Layered Shape Grammars for Procedural
Modelling of Buildings

Diego Jesus Anténio Coelho Anténio Augusto Sousa

Abstract

The effort of creating virtual city environments is reduced by using procedural
modelling techniques. However, these typically use split-based approaches wich can
impose limitations on the final geometry, usually enforcing a grid-like structure and
require complex geometry to be imported. Layered shape grammars can increase the
variability of procedural buildings while the vectorial definition of shapes introduce
the possibility of creating complex shapes that seamlessly blend into the model.
We evaluate the contributions with a modelling example and a comparison with
split-based procedural modelling techniques. Results show that layers allow more
flexibility than split-based techniques in creating variations. Vectorially defined
shapes are a step forward in shape grammar expressiveness.

1 Introduction

Urban scenery is required in a vast amount of applications, including urban planning,
cinema and games. However, manually modeling these spaces is a labour intensive task
that demands every element to be individually modelled.

Procedural modelling, however, is gaining ground as an alternative to the traditional
modelling of urban scenes. These semi-automatic methods enable the generation of
larger spaces with smaller amounts of effort, reducing production costs.

More specifically, procedural modelling of buildings is often achieved with shape
grammars (Parish and Miiller (2001), Wonka et al. (2003), Miiller et al. (2006), Krecklau
et al. (2010)) or with graph based approaches (Patow (2012), Silva et al. (2013), Silva
et al. (2015)). In both cases, procedural methods encode the building generation in
rules which are iteratively applied and replace one shape with a new set of shapes,
incrementally adding detail to the models. The paradigm, however, is based on splitting
operations that divide the geometry into parts that will be detailed separately.

However, split-based approaches impose too strict limitations on the geometry that
can be procedurally generated. Namely, the created shapes are mostly rectangular and
typically enforce a grid like structure. Some facades, however, don’t possess such a
trivial structure and, therefore, become quite difficult to encode with this paradigm.

Introducing layers in planar surfaces allows more complex layouts and more compact
and natural representations of facades. (Zhang et al. (2013)). Also, layers are common
concepts in many 2D or 3D content generation tools, with which most users are familiar



with. Reordering layers or toggling the visibility of their contents can lead to different
results and a non-linear creative workflow.

In split-based methods, complex geometry can often only be imported as externally
modelled assets which are, sometimes, not easily integrated with the rest of the model.
Allowing the vectorial definition of two-dimensional shapes within a model’s planar
surfaces has the capability of improving the expressiveness of procedural modelling
methods.

We propose a system that extends shape grammars (e.g., CGA introduced by Miiller
et al. (2006)) with operations that allow the specification of both layers and the vectorial
definition of 2D shapes. By doing so, the methodology is capable of generating non-
trivial layouts, going beyond the regular grid structure, and seamlessly integrate more
complex architectural elements such as arched doors and windows.

Overall, the contributions of this paper are:

e A set of procedural operations to specify layers and the vectorial definition of
shapes.

o An algorithm to merge the layers, taking into account shape clipping and occlu-
sion, according to their depth within layers, resulting in a new set of independent
surfaces. We named this process planar shape normalisation.

o A procedural derivation mechanism which guarantees that all 2D shapes within
layers have been created before adding volumetric detail.

2 Related Work

The seminal paper by Parish and Miiller (2001) introduced L-Systems as a means to
procedurally create road networks and buildings. However, due to building’s spatial
restrictions, Wonka et al. (2003) proposed the use of split and control grammars to
procedurally create buildings. Eventually, due to existing limitations, Miiller et al.
(2006) introduce the CGA (Computer Generated Architecture) grammar which operates
on geometry contained in scopes (oriented bounding boxes).

Krecklau et al. (2010) introduced the G?> grammar (Generalized Grammar) which
provides high descriptive power. The proposed system uses several types of non-
terminals which can also be used as parameters in procedural rules.

The CGA grammar has been extended by Schwarz and Miiller (2015) which present
the CGA++ grammar, granting first-class citizenship to shapes, allowing access to
information about created shapes during the grammar derivation process. Having such
data allows to achieve more complex constructions.

Thaller et al. (2013) generalise the scope concept to convex polyhedra allowing
more complex geometric operations, enhancing shape grammar expressiveness.

The approach presented by Leblanc et al. (2011) can generate complete buildings by
using queries to select components (building parts) on which operations are performed
and regions to create connections between components.

