
Eventually Consistent Register Revisited

Marek Zawirski∗
Inria & Sorbonne Universités,

UPMC Univ Paris 06, LIP6
marek.zawirski@gmail.com

Carlos Baquero
HASLab, INESC TEC &
Universidade do Minho
cbm@di.uminho.pt

Annette Bieniusa
Technische Universität

Kaiserslautern
bieniusa@informatik.uni-

kl.de
Nuno Preguiça

NOVA LINCS, DI, FCT,
Universidade NOVA de Lisboa
nuno.preguica@fct.unl.pt

Marc Shapiro
Inria & Sorbonne Universités,

UPMC Univ Paris 06, LIP6
marc.shapiro@acm.org

ABSTRACT
In order to converge in the presence of concurrent updates,
modern eventually consistent replication systems rely on
causality information and operation semantics. It is rel-
atively easy to use semantics of high-level operations on
replicated data structures, such as sets, lists, etc. However,
it is difficult to exploit semantics of operations on registers,
which store opaque data. In existing register designs, con-
current writes are resolved either by the application, or by
arbitrating them according to their timestamps. The former
is complex and may require user intervention, whereas the
latter causes arbitrary updates to be lost. In this work, we
identify a register construction that generalizes existing ones
by combining runtime causality ordering, to identify con-
current writes, with static data semantics, to resolve them.
We propose a simple conflict resolution template based on
an application-predefined order on the domain of values. It
eliminates or reduces the number of conflicts that need to be
resolved by the user or by an explicit application logic. We
illustrate some variants of our approach with use cases, and
how it generalizes existing designs.

CCS Concepts
•Theory of computation → Distributed algorithms;

Keywords
Multi-Value-Register, Eventual Consistency, CRDTs.

1. BACKGROUND
An eventually-consistent replication system accepts up-

dates concurrently at different replicas. The challenge is to
ensure convergence of values at all replicas under absence

∗Now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21, 2016, London, United Kingdom
c© 2016 ACM. ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911157

of a common execution order of updates. To this end, repli-
cas need to interpret delivered updates into a value without
relying on execution order. Formally, the intended value of
an object can be specified in this manner as a function on
the set of delivered updates partially ordered by causality
[1]. Value of abstract data types, such as set, list or counter,
can be easily expressed in this way with the help of their
method semantics or causality relation [5]. This is harder for
a low-level register data type with write and read operations,
which provide little semantics to make use of.

A classical approach is the multi-value register that uses
causality information to provide all concurrent writes to the
application [4, 5]. For the multi-value register that stores
values from a domain V , the register value is specified by a
function Fmvr that produces a subset of values from V :

Fmvr(E, hb) = {v |∃e ∈ E : e = write(v)

∧6 ∃e′ ∈ E : e′ = write( ) ∧ e hb−→ e′},

where E is a set of events observed by read operation, and
hb is a causality partial order on E. Provided all replicas
eventually observe the same set of updates, and always ob-
serve restriction of a common causality relation, the register
converges [1].

When more than one value appears in the set returned
by the multi-value register, it indicates concurrent updates,
called a conflict. Conflicts are undesirable, since either the
application or the user need to resolve them, which is complex
and may in turn cause another conflict.

2. REGISTER WITH DATA-DRIVEN CON-
FLICT RESOLUTION

We propose a simple template for conflict resolution based
on a predefined order of values. This approach reduces
or even eliminates the number of conflicts that need to be
resolved by an explicit logic or by the user.

We define a generalization of the classical multi-value
register as Fmvrr:

Fmvrr(E, hb) = resolve(Fmvr(E, hb)),

where resolve : P(V ) −→ P(V ) is a function that can resolve
some or all of the conflicts. Hereafter, we identify some
simple yet useful classes of resolve.

2.1 Partially Ordered Values

http://dx.doi.org/10.1145/2911151.2911157


Replica states Σ = P(I×N× V )× (I→ N)
Initial state σ0

i = ({}, {})
Write at replica i writei

(
v, (s, c)

)
=

(
{(i, c[i] + 1, v)}, c[i 7→ c[i] + 1]

)
Read at replica i readi

(
(s, c)

)
= {v | ( , , v) ∈ s}

Merge replica states deliver
(
(s, c), (s′, c′)

)
= resolve≺

(
(s ∩ s′) ∪ {(i, n, v) ∈ s | n > c′[i]}

∪{(i′, n′, v′) ∈ s′ | n′ > c[i′]}, c t c′
)

where resolve≺
(
(s, c)

)
=

(
{(i, n, v) ∈ s |6 ∃( , , v′) ∈ s · v ≺ v′}, c

)
Figure 1: Optimized implementation of register with resolve≺, replica i.

