247.79 8004.35 0.031

Go 35.93 1838.39 0.020 Ocaml 294.12 13847.16 0.021
C#↑3 41.47 1549.05 0.027 Fortran↓1 393.77 41656.29 0.009
Racket 100.64 8254.71 0.012 Racket↓1 511.60 44238.51 0.012
Lua 287.82 24616.91 0.012 Lua↓1 981.73 88074.58 0.011
Jruby 775.08 49508.94 0.016 Perl↑3 1227.12 35615.50 0.034
Perl 2535.80 61462.63 0.041 Jruby 2269.92 88523.14 0.026

Table 4: Results for pidigits and regex-redux

pidigits regex-redux
Energy Time Ratio Energy Time Ratio

C 22.60 804.82 0.028
C 6.19 546.23 0.011 Ocaml↓2 133.62 12977.91 0.010

Racket 8.43 731.89 0.012 Java↑1 177.79 5693.63 0.031
Go 11.27 772.52 0.015 Perl↑1 218.66 7163.59 0.031
C# 11.44 943.64 0.012 Racket↓2 289.46 26152.36 0.011
Perl 16.11 1306.91 0.012 Jruby↑1 313.13 13477.41 0.023
Jruby 121.26 8198.40 0.015 C#↑1 485.58 14722.95 0.033

Table 5: Results for mandelbrot and n-body

mandelbrot n-body
Energy Time Ratio Energy Time Ratio

C 32.60 1141.53 0.029 Fortran 41.69 3580.94 0.012
Java↓1 105.34 3657.16 0.029 C 49.24 4190.34 0.012
Go↑1 107.53 3451.28 0.031 Java 51.03 5839.28 0.009
C# 140.49 3960.59 0.035 Ocaml 51.60 5856.66 0.009

Fortran↓1 146.60 8633.04 0.017 Go 52.98 5899.14 0.009
Ocaml↑1 194.56 6863.35 0.028 C# 53.38 6117.06 0.009
Racket 418.33 44516.96 0.009 Racket 227.73 22259.99 0.010
Lua 3392.11 100441.83 0.034 Jruby 1432.98 98407.31 0.015
Jruby 6972.23 217158.63 0.032 Lua 3462.55 177251.13 0.020
Perl 16042.30 390013.25 0.041 Perl 3853.19 335390.75 0.011

Table 6: Results for reverse-complement and spectral-norm

reverse-complement spectral-norm
Energy Time Ratio Energy Time Ratio

C 5.64 227.90 0.030 Fortran 19.37 667.03 0.011
Ocaml 7.58 286.78 0.022 C 20.02 676.51 0.025
Go 7.91 366.17 0.024 Go 32.16 1331.62 0.022

Fortran↓2 9.99 937.56 0.029 C# 32.36 1374.42 0.018
C#↑1 10.68 581.44 0.024 Ocaml↓1 36.57 1683.41 0.026
Java↑1 14.59 628.79 0.022 Java↑1 37.16 1658.64 0.023
Perl 17.50 1187.04 0.041 Racket 79.31 2341.39 0.012

Racket 25.17 2112.06 0.034 Perl 814.68 19781.86 0.015
Jruby 114.38 4533.48 0.013 Lua↓1 1019.49 95405.64 0.013
Lua 119.38 9305.06 0.011 Jruby↑1 1031.88 79449.25 0.025

The bars represent the energy consumed by the languages, with
the left y-axis representing the average Joules. The execution time
is represented by the line chart, with the right y-axis representing

Table 7: Normalized global results for Energy and Time

Total
Energy Time

C 1.00 1.00 C
Java 1.68 1.65 Java

Ocaml↓1 2.13 2.44 C#↓2
Fortran↓2 2.20 2.48 Ocaml↑1
C#↑2 2.21 2.63 Go↓1
Go↑1 3.04 3.91 Fortran↑2
Racket 7.35 10.29 Racket
Lua↓2 39.54 44.68 Jruby↓1
Jruby↑1 45.35 68.45 Perl↓1
Perl↑1 84.89 77.10 Lua↑2

the average time in milliseconds. By combining the two charts we
can easily understand the relationship between energy and time.

Finally, the scatter plot on top of both represents the ratio be-
tween energy consumed and execution time. This plot allows us
to observe if the relation between energy and time is consistent
between languages. A variation in these values indicates that the
energy consumed is not directly proportional to the execution time,
but also dependent on the language and/or benchmark solution.