In these methods the procedural rules are defined using a text-based paradigm,
which can be cumbersome for artists and content creators. Therefore, more interactive



approaches have surfaced. Lipp et al. (2008), for example, introduce a visual frontend
to define shape grammars interactively with direct visual editing. Kelly and Wonka
(2011) allow the user to specify floor plans and extrusion profiles to generate complex
architecture. Edelsbrunner et al. (2016) generate complete building shells with complex
roof structures based on wall profiles. The models can be further detailed with shape
grammars.

To overcome the fact that, in shape grammars, there is a disassociation between
procedural rules, Patow (2012) presented a direct acyclic graph representation for shape
grammars where edges connect distinct grammar rules. Another graph-based approach
is the one presented by Silva et al. (2013), where users can encapsulate basic operations
into semantically-rich and reusable components. More recently, Silva et al. (2015)
presented a graph-based system that is able to integrate diverse types of content within
the same visual language.

Zhang et al. (2013) presented a layered analysis of irregular fagcades which aims
at retrieving a high-level understanding of facade structure by including depth layers
which enables more compact and natural interpretations of building facades. The output
is a hierarchical representation of a fagcade structure which can be used to generate
variations. However, this method works only on the image domain and is intended for
reconstruction operations.

Ruiz-Montiel et al. (2014) propose a Computer Assisted Conceptual Design system
that includes layered shape grammar to aid users in the conceptualisation phase. While
this system is targeted at generating plausible starting points to be further manually
modelled by an artist, our methodology aims at generating final, detailed geometries for
the outer building architecture. Moreover, the system presented by Ruiz-Montiel et al.
(2014) does not provide an algorithm to merge the different layers.

More recently, II¢ik et al. (2015) proposed a layered based approach for the procedu-
ral design of facades. In their approach, layers are rectilinear grids of facade elements
filled by two generator patterns. Despite the good results and the capability of generating
intentional misalignments, the generated elements are based on rectangular shapes and
complex geometries must be imported.

The system presented by Guerrero et al. (2015) is capable of learning shape place-
ment in building facades. Given a set of examples, the system infers a probabilistic
model of shape placement, with which variations can be generated with similar geomet-
ric relations. Although the system can generate complex, non-rectangular geometries
and has extensions that allow volumetric modelling of buildings, there is no support for
layers. Moreover, the user needs to provide the system with examples.

There is, to our knowledge, no system that employs the concept of layers in a shape
grammar in the generation of detailed outer architecture of buildings while providing a
way to vectorially define two-dimensional shapes that seamlessly integrate within the
final geometry.

2.1 Shape Grammars

Shape grammars, firstly introduced by Stiny and Gips (1972), are production systems
based on replacement rules. Starting from an axiom shape, the system iteratively applies
rules, replacing one shape with a different subset of shapes.



In the CGA grammar Miiller et al. (2006) shapes are identified by symbols and
their geometry is contained within an oriented bounding box named scope. Shapes also
contain other data such as material information. Rules have a symbol on their left side,
called the predecessor, and a set of operations and successor shapes on their right side.
Typically, rules are defined as follows:

Predecessor ~» Successorl Successor2

The rules are applied to shapes whose symbol matches the predecessor and replace
them with the sucessor shapes. Shapes can be called non-terminal if its symbol matches
a symbol in the left side of a rule, and terminal otherwise.

The grammar execution iteratively creates a shape tree, corresponding to a particular
configuration of shapes, by appending successor shapes as children of predecessor
shapes. The derivation continues until all leaves are terminal shapes.

Originally, Miiller et al. (2006), defined several operations on shapes, of which we
will describe the most relevant to our work in the remaining of this section.

Split: the split rule allows to split one shape into several subshapes along one of its
axis, by defining the size of each subshape and the successor symbol.

Repeat split: the repeat split operation tiles the predecessor shape, along an axis, with
a set of subshapes by also defining the size of the successor shapes. It is, then, possible
to scale the split operation to shapes of arbitrary sizes.

Component split: this operation splits the predecessor shape into its components. Its
parameters are the type of components (i.e., faces, edges or vertices) and which selected
component to further derive (e.g., side or top faces).

Extrusion: the extrusion operation takes each face of the predecessor shape and
performs an extrusion along its normal by a specified amount. This is useful to create
mass models from planar shapes (e.g., a building outline).

