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e ability to map instructions running in a microprocessor to a recon�gurable processing unit (RPU), acting as a coprocessor,
enables the runtime acceleration of applications and ensures code and possibly performance portability. In this work, we focus on
the mapping of loop-based instruction traces (called Megablocks) to RPUs. e proposed approach considers offline partitioning
and mapping stages without ignoring their future runtime applicability. We present a toolchain that automatically extracts speci�c
trace-based loops, called Megablocks, from MicroBlaze instruction traces and generates an RPU for executing those loops. Our
hardware infrastructure is able to move loop execution from the microprocessor to the RPU transparently, at runtime, and without
changing the executable binaries. e toolchain and the system are fully operational. ree FPGA implementations of the system,
differing in the hardware interfaces used, were tested and evaluated with a set of 15 application kernels. Speedups ranging from
1.26× to 3.69× were achieved for the best alternative using a MicroBlaze processor with local memory.

1. Introduction

e performance of an embedded application running on
a general-purpose processor (GPP) can be enhanced by
moving the computationally intensive parts to specialized
hardware units and/or to Recon�gurable Processing Units
(RPUs) acting as acceleration coprocessors of the GPP [1,
2]. is is a common practice in embedded systems. How-
ever, doing so, manually or automatically, usually implies
a hardware/soware partitioning step over the input source
code [3]. is step is static, requires the source code of
the application, and does not promote code and perfor-
mance portability as the hardware/soware components are
obtained for a speci�c target architecture. Dynamic partition-
ing and mapping of computations (hereaer simply referred
as dynamic partitioning) [4–6] is a promising technique able
to move computations from an GPP to the coprocessor in a
transparent and �exible way, and may become an important

contribution for the future recon�gurable embedded com-
puting systems.

In this paper, we present a system which can automati-
callymap loops, detected by running aMicroBlaze executable
binary, to an RPU. We focus on a special kind of trace-based
loop, named Megablock [7], and transform Megablocks
into graph representations which are then used to generate
Megablock-tailored RPUs.Megablocks are repeating patterns
of elementary units of the trace (e.g., basic blocks) in the
instruction stream of the program being executed. e RPU
is runtime recon�gurable and can use several con�gurations
during program execution.

In our current implementation, Megablocks are detected
offline through cycle-accurate simulation of running appli-
cations [8, 9]. e synthesis of the RPU is also done
offline, while recon�guration of the RPU is done online. e
migration of the application execution between hardware and
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soware is done online, without changes in the binary code
of the application to be executed.

is paper makes the following main contributions:

(i) with respect to our previous work [8, 9], it proposes
a more efficient use of an RPU for transparent
binary acceleration by using lower-overhead interface
schemes between RPU and GPP.

(ii) It presents implementations of three distinct system
architectures and their system components to allow
transparent migration of sections of GPP execution
traces to the RPU, which includes recon�guration of
the RPU and runtime insertion of communication
primitives.

(iii) It analyses the runtime overhead of the partitioning
and mapping stages (currently performed by offline
tools) and it presents a dedicated hardware detec-
tor circuit to accelerate the runtime identi�cation
of Megablocks bearing in mind a future runtime
implementation.

(iv) It includes an extensive experimental evaluation of
the proposed approaches with a set of 17 benchmarks
(15 kernels and 2 examples of multiple executions of
kernels in the same RPU).

e rest of this paper is organized as follows. Section
2 introduces the Megablock, the type of loop considered
for mapping to the RPU. Sections 3 and 4 describe the
proposed hardware/soware system and the RPU architec-
tures used, respectively. Section 5 explains the toolchain of
our current approach, and Section 6 presents experimental
results obtained for the three prototyped hardware/soware
implementations using an RPU coupled to a microprocessor.
Section 7 presents related work, and Section 8 concludes the
paper.