From the data presented in the aforementioned tables and plots,
we can indeed draw a set of relevant and interesting observations,
and answer our previous questions. For example, a common percep-
tion to the energy consumption problem is that it is a performance
issue, whereby reducing execution time would bring about energy
efficiency. While some works do support that claim [33], the op-
posite has also been observed [16, 24, 31], where an increase in
execution time brings about a decrease in the energy consumed.
We have observed both cases, as do [1, 22].

• The results clearly show that the C language is both the
fastest and greenest language. However, in certain cases
there are other more energy efficient solutions.

• From our study, we can see several examples where lan-
guage A consumes more energy to run a benchmark than
language B, while taking less time to do so. Such an exam-
ple can be seen in Figure 1, for instance, where the Java
language has higher energy consumption then the OCaml
language, yet a slightly lower execution time. The same
can be observed in the Lua and Perl languages, for exam-
ple, in Figure 1, 2, and 8. In these cases Lua consumes less
energy while having a higher execution time.

• Energy consumption is not always directly proportional
to execution time. In almost every graph/table, we can
observe that execution time does not behave in the same
way the energy consumption does in proportion to one
another. For instance, in Table 2 we can see that the C# lan-
guage consumes roughly 4 times more energy to execute
the binary-trees benchmark then the C language. How-
ever, in terms of execution time, it takes the C# language
around 9 times more to finish then the C language.

• By observing the ratio values (or in other words the av-
erage Power in kW), the previous discussion is further
strengthened. While performance optimization would in-
deed (in most cases) reduce the energy consumed, the fact
of the matter is we still have the Power variable in the
Energy equation (Joules = Watts x Second). For this to
be purely a performance issue, we would have to assume
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Figure 1: Graphical data for binary-trees

Figure 2: Graphical data for fannkuch-redux

Figure 3: Graphical data for fasta

Figure 4: Graphical data for mandelbrot

that the Power is a constant, which we clearly see that is
not the case, and may even vary quite heavily in between
different languages. For example in Figure 8, JRuby and
Lua have almost identical execution times, while Lua has

less than half the ratio (average kW) compared to JRuby,
and in turn half the energy consumed also.

• We can easily see that the three interpreted languages Lua,
JRuby, and Perl have a tendency to not only be slower,
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Figure 5: Graphical data for n-body

Figure 6: Graphical data for pidigits and regex-redux

Figure 7: Graphical data for spectral-norm

Figure 8: Graphical data for k-nucleotide and reverse-complement

but much more energy consuming (such that, we even had
to show the visual data in different scales). Even so, out
of the three, Lua tends to be the slowest one while also
being the lowest consuming one. When compared overall

to Perl (Table 7, we can see Lua is slower by roughly 12%
than Perl, while consuming 53% less energy!

• Looking at Table 7 we have a better view of the overall
results. When comparing all the languages together, we
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clearly see that C and Java are the best two, in both en-
ergy consumption and execution time. We also observe
languages such as OCaml, Fortran, and Lua as being much
more energy efficient than they are performance efficient,
with the opposite observed for C#, Go, Jruby, and Perl.

4 THREATS TO VALIDITY
The goal of our study was to both measure and understand the
energetic behavior of several programming languages, allowing us
to bring about a greater insight on how certain languages compare
to each other in terms of energy consumption. We present in this
subsection some threats to the validity of our study, divided into
four categories [4], namely: conclusion validity, internal validity,
construct validity, and external validity.

Conclusion Validity. From our experiment it is clear that different
programming paradigms and even languages within the same par-
adigm have a completely different impact on energy consumption.
We also see interesting cases where the most energy efficient is not
the fastest, and believe these results are useful for programmers.
Nevertheless, the observed energy consumption is only attributed
to CPU usage, and while we have shown that energy and perfor-
mance are sometimes related in non-predictable ways, the impact of
other hardware components (such as memory usage and its energy
impact) deserve further analysis.

Internal Validity. This category concerns itself with what factors
may interfere with the results of our study. When measuring the en-
ergy consumption of the various different programming languages,
other factors alongside the different implementations and actual
languages themselves may contribute to variations. To avoid this,
we executed every language and benchmark solution equally. In
each, we measured the energy consumption and execution time
10 times, removed the furthest outliers, and calculated the median,
mean, standard deviation, min, and max values. This allowed us
to minimize the particular states of the tested machine, including
uncontrollable system processes and software. However, the results
measured are quite consistent, and thus reliable. In addition, the
used measurement tool has also been proven to be very accurate.