Inert asset: this operation inserts a previously modelled object into the predecessor
shape’s scope. It is used to introduce more complex geometry into the final model.

3 Overview

Our system is based on shape grammars, similar to Miiller et al. (2006) and Krecklau
et al. (2010). We introduce support for the creation of layers and the vectorial definition
of shapes within layers. This allows the creation of more complex shapes within fagcades,
and more of variations with less modelling effort.

This is achieved by considering several types of procedural items: volumetric
shapes, planar shapes, layers and 2D shapes (Subsection 4.1). Planar shapes contain
two dimensional scenes where 2D shapes can be organised in layers and ordered by



depth. In this sytem, the procedural operations are overloaded, meaning that their
execution and output depends on the type of the input procedural items (Subsection 4.2).

Unlike described by Miiller et al. (2006), where the procedural rule execution
scheduling is controled by user defined priorities, our system first executes all rules
that add two dimensional detail to planar shapes, using the operations described in
Subsection 4.3.

Once all 2D shapes have been created, the system merges all layers and 2D shapes
in the planar shapes, taking into account occlusions between 2D shapes, creating a set
of disjoint shapes, which are then converted into new planar shapes in three dimensional
space. This process is called planar shape normalisation and is described in Section 5.

Operations that lead to volumetric shapes can, then, be executed, which add 3D
detail to the fagades. This process is repeated until there are only terminal shapes.

4 Layered Shape Grammars

This section describes the extensions to shape grammars that allow the specification
of layers and the vectorial definition of shapes. Specifically, we describe the available
procedural item types, how rules in our system are overloaded and the introduced
operations.

4.1 Procedural Items

Procedural rules in this technique operate on Procedural Items (PI) which are identified
by a symbol and, as in other procedural modelling systems (Silva et al. (2015), Krecklau
et al. (2010)), our methodology supports several types of procedural items. The set 7 of
all available types contains the VolumetricShape, PlanarShape, Shape2D and Layer.

VolumetricShape: volumetric shapes represent shapes in three dimensional space
whose bounding box has a volume superior to zero. In other words, these are 3D shapes
that may or may not represent a closed volume.

Each volumetric shape has its own frame of coordinates and size, which is named
scope, similarily to the one defined by Miiller et al. (2006).

PlanarShapes: in contrast, planar shapes, are shapes that have a single face contained
in an arbitrary plane. As with volumetric shapes, planar shapes also have an associated
scope. However, its size along the z axis is zero and its xy-plane is coplanar with the
shape.

There is a 2D scene associated with each planar shape, whose x and y axes are
mapped to the scope’s x and y axes.

This scene consists of a stack of layers, initially containing one layer with a 2D
shape (the background shape), created by mapping the planar shape’s 3D geometry into
the 2D scene.
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Figure 1: Relations between planar shapes, layers and 2D shapes.

Layers: layers are stacked by their depth within a 2D scene, where the bottom-most
layer represents the deepest layer in a 2D scene. Each layer contains a list of 2D shapes
sorted by depth. Figure 1 illustrates the relations between planar shapes, layers and 2D
shapes.

Layers are considered procedural items since they are created and manipulated by
procedural rules.

Shape2D: Finally, a 2D shape is a bidimensional shape contained in a layer of a 2D
scene. All shapes are clipped inside another shape (except for the background shape),
which must be of a higher depth, and are possibly occluded by shapes of lower depth.
The clipping and occlusion process is described in Section 5.

These procedural items have two boolean attributes that can be set independently.
These are placeholder and the fixed geometry flags.

All 2D shapes are created as placeholder shapes, which means that they are derived
normally but they will not be transformed into planar shapes during the planar shape
normalisation (Section 5). Before the normalisation process, 2D shapes are automatically
marked as non-placeholders if their derivation requires a planar shape.

For example, if the next operation to be applied to a 2D shape is an extrusion, then
the shape is marked as non-placeholder. The shape is, consequently, converted into a
planar shape which can be correctly extruded.

The fixed geometry flag is used to control how the occlusion process affects each
shape. During occlusion calculations (Subsection 5.1) if a planar shape with fixed
geometry is occluded, then its geometry is discarded. If the flag is not set, the final
geometry is calculated by subtracting the occluding geometry from its original geometry.