2. Megablocks

e architecture of the RPU was heavily in�uenced by the
kind of repetitive patterns we are mapping, the Megablocks
[7]. A Megablock is a pattern of instructions in the execution
trace of a program and is extracted from execution instruc-
tion traces. Figure 1 shows a portion of the trace of a count
kernel. In this case, when the kernel enters a loop, the trace
repeats the same sequence of six instructions until the loop is
�nished.

e Megablock concept [7] was proposed in the con-
text of dynamic partitioning, that is, deciding at runtime
which instruction sequences executing on an GPP should
be moved to dedicated hardware. We consider four steps for
dynamic partitioning: detection, translation, identi�cation,
and migration. Detection determines which sections of the
application instruction traces are candidates for dedicated
hardware execution; translation transforms the detected
instruction traces into equivalent hardware representations
(i.e., RPU resources and corresponding con�gurations); iden-
ti�cation �nds, during program execution, the sections that
were previously detected; migration is the mechanism that
shis the execution between the GPP and the RPU.
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F 1: Example of a repeating pattern of instructions in the trace
of a 8-bit count kernel.

In a full online approach, all the above steps would be
executed online. In the current prototypes, detection and
translation are done offline (Section 5), while identi�cation
and migration are done online (Section 3.4). is approach
has been also used by Faes et al. [16], which manually
partitions code at themethod level and proposes a framework
which can, at runtime, intercept arbitrary method calls and
pass control to previously designed hardware modules.

A Megablock represents a single, recurring path of a
loop across several basic blocks. For every instruction which
can change the control �ow (e.g., branches), the Megablock
considers a new exit point which can end the loop if the path
of the Megablock is not followed. Since we are considering
only a single path, the control-�ow of a Megablock is very
simple and we do not need to use decompilation techniques
which extract higher-level constructions such as loops and
if structures. And unlike other instruction blocks (e.g.,
Superblock and Hyperblock [17]), a Megablock speci�cally
represents a loop.

For Megablocks to be useful, they must represent a
signi�cant part of the execution of a program. Previous work
[7] shows that for many benchmarks, Megablocks can have
coverage similar or greater than other runtime detection
methods, such as monitoring short backward branches (the
approach used by Warp [10]).

Megablocks are found by detecting a pattern in the
instruction addresses being accessed. For instance, Figure
1 shows a pattern of size 6 (0x174, 0x178, 0x17C, 0x180,
0x184, and 0x188). In [7], it is shown how the detection of
Megablocks can be done in an efficient way.

In the mapping approach described in this paper, each
Megablock is �rst transformed into a graph representation.
Because of the repetitive nature of the Megablock, we can
select any of the addresses in the Megablock to be the
start address. However, the start address can in�uence opti-
mizations which use only a single pass. e start address
is also used in our system architecture as the identi�er
of the Megablock during the identi�cation step and must
de�ne the start of the Megablock unambiguously. We use the
following heuristic to choose the start address: choose the
lowest address of the Megablock which appears only once.
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For the example in Figure 1, the start address according
to this heuristic is 0x174. Since two or more Megablocks
can start at the same memory address, but the current
identi�cation procedure only supports one Megablock for
each start address, we synthesize the Megablock which has
the highest coverage as determined in the detection phase.

2.1. Detecting Megablocks. ere are several parameters we
need to take into account when detecting Megablocks. For
instance, the unit of the pattern can be coarser than a single
instruction (e.g., a basic block). We impose an upper limit on
the size of the patterns that can be detected (e.g., patterns
can have at most 32 units). We de�ne a threshold for the
minimumnumber of instructions executed by theMegablock
(i.e., only consider Megablocks which execute at least a given
number of instructions). We can detect only inner loops, or
decide to unroll them, creating larger Megablocks.

e values chosen for these parameters are dependent on
the size and kind of Megablocks we want to detect.

2.2. Hardware for Megablock Detection. e problem of
detecting aMegablock is similar to an instance of the problem
of detecting repeated substrings, for example, 𝑥𝑥𝑥𝑥, with 𝑥𝑥
being a substring containing one or more elements. is
is also known as squares, or tandem repeats [18]. In our
case, substring 𝑥𝑥 is equivalent to the previous sequence
of instructions and represents a single iteration of a loop.
Although we want to �nd patterns with many repetitions (a
square strictly represents only two repetitions), we observed
that if a sequence of instructions forms a square, it is
likely that more 𝑥𝑥 elements will follow (e.g., 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥). e
detection method considers that two repetitions are enough
to signal the detection of a Megablock.