Let ≺ be a strict partial order predefined on values V by
the application, embedded in the object type. We define
resolve≺ based on this order as:

resolve≺(V ) = {v ∈ V |6 ∃v′ ∈ V : v ≺ v′}.

The register eliminates concurrently written values that are
dominated in ≺. The result is the set of maximal values
acording to the order on values. This reduces the number
of conflicts that the user, or the application, need to resolve.
When the order ≺ is not provided (empty), resolve≺ be-
haves as the identity function, as in the classical multi-value
register.

2.2 Totally Ordered Values
A special case of partial order is a total order. Under total

order, resolve≺ ensures that the register presents at most one
value to the application, i.e., ∀X : |resolve(X)| ≤ 1. This is
a desirable property, since applications and users are often
expecting to read a single value, as in the sequential register.

3. USE CASES
Instantiations of our construction can be applied to a

number of use cases.

3.1 Semantics-based Ordering
An application can define the order according to the se-

mantics of stored values.
For example, consider a software bug tracking system. A

register may store priority level of a bug, from a predefined
and totally-ordered domain of priority levels. Our construc-
tion provides a reasonable convergent behavior: concurrent
assignments of different levels should converge to the highest
one. Nevertheless, it allows to decrease the level again, with
a later assignment.

A bug tracker may use another register to store status of
a bug. Consider the following status options: open, assigned,
closed-fixed, and closed-irreproducible. In this case, the appli-
cation can specify a partial order on statuses, e.g., assigned
dominates open, dominated in turn by the two incomparable
variants of closed. Using this order with our construction,
concurrent modifications of the status converge to a single
value, except when the bug is both marked as irreproducible
and fixed, which requires user intervention.

3.2 Runtime-based Ordering
Although the order of values ≺ is static, it can be also

based on runtime-provided information, such as replica ID or
timestamp. In particular, our construction can achieve behav-
ior similar to the last-writer-wins policy (LWW) [2], provided
every write(v) operation is augmented with a timestamp t
at the time of write, becoming effectively write((v, t)), and
pairs (v, t) are totally-ordered according to their t.

An advantage of our approach compared to the classical
LWW register is that the timestamps are used to arbitrate
the concurrent values only, avoiding some of the arbitration
anomalies caused by physical clocks [3]. For instance, it is
no longer possible to timestamp a write, with a far future
time, and prevent later writes to appear. Any write that
observes this write will be, in our construction, ordered after
that write, regardless of the timestamp that is present for
the tagging.

4. IMPLEMENTATION
We illustrate an implementation of the proposed register

in the state-based eventually-consistent replication model
[5]. In this model, replicas opportunistically exchange their
complete states via message passing.

The register implementation in Figure 1 uses an implemen-
tation of resolve≺ to reduce any concurrently assigned values
according to the partial order ≺ defined by the application
on those values. The order among values can range from: No
ordering – all values are concurrent, and thus not order re-
ducible; Partial order – one or more maximal values are kept
after resolve; Total order – a single maximal value is kept
after resolve. The algorithm includes an optimization that
allows storing a single scalar logical clock to identify each
written value, complemented by a version vector for the whole
register. The classical multi-value register implementation
stores a version vector per value [4, 5].

The state is composed by a set of values, tagged by scalar
clocks, and by a common version vector. The scalar clocks
are locally generated by using a replica id i ∈ I and a
monotonic counter per replica. A write operation writei(v, σ)
is depicted as a state transforming function, tagged with the
replica id i, and supplying a value v and the current state
σ = (s, c), where s is the set and c is the “causal context”
version vector. Each write uses the version vector to create
a new scalar clock and derives a new set with a single value
tagged by the scalar clock, as well as an updated version
vector that includes the new scalar. The read operation
readi(σ) keeps the state unchanged and replies with a set
comprising all values present in the multi-value register,
stripped of clock metadata.