4.2 Overloaded Procedural Rules

The rules in our system are similar to those in regular shape grammars in the sense
that they define the replacement of a predecessor shape with a set of successor shapes
through the sequential execution of a list of shape operations, RuleOps.

However, because our system supports several types of procedural items, the opera-
tions are overloaded. This means that the same operation can have a different execution
and can output procedural items of different types, depending on the type of input, while
maintaining the operation semantics. Furthermore, it can restrict the application of an
operation to some types.

The split operation, for example, can be applied to volumetric and planar shapes,
outputting volumetric or planar shapes respectively. The extrude operation always
outputs volumetric shapes, although it accepts volumetric and planar shapes. The create
layers operation (Subsection 4.3.1) only accepts planar shapes and outputs layers.

More formally, an operation O is a function O : t;, € T — t,, € T, that acts on
procedural items of type ¢, and outputs zero or more procedural items of type 7.
Each operation has an associated type mapping wo : 7 +— 7 that describes the type
transformations the operation performs. The output type of an operation for input
procedural item with type ¢ is given by wo(t). If ¢ is not in the domain of wy, then
wo(t) = @. Likewise, wo(Q) = @.

The output type of a procedural rule R given an input procedural item of type ¢ is,
then, given by the operator out_type(R, t) defined by the following algorithm:

function out_type(rule,item_type):
current_type ¢« item_type
for(op in rule.RuleOps)
current_type = out_type(op, current_type)
return current_type

Before applying a rule to a procedural item, the system runs the above algorithm and
checks its result. A return value different from & indicates that the rule can be executed
with the given procedural item, since each operation is able to manipulate the results of
the operation executed before. Otherwise, an error is raised and the execution is halted.

4.3 Procedural Operations

In addition to the operators introduced in Miiller et al. (2006) and briefly described
in 2.1 we have defined a new set of operations that act on procedural items. In the
following we describe their operation and define their syntax, loosely following the
syntax in Miiller et al. (2006).

4.3.1 Layer Creation Operation

The layer creation operation allows to create layers in planar shapes in decreasing order
of its depth. Successor rules can add further detail to each layer separately.

For example, the following example shows the creation of two layers: one that will
contain the fagade’s floors description and another defining the entrance.

Fac ~» layers (" floors","door"){Floors | Door}



The n* parameter defines the name of the n'” layer to be created in the planar shape.

For each layer, a rule name must be given between the { and } delimiters, separated by
a | character. Although it seems redundant, having a layer name and a rule name adds a
level of semantics to this operation. The user can, for example, swap the rule for the
door layer with another one, while the semantics is still retained. Furthermore, it allows
to externally turn on or off the generation of the layer via its composite name: Fac.door,
increasing the variation of results without modifying the rulebase.

4.3.2 Segment Operation

The segment operation is used to partition a planar shape, 2D shape or layer into 2D
shapes along one of its axis (x or y), placing the resulting shapes into one of the 2D
scene’s layers, thus defining its depth within the scene as d = depth,..; — 1 where
depth,eq is the predecessor procedural item’s depth. If the predecessor is a 2D shape,
then depth,,.q is that shape’s depth, and the resulting shapes are placed within the
same layer. Whenever the predecessor is a planar shape, depth,,.q is the 2D scene’s
background shape’s depth and the shapes are inserted in the deepest layer. If, however,
the predecessor is a layer, then the shapes are included in that layer and depth,,,., takes
the value of the minimum depth of the 2D shapes in the layer underneath or, if the
predecessor is the bottommost layer, the background shape’s depth.

This operation is also responsible for creating a clipping tree of a 2D scene’s shapes,
where nodes represent the 2D shapes and edges represent a clipping relation such that
the geometry of children shapes must be contained inside the parent shape. The clipping
tree root node is the 2D scene background shape. When the predecessor procedural item
is a planar shape or a layer, then the shapes output by the segment operation become
children of the background shape. On the other hand, if the predecessor is a 2D shape,
then the shapes are clipped by such shape.

By default, this operation creates only placeholder shapes, meaning that they will
not be converted into planar shapes unless their derivation leads to a procedural item of
a type other than Shape2D. This keeps the background geometry intact for as long as
possible allowing the correct and seamless integration of complex geometry into planar
shapes and 2D shape occlusion during the planar shape normalisation step (Section 5).