Figure 2 presents a hardware solution for Megablock
detection when using basic blocks as the detection unit. It
has three main modules: the Basic Block Detector reads the
instructions executed by the processor and detects which
instructions correspond to the beginning of basic blocks.
It outputs the instruction addresses corresponding to the
beginning of basic blocks (BB_address), and a �ag which
indicates if the current instruction is the beginning of the
basic block (is_BB_address).

eMegablock Detector receives pattern elements, which
in this case are the �rst addresses of basic blocks. It outputs
the size of the current pattern, or zero if no pattern is detected
(pattern_size), and a control signal indicating the current
state of the detector (pattern_state).

e module Trace Buffer is a memory that, when
Megablock detection is active (i.e., the module is currently
looking forMegablocks), stores the last instructions executed
by the processor, their corresponding addresses, and a �ag
which indicates if the instruction corresponds to a pattern
element of the Megablock (e.g., the start of a basic block).
Aer a Megablock is detected, the Trace Buffer stops storing
executed instructions and can be used to retrieve the detected
Megablock.

Figure 3 presents the general diagram for the Megablock
Detector. e Squares Detector �nds patterns of squares. It
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F 2: Hardware solution for Megablock detection.

receives pattern elements and detects squares of size one up
to a maximum and outputs one �ag per detected square size
(pattern_of_size_X).

A pattern element can trigger one or more square sizes.
e module Pattern Size Arbiter & Encoder receives the
individual pattern_of_size_X �ags, chooses which pattern
size should be given priority, and encodes the chosen size
into a binary string. For instance, when detecting only
inner loops, this module can be implemented as a priority
encoder. e module Pattern State is a state machine which
indicates the current state of the pattern, and can have
one of �ve values: Pattern_Started, Pattern_Stopped, Pat-
tern_Changed_Sizes, Pattern_Unchanged, and No_Pattern.

Figure 4 presents the block diagram for a hardware
implementation of the Squares Detector. It shows the �rst
threemodules, which correspond to detectors for sizes 1 up to
3.e additional modules follow the same structure.e pat-
tern_element signal corresponds to a basic block start address.
�ach detector for a speci�c square size (with exception of the
detector for size one) uses an FIFO.When FIFOs have a reset
signal they are usually implemented in hardware using Flip-
Flops (FFs), becoming relatively expensive. However, if it is
not necessary to access the intermediate values of FIFOs, they
can be implemented with considerably less resources (e.g., if
an FPGA has primitives for shi registers available). When
using such FIFOs, the reduction factor in resources can be
as high as 16× and 32× [19] (e.g., when using the primitives
SRL16 and SLR32 in Xilinx FPGAs, resp.).

3. Target System Architectures

We consider three prototype implementations of the target
system: DDR-PLB (Arch. 1, illustrated in Figure 5), LMB-
PLB (Arch. 2, presented in Figure 6), and LMB-FSL (Arch.
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3, illustrated in Figure 7). All three implementations consist
of an GPP executing a target application, an RPU used to
accelerate execution of Megablocks, and additional hardware
(the Injector) to support online identi�cation and migration
of Megablocks. e three system architectures share similar
hardware modules, the main difference being their interfaces
and arrangements. e prototypes were designed for an
FPGA environment: instead of proposing a single all-purpose
RPU, we developed a toolchain which generates the HDL
(hardware description language) �les of an RPU tailored for a
set ofMegablocks detected in the application to be run on the

system.is step is done offline and automatically, as detailed
in Section 5.

All versions use the same RPU architecture. is module
is recon�gured in runtime to execute any of the supported
Megablocks. To identify Megablock start addresses an aux-
iliary system module, named Injector (e.g., Processor Local
Bus (PLB) Injector in Figure 5), is placed on the instruction
bus between the GPP and its instruction memory. e
Injector monitors the program execution and determines
when to switch to/from execution on the RPU, by comparing
the current Program Counter (PC) to a table containing the
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start addresses of the Megablocks previously detected from
the instruction traces. �nce a Megablock is identi�ed, the
Injector executes the migration step.

e Injector is capable of controlling the execution of the
GPP, by modifying the contents of the instruction bus and
injecting arbitrary instructions. us, the Injector changes
the behavior of the program running on the GPP in a

transparent way, avoidingmodi�cations to theGPP hardware
and to the program binary stored in the memory.

All three architectures use a similar Injector module,
adapted to the memory and RPU interfaces. Speci�c details
on the different interfaces and behavior of the system are
given in the following sections.