Construct Validity. We analyzed 10 different programming lan-
guages, each with roughly 10 solutions to the proposed problems,
totaling out to almost 100 different cases. These solutions were
developed by experts in each of the programming languages, with
the main goal of "winning" by producing the best solution for per-
formance time. While the different languages contain different
implementations, all produced the same exact output and each are
implemented to be the fastest and most efficient as possible. Having
these different yet efficient solutions for the same scenarios allows
us to compare the different programming languages in a quite just
manner as they were all placed against the same problem. Albeit
certain paradigms or languages could have an advantage for certain
problems, while others may be implemented in a not so traditional
sense. Nevertheless, where is no basis to suspect that these projects
are best or worst than any other kind we could of have used.

External Validity. We concern ourselves with the generalization
of the results. The obtained solutions were the best ones at the time

we set up the study. As the CLBG is an ongoing "competition", we
expect that more advanced and more efficient solutions will substi-
tute the ones we obtained as time goes on, and even the languages’
compilers might evolve. Thus this, along with measurements in
different systems, might produce slightly different resulting val-
ues if replicated. Nevertheless, unless there is a huge leap within
the language, the comparisons might not greatly differ. The actual
approach and methodology we used also favors easy replications.
This can be attributed to the CLBG containing most of the impor-
tant information needed to run the experiments, these being: the
source code, compiler version, and compilation/execution options.
Thus we believe these results can be further generalized, and other
researchers can replicate our methodology for future work.

5 RELATEDWORK
For years, the main reference when it comes to classifying a pro-
gram’s performance and efficiency has been its execution time.
Indeed, there is a long lasting series of engineering techniques
provided to software developers which aim at helping them build
correct programs, while also indicating how to reduce the execu-
tion time [30, 32]. With the improvements on hardware devices,
programs became more complex and robust, and another perfo-
mance aspect became relevant: the memory usage. Soon, software
developers were supplied with tools and techniques for analyzing
the memory usage of their programs [3].

With the emergence of different languages, platforms and pro-
gramming paradigms, the interest in analyzing performance aspects
in software has indeed increased, and execution time is no longer
the only relevant performance aspect. Software related energy con-
sumption has been gaining an increasing interest in recent years as
well, especially among researchers. In fact, this interest is being ex-
tended to software developers [23], who have been questioning how
to optimize energy consumption through software improvements.

Several studies have been aimed at understanding how the en-
ergy consumption of software systems can be influenced by develop-
ment aspects. In fact, it is already known that several factors, such as
the use of different design patterns/coding practices [16, 17, 27, 28],
different data structures [10, 16, 18, 22], or even code obfusca-
tion [29] can significatively influence the energy consumed by soft-
ware. This awareness of energy consumption is notorious within
the software testing area, where some works aim at reducing the
overall consumption in the testing phase, by reducing the number
of tests while maintaining the code coverage [12, 14].

Other energy related research works offer a more thorough en-
ergy consumption analysis of programs. While some have been fo-
cused on offering techniques able to identify, within a program, code
blocks responsible for excessive energy consumption [5, 13, 21],
others try to predict the energy consumption of a program by stati-
cally analyzing it [7, 9]. The result of the latter studies is an estimate
of the energy consumed by the program in a specific scenario.

Regardless of the interest in the energy consumption area, there
is no study, to the best of our knowledge, which compares the en-
ergy consumption behavior of different programming languages.
With this study, we aim at creating the basis for exploring the
subject in more detail, by providing evidence that the energy con-
sumption behaves differently depending not only on the program
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but also on the programming language, while also having different
behaviors in comparison to its execution time analysis.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we described a study on the energy efficiency of ten
different programming languages, considering a corpus of ten com-
puting problems included in the CLBG project. We monitored the
energy consumed and execution time of almost hundred computer
programs.

Our results show that compiled languages are, as we expected,
both more energy efficient and faster than interpreted ones, while
also showing that C is the fastest and greenest language in our
study. However, the results also show that energy consumption is
not always directly proportional to execution time. In fact, there are
greener programming languages, while being slower than others.

In this study we only monitored and related the CPU energy
consumption to execution time. As future work we plan to study
the impact of memory consumption on the energy consumption,
namely in terms of the energy consumed by the computer’s RAM
and hard drive. We also plan to extend our study with more pro-
gramming languages, namely, languages using different execution
models (for example, lazy evaluated languages).
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