As with the operations described in Section 2.1, there is also a repeat segment
operation. We indicate this by appending an asterisk character to the operation body
(after the last } character). Moreover, segment sizes can also be defined as relative to the
predecessor size (by prepending the value with a > character) or as a float size (by using
a ~before the value) proportionally distributing the remaining size by all float segments.
This is also present in the CGA grammar.

Consider the following listing that further details the previous example.

Floors ~» segment("Y", 3,2,2)
{ ¢ | Floor2 | € }

Floor2 ~» segment("X", 3,2,3)
{ e | Balcony | € }

Balcony ~» extrude (0.1)

This results in a facade with a single square extrusion centered in the middle floor.
Note that the segment operation syntax is similar to the split operation described before
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Figure 2: Various stages of a layered shape grammar execution demonstrating layers
and vectorial shapes (top) and the final clipping tree (bottom).

and, as in Miiller et al. (2006), € is the empty shape. No practical consequences result
from including empty shapes since only non-empty, non-placeholder 2D shapes have
influence on the final geometry (see Section 5 for more details). In this scenario, only
the Balcony shape results in modifications to the final model since its derivation leads to
a volumetric shape via the extrude operation and the empty shapes are used as padding
to correctly place the balcony. The results are illustrated in the center-left image in Fig.
2.

4.3.3 Vectorial Shape Operation

The vectorial shape operation is used to create complex 2D shapes within other shapes,
taking as input the SVG specification of a vectorial closed path, allowing to specify com-
plex architectural elements such as arched windows or doors. The vectorial definition is,
afterwards, sampled down to a polygon P using an user specified sampling factor, al-
lowing to control the level of detail. The sampled points p;(x,y) € P, where x,y € [0, 1]
are used to create a polygonal 2D shape by interpolating them inside the predecessor
shape’s bounding rectangle, thus the vectorial shape aligns with any predecessor shape’s
bounding box.

The following example illustrates the creation of an arched door in the previous
examples.

Door ~» segment("X", 3,2,3)
{ € | DoorTile | € }
DoorTile ~» segment("Y", 4,~1)
{ ArchedDoor | € }
ArchedDoor ~
vectorial ("M0O,0 LO,0.5 CO,1 1,1 1,0.5 L1,0Z")



extrude (=0.1)

The first argument to the vectorial operation is the SVG path specification and a
second, optional, argument would be the sampling factor indicating how many points
are to be sampled per path segment (in our implementation and examples, this factor
defaults to 30).

As depicted in the center-right image in Fig. 2, the window is no longer generated
since, by default all 2D shapes are created having fixed geometry meaning that in case
of being occluded by a shape with a smaller depth, they are discarded. Because the door
is generated in a less deep layer, it takes precedence.

4.3.4 Set Property Operation

Similar to other procedural modelling frameworks, our technique provides an operation
to set properties on procedural items. This is specially useful, in our case, to define 2D
shapes with non fixed geometry.

The following example sets the fixed_geometry property to false in the Balcony rule,
causing the balcony’s geometry to be modified adapting to the arched door (see right
image in Figure 2).

Balcony ~» set_property
("fixed_geometry", false)
extrude (0.1)

5 Planar Shape Normalisation

The normalisation of a planar shape is a process that has the goal of converting the
2D scene associated with each planar shape to a set of planar shapes. This way the
procedural derivation can continue to add volumetric detail.

In this system, the normalisation process is triggered by processing a special non-
terminal procedural item, whose type is NormalisationToken, during the derivation
process. This procedural item is automatically created as soon as a 2D shape is created
within a planar shape and the system guarantees that there is at most one present at a
time, which is discarded after the normalisation process. All 2D shapes are created
before normalising the planar shapes (see Section 6).

The process consists of two stages for each planar shape. The first is to merge all
layers in the 2D scene, calculating occlusions between shapes. This process can, usually,
be found in 2D graphics software. The second stage is to convert these 2D shapes to
planar shapes in three dimensional space.

More formally, the normalisation process is a function normalise : PlanarS hape —
(Bgshape> Frontgapes) which takes a PlanarShape p, along with its 2D scene and shapes,
and transforms it into a a disjoint set of shapes such that p = Bgpe U Frontgapes. The
Bg nape represents the converted background shape in the 2D scene while Front,gpes is
a set containing the remaining planar shapes.