3.1. Architecture 1: External Memory and Processor Bus.
Figure 5 shows the �rst system architecture, the DDR-PLB
variant (Arch.1). e program code is located in external
DDR memory and the interface between the GPP and the
RPU is done via the Processor Local Bus (PLB).

Arch.1 consists of the GPP, a loosely coupled RPU, the
PLB version of the Injector module, and an auxiliary recon-
�guration module (RM), currently implemented as a second
MicroBlaze. In addition to the program to be executed on the
main GPP, the external memory also contains automatically
generated communication routines (CRs), which are later
explained in detail in Section 5.

e system operates as follows: during boot, the GPP
copies the program code from �ash (not shown in Figure
5) to the DDR, while the RM copies the instructions of the
CRs, which are initially within its own local memories (not
shown in Figure 5), to prede�ned DDR positions, so they can
be later accessed by the GPP. During execution, the Injector
monitors the PC of the GPP and stalls the system (by placing
a branch to PC + 0 on its instruction bus) if the current
PC matches any entry in an internal table of Megablock
start addresses. en, the Injector indicates to the RM, via
its point-to-point Fast Simplex Link (FSL) [20] connection,
which Megablock was identi�ed. e RM recon�gures the
RPU for the detected Megablock (this step is skipped if the
RPU is already con�gured for that Megablock). �hen done,
the RM responds to the Injector with a memory address,
which is the start address of an CR stored in DDR memory,
speci�c for the detected Megablock.e Injector then inserts
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a branch operation to that address in the GPP’s instruction
bus.

From this point on, the Injector and the RM no longer
interfere, and the GPP executes the CR, which contains
microprocessor instructions to load operands to the RPU
from its register �le, to start computation, to wait for com-
pletion (by polling an RPU status register), and to retrieve
results, as well as a branch back to original program code.
Once the GPP returns to program code, the Megablock code
executed on theRPU is skipped in soware, and the execution
continues normally. If the PC of the GPP reaches another
address known to the Injector, the process is repeated and the
RPU is recon�gured if necessary.

Currently, the RM is used to recon�gure the RPU and
to return the address of the corresponding CR. In the case
of a fully online approach, the RM can be used to perform
Megablock detection and generation of new con�gurations
for the RPU, that is, translation, at runtime. Section 6.4
presents execution times for the partitioning tools running
on an ARM processor, considering mapping to a general-
purpose RPU architecture [15].

In our current mixed offline/online approach, the RM
and the loosely coupled interfaces are super�uous, and the
remaining two architectures were developed with this in
mind. e DDR-PLB case is still being used to analyze the
viability for a later expansion for fully online operation.

3.2. Architecture 2-Local Memory and Peripheral Bus. Using
external memory introduces a large communication over-
head, due to the access latency, both when accessing the
original code and the CRs which have to be executed in order
to use the RPU. e alternative system (Arch. 2), shown
in Figure 6, reduces this latency by having the program
code in local memories. In this case, the PLB Injector is
replaced by the Local Memory Bus (LMB) Injector.e LMB
is used by the GPP to access local, low-latency memories
(Block RAMs—BRAMs). e use of these memories reduces
execution time for both the CRs and the regions of program
not mapped to the RPU, thus reducing global execution time.
In this architecture, the RPU structure and interface are the
same as the ones presented in the previous section. Also, as
the GPP to RPU interface is the same, the CRs do not change.

In this approach, we removed the RM and moved its
functionality to the Injector.e Injector now includes a table
that maps Megablock addresses to CR start addresses (where
one Megablock start address corresponds to one target CR
address). e method to recon�gure the RPU was also
changed: in addition to CRs there are also recon�guration
routines (RCRs) which load immediate 32-bit values to the
RPUs con�guration registers (explained later). RCRs are also
placed in the same local memories and the LMB Injector
keeps an additional table with their start addresses. us,
when a Megablock address is identi�ed, the Injector causes
the GPP to branch to either an RCR or an CR, based on
whether or not the RPU is already con�gured for the detected
Megablock. If an RCR is executed, its last instruction is a
branch to its corresponding CR. For the GPP, there is no
distinction between the two situations (the only difference

is the overhead introduced in the communication with the
RPU).