Since writes always derive a set with a single value, the
set will only have multiple values as a result of a merge that
gathers concurrently assigned values, written in different
replica states. The merge collects concurrently assigned val-
ues that have not been overwritten and supplies these values
to the resolve≺ for possible further reduction on resulting set.
The implementation in deliver detects values that have been
observed and later overwritten by checking that the scalar
cloks associated to those values are included in the version
vector c while those entries are no longer present in the set s.
Values still present on both sets, or newly written values are



({(A,1,open)},,
(A!1,B!0)),

Replica,A, Replica,B,

({(A,1,open)},,
(A!1,B!0)),

write(assigned),,

({(B,1,assigned)},,
(A!1,B!1)),

write(closed:irrep),,

({(A,2,closed:irrep)},,
(A!2,B!0)),

write(closed:fixed),,

({(B,2,closed:fixed)},,
(A!1,B!2)),

({(A,2,closed:irrep)},,
(A!2,B!1)),

({(A,2,closed:irrep),
(B,2,closed:fixed)},,

(A!2,B!2)),

write(assigned),,
({(A,3,assigned)},,

(A!3,B!2)),

({(A,3,assigned)},,
(A!3,B!2)),

Figure 2: Bug tracking run with two register replicas; dashed
arrow represents a message, merged at the receiver replica;
solid box indicates a client operation.

kept. This detects and keeps all concurrently assigned values,
but when resolve≺ is finally called some of these values can
be removed if the order information on values indicates that
they are dominated by a higher value.

Figure 2 shows a run of a system with two replicas for
the bug tracking example mentioned before. After the first
synchronization from replica B to replica A, the state will
be closed-irrep, as this value is greater than assigned in the
order of values. After the second synchronization, the register
will maintain two values as closed-irrep and closed-fixed are
incomparable. Later, these values are replaced by a new
write with value assigned.

Figure 3 shows a run with the last-writer-wins behavior.
In this example, we assume that replica B has a local clock at
a higher value. We can see that after the first write in replica
B is propagated to replica A, the following write in A will
overwrite the value previously written by replica B, although
the new timestamp is smaller. The reason for this is that
the timestamp is only used to arbitrate among concurrent
values.

Acknowledgments.
This projects was supported in part by: Project Norte-

01-0145-FEDER-000020 under the North Portugal Regional
Operational Programme (Norte 2020), under the Portugal
2020 Partnership Agreement, and through the European Re-
gional Development Fund (ERDF); EU FP7 SyncFree project
(609551); FCT/MCT projects SwiftComp (PTDC/ EEI-
SCR/ 1837/ 2012) and NOVA LINCS (UID/CEC/04516/2013);
and a Google Faculty Research Award 2013.

({(A,1,(x,11:00.a)},-
(A!1,B!0))-

Replica-A- Replica-B-

({(A,1,(x,1.a))},-
(A!1,B!0))-

write((z,12:00.b))--

({(B,1,(z,12:00.b))},-
(A!1,B!1))-

write((y,11:10.a))--

({(A,2,(y,11:10.a)},-
(A!2,B!0))-

({(B,1,(z,12:00.b))},-
(A!2,B!1))-

write((w,11:20.a))--
({(A,3,(w,11:20.a))},-

(A!3,B!1))-
({(A,3,(w,11:20.a))},-
(A!3,B!1))-

Figure 3: Last-writer-wins run with two register replicas;
dashed arrow represents a message, merged at the receiver
replica; solid box indicates a client operation.

References
[1] S. Burckhardt, A. Gotsman, H. Yang, and M. Za-

wirski. Replicated Data Types: Specification, Verifi-
cation, Optimality. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, pages 271–284, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. .
URL http://doi.acm.org/10.1145/2535838.2535848.

[2] P. R. Johnson and R. H. Thomas. The maintenance
of duplicate databases. Internet Request for Comments
RFC 677, Information Sciences Institute, Jan. 1976.

[3] K. Kingsbury. The trouble with timestamps. https://
aphyr.com/posts/299-the-trouble-with-timestamps, Oct.
2013.

[4] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser,
and C. Kline. Detection of Mutual Inconsistency in
Distributed Systems. IEEE Trans. Softw. Eng., 9(3):
240–247, May 1983. ISSN 0098-5589. . URL http://dx.
doi.org/10.1109/TSE.1983.236733.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proceedings of the
13th International Conference on Stabilization, Safety,
and Security of Distributed Systems, SSS’11, pages 386–
400, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN
978-3-642-24549-7. URL http://dl.acm.org/citation.cfm?
id=2050613.2050642.

http://doi.acm.org/10.1145/2535838.2535848
https://aphyr.com/posts/299-the-trouble-with-timestamps
https://aphyr.com/posts/299-the-trouble-with-timestamps
http://dx.doi.org/10.1109/TSE.1983.236733
http://dx.doi.org/10.1109/TSE.1983.236733
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642

	Background
	Register with Data-Driven Conflict Resolution
	Partially Ordered Values
	Totally Ordered Values

	Use Cases
	Semantics-based Ordering
	Runtime-based Ordering

	Implementation