After the normalisation process, the background shape is marked as a terminal shape,
while the remaining shapes are considered non-terminals.
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5.1 Layers Merge

The first step in the process of merging all layers is to sort all 2D shapes by increasing
order of depth, taking into account the shape’s depth within a layer and the relative
position of such layer. This results in a list L where the last element is the background
shape.

All non-terminal 2D shapes are set as non-placeholder shapes if their following
derivation results in procedural items other than shape2D. This guarantees that only
shapes that will be derived further are converted into planar shapes.

The clipping tree is traversed and the 2D shape, s, of each node is clipped inside its
parent shape p, such that its resulting shape s’ is computed as s’ = s N p.

The final 2D geometry of each shape is, then, calculated by iterating the list of shapes,
performing occlusion calculations with a mask shape M, while considering the place-
holder and fixed geometry flags. The final shape is calculated as 5" = occlude(s’, M),
where occlude is a function described in the following listing. The mask shape is
constructed by accumulating the occlusion results.

1 function occlude(shape, M):

2 if (shape.placeholder):

3 return <

4 else if (shapenM =92):

5 return shape.geometry

6 else if(shape.fixed_geometry):
7 return <

8 else:

9 return shape.geometry \ M

Placeholder shapes do not have any impact on the final model and, so, its geometry
is discarded. If the shape does not intersect the mask then there is no occlusion and the
shape’s geometry is not modified. If there is an occlusion the geometry is discarded
if the shape is marked as fixed geometry. On the other hand, the geometry of shapes
not marked as fixed geometry is calculated by subtracting the mask from its original
geometry.

The clipping and occlusion process can, eventually, lead to shapes being split into
two or more shapes. In these situations, the resulting shapes are considered separate
shapes, and will lead to different planar shapes with the same symbol.

5.2 Conversion to Planar Shapes

The conversion of a 2D scene associated with a planar shape P into a set of new planar
shapes, is achieved by noting that the scene is actually embedded in the plane defined
by the x and y axis of P’s scope.

There is, thus, a trivial mapping pp : R? = R? that transforms points in a 2D scene
in a planar shape P into points in the 3D scene.

For each 2D shape in a planar shape P, the system converts its 2D polygon, with pp,
into a 3D polygon, which is then used to create a new planar shape. Its scope is defined
by translating P’s scope to the point nearest to its origin and its size is adjusted to the
new polygon. Finally, the 2D shape’s symbol is copied to the new planar shape.
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The planar shape can now be further detailed through the normal derivation process.

5.3 Deferred Procedural Items

To achieve a greater control of when the normalisation process takes place, it is possible
to circumvent the normal rule execution scheduling (Section 6) and defer the derivation
of a procedural item until a normalisation occurs. These items are, thus, called deferred
procedural items.

This can be encoded in the grammar by prepending the @ character before a succes-
sor symbol. After the normalisation process occurs, all deferred items are unmarked as
such and their derivation can continue as normal.

Deferring a procedural item is particularly useful when segment operation sizes
must consider the final size of a planar shape, instead of its size before normalisation.
The following grammar generates the example in Fig. 3a. Omitting the @ character
before the Windows successor (second line), results in the model shown in Fig. 3b.

Start —> layers ("windows", "frames")
{ @Windows | Frames }
Frames —> segment(x,1,~1,1)
{ extrude(0.1) | € | extrude(0.1) }
Windows —> segment(x,0.5,2,0.5)
{ € | RepeatV | € }=x
RepeatV —> segment(y,~1,2,~1)
{ € | extrude(-0.1) | € }

6 Derivation Process

The derivation process starts with an arbitrary configuration of procedural items. These
are, necessarily, planar or volumetric shapes, since they have a three dimensional
representation.

The procedural items are, then, inserted into a priority queue NT of non terminals,
which sorts the items decreasingly using the priority function, where future_type(item)
indicates the type of the resulting items after item has been derived.

3 if future_type(item) = S hape2D

2 if item.type = NormalisationT oken
1 ifitem.deferred

0 if otherwise

Therefore, procedural items whose future_type equals Shape2D have a higher pri-
ority, followed by the normalisation token, the deferred shapes and finally the remaining
procedural items. Therefore, the system creates all 2D shapes possible, ensuring that
2D scenes are fully detailed and the normalisation process has all available clipping and
occlusion data to generate correct results. The generation of geometry evolves naturally
from less detailed to more detailed models.