3.3. Architecture 3: LocalMemory and Point-to-Point. Despite
the reduction in overhead due to the use of local memories,
the PLB access latency still introduces a signi�cant overhead
when sending/retrieving operands/results to/from the RPU.
In the architecture shown in Figure 7 (Arch. 3), both the
Injector and the GPP communicate with the RPU via FSL.
In the previous scenarios, RCRs and CRs containMicroBlaze
load/store instructions that place con�guration values or
inputs on the RPU through the PLB. In this case, these
instructions (whose latency was measured to be as high as
9 to 12 bus clock cycles in some cases, depending on bus
arbitration) are replaced by one-cycle put/get instructions
[21] per value sent/received.

In this case, the RPU recon�guration is handled by the
Injector itself. Con�gurations are held in a dedicatedmemory
for the Injector (not shown in Figure 7), whose contents are
de�ned at synthesis time.When aMegablock is identi�ed, the
Injector performs two tasks: it causes the GPP to branch to
the corresponding CR and sends con�guration data to the
RPU via an FSL connection. While this last task is being
done, the GPP is sending the operands to the RPU. e CRs
mostly consist of get and put instructions. e GPP executes
put instructions to load operands and then, since the get
instructions are performed blocking, the GPP automatically
stalls until data are placed on the RPU’s output FSL (i.e., until
the computation is �nished).

e RPU only starts computing when it receives a start
signal from the Injector, which indicates that all con�gura-
tions have beenwritten, and that theGPP is now stalled by the
blocking get. e latter situation is detected by the Injector,
which in this setup monitors both the instruction opcode and
the instruction address.

3.4. Injector Architecture. Figure 8 shows the architecture
of the PLB Injector, which is responsible for interfacing
the GPP with the rest of the system in Arch.1 (Figure
5), as well as for starting the recon�guration process by
identifying Megablocks. e PLB, LMB, and FSL variants of
the LMB Injector vary slightly in structure due to the buses
they interface with. e LMB version does not implement
communication with other modules. With respect to the
DDR version, both PLB-LMB and FSL-LMB versions (Figure
7) require different control logic due to different latencies
at which instructions can be fetched by the GPP (1 clock
cycle for the LMB bus and as many as 23 clock cycles for
the external DDR memory, as measured using ChipScope
Analyzer [22], a runtime bus monitor).

e Injector monitors the instruction address bus of the
GPP. It reacts to instruction addresses which correspond to
the start of Megablocks and acts as a passthrough for all
other instructions. If the PC matches a table of addresses,
the Injector stalls the GPP and execution is switched from
soware to hardware, as already explained. is means
the system can be enabled or disabled through a single
modi�cation of the instruction bus.e current PLB Injector
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for the DDR-PLB system does not allow the use of cache.
When using external memories with cache, the MicroBlaze
uses a dedicated cache bus to the external memory, and an
enhanced PLB Injector would be required to interface with
that bus. is will be addressed in our future work.

Although the Injectors alter the instruction stream in
order to modify runtime behavior, they cannot do so indis-
criminately. e Injector can only interfere in order to keep
the GPP from executing code that can now be executed on
the RPU, but the possibility of false positives exists, due
to the instruction fetch behavior of processor pipelines: the
processor is performing a fetch during the execute stage of
a previous instruction. If a Megablock start address comes
aer a branch instruction and the branch is taken, then the
GPP will still fetch the instruction from the Megablock’s
start address, even though it will not be executed. To solve
this problem, the Injector inserts a single stall (branch to
PC � �) aer a Megablock address is identi�ed, replacing
the �rst instruction of the Megablock. If the next requested
address is different from the address following theMegablock
start address, it means that the initial branch was taken. In
this case, the inserted branch is discarded by the GPP, and
execution continues normally; otherwise the initial branch
was not taken and the GPP would actually enter the corre-
sponding region of code. e inserted branch will cause the
Megablock address to repeat, and on this second occurrence,
the Injector can safely cause the GPP to branch to the CR.
is veri�cation introduces a short delay equivalent to eight
processor instructions. For the PLB case, this corresponds
to approximately 184 clock cycles (considering an average
external memory access latency of 23 clock cycles, through
the PLB). For the LMB case, 8 clock cycles are required since
BRAM latency is 1 clock cycle.

Another issue is caused by the fact that some instruction
sequences must execute atomically in the MicroBlaze ISA.
For instance, the IMM instruction loads a special register
with a 16 bit immediate value. e following instruction
combines these upper 16 bits with its own lower 16 bits to
generate a 32 bit immediate operand. An instruction must
not be injected aer an IMMinstruction. As expected, the
identi�ed Megablocks do not start aer IMM instructions.

4. RPU Architecture

e RPU is generated offline and is based on a parameter-
ized HDL description. Modifying the parameterization at
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F 9: Array of FUs.

synthesis time produces a single RPU which can execute a
particular set of Megablocks, with the required layout and
number of functional units (FUs). e RPU speci�cation
is generated automatically by our toolchain, based on the
Megablocks found in the detection step. Interfaces and con-
trol logic remain the same regardless of the supported set of
Megablocks. According to a particular online con�guration,
the RPU performs calculations equivalent to one of the
Megablocks it was tailored for.

4.1. FU Array. Figure 9 illustrates a possible array of FUs for
an RPU.e array is organized in rows with variable number
of single-operation FUs. e number and width of rows are
variable according to parameterization.e �rst row receives
inputs from the input registers, which are written to by the
GPP by executing a CR. e values placed in these registers
originate from the GPP’s register �le. Likewise, values read
from the output registers of the RPU are placed in the GPP’s
register �le.

Some Megablocks produce the same result onto two
or more GPP registers. Instead of having a duplicated
output register, we handle this by adding equivalent value
assignment instructions in CRs. Other Megablocks always
produce one or more constants values onto the register
�le. In this case, since the Megablock detection tool opti-
mizes the Megablock graph representation and removes such
operations, we also add these constant value attributions to
registers as CR instructions.

Each row contains operations that have no data depen-
dencies and can execute in parallel, and results are then
propagated to following rows. Each row of FUs is registered
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and data propagates at one row per clock cycle. If an
operation has a constant input, the RPU generation process
tailors the FU to that input (e.g., bra FU in Figure 9).
e current implementation supports arithmetic and logic
operations with integers, as well as comparison operations
and operations producing or receiving carry. Carry can be
retrieved by the GPP in both PLB and FSL scenarios. FUs
on the array may have different number of inputs/outputs
amongst themselves. e carry from additions is an example
of a second output of an FU.Another is the upper 32-bit result
of a multiplication. Any output of an FU can be used as an
input of FUs in the following row. One or more inputs of an
FU may be constant, synthesis-time-speci�ed values.

Crossbar-type connections (switchboxes in Figure 9)
are used between adjacent rows to perform this operand
routing, and are runtime recon�gurable. e switchboxes
automatically adapt to the width of the associated row during
synthesis and can direct any of their inputs to any number
of outputs. Connections spanning more than one row are
established by passthrough FUs (pass FUs in Figure 9).

e RPU architecture was speci�cally designed to run
loops with one path and multiple exits, and does not need
logic for multiple paths (e.g., predicated hardware). e
number of iterations of the loop does not need to be known
before execution: the RPU keeps track of the possible exits
(e.g., bne FU in Figure 9) of the loop and signals when an exit
occurs (via a status register). If the number of iterations is
constant in soware, this is built into the array as a constant
value operator. In order to terminate execution, the RPU
always has at least one exit condition.

Only atomic Megablock iterations are supported. at
is, either a Megablock iteration completes or is discarded.
Support for nonatomic iterations would require discriminat-
ing which exit condition triggered, recovering the correct set
of outputs and returning to a particular soware address.
us, when an exit occurs, the current iteration is discarded,
and execution resumes in the GPP at the beginning of
the Megablock. is means that the last iteration will be
performed in soware, allowing the GPP to follow whichever
branch operation triggered an exit, maintaining the integrity
of the control �ow. In the current version of the RPU, all
operations complete within one clock cycle and each iteration
takes as many clock cycles as the number of rows (depth) of
the RPU.