The derivation algorithm is detailed in the following listing:

priority(item) =

1 function derivation (NT):
2 while (NT not empty)

12
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Figure 3: Deferring the Windows rule results in the correct window placement (a), when
compared to (b).
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Figure 4: The example fagade (Subsection 7.1), on the left, and its decomposition into
layers, on the right.
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3 S <« NT.pop()

4 rule « fetch_rule(S.symbol)
5 if (out_type(rule ,S.type) = @)
6 error_and_exit ()

7 newltems <« rule.execute(S)

8 for(item in newltems)

9 if (non_terminal (item))

10 NT .push(item)

11 if (should_generate_token (item))

12 NT .push(new normalisationToken)

The third line retrieves and removes the next non-terminal procedural item S from
the priority queue NT and, afterwards the procedural rule that matches the item’s symbol
is fetched (line 5). Lines 6 through 8 check if the rule can be executed with the given
item type, in which case, the rule is executed resulting in a new list of items (line 9).
This list is iterated and the algorithm checks if each item is a terminal or not, by querying
the rulebase for a matching symbol on the left side of a rule. If an item is non-terminal,
it is inserted into the NT for further processing (line 14). A normalisation token is
created as soon as a procedural item whose type is Shape2D is generated and there is no
normalisation token present in N7 (lines 15 through 17).

Including the normalisation token as a non terminal procedural item, guarantees that
the planar shape normalisation process occurs in the right moment, while keeping the
derivation process simple and similar to other approaches (e.g., Miiller et al. (2006)).

7 Results and Discussion

In this section we provide a set of examples modelled with our system and a comparison
to split-based methods.

7.1 Simple Facade Example

This example shows a simple fagade containing several layers and shapes created with
a vectorial definition. Note that the model is completely generated with procedural
methods and does not include any pre-modelled asset, representing an improvement in
shape grammar expressiveness.

The Facade rule creates two layers. As implicit, the Floors layer will contain
the ground and top floors definition, while the Entrance layer will contain the arched
door. The separation into two layers, allows the door to span several floors while the
normalisation process guarantees that there are no geometry conflicts with the windows.
Also, the door placement is completely independent from the floors and windows,
enabling more variations by simply adjusting a few parameters.

The GroundFloor rule also creates two layers: one for the horizontal stripes and one
for the arched windows. Note the seamless integration of the arched shapes with the
stripes, resulting in more complex shapes.

Facade ~» layers (" Floors"," Entrance")
{ FloorsSplit | Entrance2 };
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FloorsSplit ~» segment(y,2,~1)
{ GroundFloor | TopFloors };
TopFloors ~» segment(y,2)
{ Floor }=x;
Floor ~» segment(x,1.5)
{ TileSegment }=x;
TileSegment ~» segment(x,’0.1,~1,70.1)
{ € | TileV | € };
TileV ~» segment(y,’0.1,~1,70.1)
{ € | WindowTile | € };
GroundFloor ~» layers (" stripes","windows")
{ Stripes | GroundWindows };
GroundWindows ~» segment(x,0.9,1,0.9)
{ € | GroundWindowTile | € }=x;
GroundWindowTile ~» segment(y,0.35,0.1,~1,0.1)
{ € | extrude(0.35) | ArchedWindow| € };
ArchedWindow ~~
vectorial ("MO,0 L0O,0.5 CO,1 1,1 1,0.5 L1,0Z")
extrude (=0.3);
Entrance ~» segment(x,~1,3,~1)
{ € | EntranceTile | € };
EntranceTile ~» segment(y,3.5,~1)
{ ArchedDoor | € };
ArchedDoor ~
vectorial ("M0,0 LO,0.5 CO,1 1,1 1,0.5 L1,0Z")
extrude (-0.5);
Stripes ~» segment(y,’0.2,°0.2"7)
{ extrude (0.1) | extrude (0.2) }=x;

Some of the rules were ommited for brevity. The resulting facade can be seen in
Fig 4a and its decomposition into layers can be seen in Fig 4b. Note that, although the
vectorial definition for the door and the windows is the same, the generated shapes are
of different size since the polygon is interpolated inside the predecessor’s procedural

item bounding rectangle.

7.2 Comparison to Split Based Methods

To generate the previous example using split based methods only, several modifications

were introduced and are present in the following listing.