In the �rst iteration, the array is input with values from
the input registers. Aer the �rst iteration is completed,
control logic enables the �rst switchbox, and results from
the previous iteration(s) are used to compute the subsequent
one(s). is means that, although rows are registered, the
execution is not pipelined. e RPU can keep the output
values of the previous iteration and these values can be routed
back to the output registers so as to change positions in
order to mimic the soware behavior of register assignments
present in some loops.is feature is used when aMegablock
includes code that places into a GPP register the value of
another GPP register in a previous iteration. Along with
the values produced in the current iteration, these previous
values can also be routed back into the �rst row to be reused.
us, the input switching mux takes 𝑁𝑁 𝑁 𝑁𝑁𝑁 values and
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F 10: RPU architecture overview, with PLB interface.

produces𝑁𝑁 values. Since some input values are constant for
all iterations of a call of the RPU, each of the𝑁𝑁 outputs either
maintains its initial value found in the input register, or they
are assigned one of the 2𝑀𝑀 values produced.is is followed
by another switchbox that can route any of these𝑁𝑁 values to
any number of FU inputs in the �rst row (the sequence of 2
multiplexers was kept for simplicity of implementation).

4.2. RPU Interface. RPU con�guration is performed by
writing to con�guration registers. ese registers control
the routing of the operands through the switchboxes and
indicate which exit conditions should be active. Figure 10
presents the main components of the RPU, detailing the PLB
interface. e PLB interface RPU uses the bus interface to
feed operands and retrieve results through 32-bit, memory-
mapped registers. e FSL interface is composed simply of
three FSL ports, two being inputs (for con�guration and
operands) and one output (for results). Apart from these
interface level differences, the array of FUs and other internal
aspects of the RPU remain the same in all three architectures.

�epending on the speci�cation of the RPU, the number
of input (𝑁𝑁), output (𝐿𝐿), and con�guration (𝑀𝑀) registersmay
vary. e remaining registers are implementation indepen-
dent. Values written at runtime to the routing, input/output
switching, andmask registers are generated offline.

Input and output registers contain operands/results of
computations, and there are as many input/output registers
as the maximum number of operands/results found in the
set of Megablocks implemented by the RPU. e routing,
input switching, and output switching registers con�gure the
switchbox connections between rows, the routing of results
back to the �rst row (i.e., feedback) and the routing of output
register values to different positions of said output register
bank (i.e.,managing results from the previous iteration). Both
the input and output switching are handled by a single 32-
bit register. is was done for simplicity of design and limits
the number of input and output registers of the RPU. For
instance, if there are 4 output registers, a total of 9 values
(current and previous results plus one initial value from
the input register) can be chosen. is requires 4 bits to
represent this selection range, which limits the number of
input registers to 8 in order to use a maximum of 32 bits.
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e number of routing registers is a function of the
width and depth of the RPU. In our implementation, the
largest number of outputs between all rows determines the
minimum number of bits used to perform a selection and a
single register may hold routing information for more than
one row. For instance, in Figure 9 (where𝑁𝑁 𝑁 𝑁 and𝑀𝑀 𝑀 𝑀),
the maximum width is 5 (row 1). ree bits are required to
represent this range, and since the total number of inputs is
18 (input to FUs and number of output registers), a total of
54 routing bits are required (2 registers). e synthesis time
parameterization selects and wires the proper number and
groups of bits from the registers into the switchboxes of the
array.

e mask register determines which exit conditions can
trigger the end of computation. If more than one Megablock
is mapped to the RPU, different exit conditions may exist
on the array. Since data propagates through all the FUs
during execution, even though FUs that are not part of the
Megablock the RPU is con�gured for, an exit condition
may trigger incorrectly unless disabled. e mask register
performs a bit masking of the exit conditions. is limits
the number of exits allowed on the RPU to 32. However,
no observed combination of Megablocks in our benchmarks
exceeded this value. In the FSL case, these con�guration
registers have the same function, but they have to be written
to in a speci�c sequence.

e start register signals the RPU to initiate compu-
tations, and is written to by the GPP as part of the CRs,
aer all operands have been loaded. In the FSL scenario,
the start signal is directly sent by the Injector. e status
register contains information on the current status of the
RPU. A busy bit on this register is the value the GPP polls
for completion. A �rst fail bit indicates if the execution
terminated during the �rst iteration. is is a special case
in which no results need to be recovered from the RPU.
e two context registers are used as scratchpad memories
during the execution of Recon�guration Routines (RCRs)
and Communication Routines (CRs). During execution of
these routines, one or two GPP registers must be used as
auxiliary registers to load/store values. In the case of a �rst
fail the used GPP registers recover their original values from
the context registers.

e iteration control enables the propagation of data to
output registers aer a number of clock cycles equal to the
depth of the RPU, monitors the exit conditions according to
the applied mask, and sets the status register.