Facade ~ split(y,4,~1)
{ GroundFloor | TopFloors }
TopFloors ~» split(y, 2)
{ Floor }=x
Floor ~» split(x,1.5)
{ 1.5: Tile }=
Tile ~» split(x,’0.1,~1,70.1)
{ e | TileV | € }
TileV ~» split(y,’0.1,~1,°0.1)
{ ¢ | WindowTile | € }
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GroundFloor ~» split(x,4.5,4.5,4.5)

{ MFSide | EntranceTile | MFSide }
MFSide ~» split(y,2,2)

{ GroundFloorSide | TopFloors }
GroundFloorSide ~» split(x,~1,~1,~1)

{ Stripes | GroundWindowTile | Stripes }=*
GroundWindowTile ~» segment(y,0.35,~1,0.1)

{ Stripel | WindowAsset | Stripel }
EntranceTile ~» split(x,~1,3,~1)

{ EStripes | DoorAsset | EStripes }
EStripes ~» split(y,2,~1)

{ Stripes | € }

Split operations now have to, simultaneously, account for the entrance, floors and
horizontal stripes. Layers, on the other hand, treat these elements separately, which
provides a greater amount of variability with fewer modifications to the rulebase, while
still providing correct results.

For example in our system, modifying the entrance height in the facade can be
achieved by tuning the segment operation parameters in the EntranceTile rule in the
previous example. In the split based method, this height is, already, implicitly defined in
the the Facade rule. Modifying the split parameters leads to unwanted repercussions
in other parts of the facade. This is illustrated in Fig. 5, where the images show an
increasing entrance height and, while our methodology (Fig. 5a) keeps the windows
with a constant size, the split-based method deforms two of the fagade floors (Fig. 5b).
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Figure 5: Changing the entrance size using the layered approach, 5a, leads to better
results than with the split based approach, 5b.
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Another consequence of the layered approach, is that shape placement is not con-
strained by split lines and, as such, intentional misalignments of shapes are easily
achieved. In Fig. 6 we see the same facade furthed detailed with a two-storey balcony in
an aditional layer which is not aligned with the windows regular grid. This example also
shows that complex modifications can be introduced with new layers. On the other hand,
with traditional shape grammars several procedural rules would have to be rewritten.

Figure 6: Intentionally misaligned balconies in the example facade.

Moreover, in split-based methods, the arched elements have to be imported as pre-
modelled assets and, as seen in the ground floor windows (Fig. 7), can be difficult to
integrate. By using a vectorial definition, the planar shape normalisation process allows
the seamless composition of these windows and the horizontal stripes.

8 Limitations and Future Work

Although layered shape grammars allow a greater flexibility in placing geometry within
planar shapes, our system currently does not offer any explicit way to constrain align-
ments between elements in different layers. The current solution is to parameterise
the rules to encode these alignments. However, the normalisation process provides a
synchronization point during the procedural derivation where 2D shapes can be modified
(e.g., translated or resized). This would allow the system to perform alignments with
procedural items already created.

The manual input of a SVG path to vectorially define shapes is an error prone task.
However, this can be alleviated in a number of ways. One is to externally define and
import these paths, resembling an asset import operation. A more elaborate solution is
to provide the designer with tools to sketch the shapes over the models in an interactive
procedural modelling application.
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Figure 7: Detail of the ground windows in the split-based approach.

As with any shape grammar approach to the procedural modelling of buildings,
our methodology suffers from the same drawbacks. For instance, these are text-based
which is impractical for artists (Patow (2012)) and have limitations in its readability and
manageability (Silva et al. (2015)). The grammar could be translated to a graph-based
approach.

9 Conclusions

In the procedural modelling of buildings, most current methodologies rely on a split-
based paradigm, imposing too strict limitations in the generation of geometry.

This paper presented an extension to shape grammars that allows the specification
of layers within planar surfaces of buildings. This permits more complex layouts that go
beyond regular grid structures. Moreover, this concept can, easily, provide a non-linear
design workflow and produce more variations with less effort.

In most procedural modelling methods, complex geometry must be imported as a
pre-modelled assets. We take a step further in procedural expressiveness by allowing
the vectorial definition of 2D shapes within layers.

Results show that non-trivial variations of procedural models using our approach can
be achieved with fewer modifications to the rule base. The integration of curved shapes
(e.g., arched windows and doors) with other architectural elements is also achievable
with our method.
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