5. Toolchain for OfflineMegablock
Detection and Translation

5.1. Tool Flow Overview. We developed a tool suite to detect
Megablocks and generate an RPU and its con�guration bits.
e tool �ow is summarized in Figure 11. We feed the
executable �le (i.e., ELF �le) to the Megablock Extractor tool
[8] which detects the Megablocks. is tool uses a cycle-
accurate MicroBlaze simulator to monitor execution traces.
Although this step is performed offline, it is not a typical static
code analysis.

ELF file

Megablock extractor

HDL descriptions
     

Communication routine 
            generation

RPU Injector GPP

Hardware
  module

Final bitstream w/RPU

Tool

and routing generation

F 11: �ool �ow.

For translation, Megablocks are processed by two tools:
one generates the HDL (Verilog) descriptions for the RPU
and the Injector, and the other generates the CRs for the
GPP.e HDL description generation tool parses Megablock
information, determines FU sharing across Megablock graph
representations, assigns FUs to rows, adds passthrough units,
and generate a �le containing the placement of FUs. FUs
are shared between different Megablocks, since at any given
time there is only one Megablock executing in the RPU. e
tool also generates routing information to be used at runtime
(con�guration of the interrow switches), as well as the data
required for Megablock identi�cation.

5.2. Generating the RPU Description. e RPU description
generation tool produces an HDL header �le that speci�es
the number of input/output and routing registers, the number
of rows and columns of the RPU, the placement of FUs,
constant value operators of the FUs, if any, and other auxiliary
parameters that enable the use of the Verilog based generate
constructs that instantiate the RPU. Inputs to this tool are
Extractor outputs regarding the sequence of operations in
the Megablock, their scheduling on the equivalent graph
representation and connections between them. Figure 12
shows an excerpt of a generated HDL header that fully
characterizes the RPU, along with the input Megablock
information. e parameter array ROW_OPS speci�es the
layout of the RPU. e INPUT_TYPES array con�gures the
A_BRA (arithmetic barrel shi right) to have its second input
as a constant value, while all other accept 2 variable inputs.

In order to generate a combined RPU description for
several Megablocks, the tool maintains information between
calls. Each call treats a single Megablock. e Extractor
transforms the MicroBlaze ISA into an abstract instruction
set. Each operation in the Megablock is then mapped to
a single FU. Different instructions can be mapped to the
same FU type. For instance, a distinction between an add
and addi exists only in the context of the MicroBlaze ISA.
is decoupling means the toolchain and RPU could easily
be expanded to any other processor ISA. Supporting new
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Extractor input:

( · · · )

OP:1

operation:bsrli

level:1

numInputs:2

inputType:livein

inputValue:r5

inputType:constant

inputValue:13

OP:2

operation:andi

level:2

numInputs:2

inputType:internalValue

inputValue:3, 0

inputType:internalValue

inputValue:4, 0
( · · · )

HDL output:

parameter NUM IREGS

parameter NUM OREGS

parameter NUM COLS

parameter NUM ROWS

parameter NUM ROUTEREGS

parameter [0 : (32 ∗ NUM ROWS ∗ NUM COLS)-1]

parameter [0 : (32 ∗ NUM ROWS ∗ NUM COLS)-1]

ROW OPS = {

INPUT TYPES = {

= 32'd1;

= 32'd5;

= 32'd3;

= 32'd3;

= 32'd2;

ADD, BRA,

ADD,

SUB, NEQ,

ADD,

`INPUT, `INPUT,

`INPUT,

`INPUT,`INPUT,

`INPUT, `INPUT,

`NULL};

`NULL};

`CONSTB,

`A `A `A

`L

`L `B

`PASS, `PASS,

F 12: RPU HDL header excerpt.

types of FUs would be equally straightforward, as each is an
individual hardware module.

Aer this mapping, FU placement is performed. Since
connections between rows are crossbar-like, horizontal place-
ment is unrestricted, and rows are �lled from le to right.
During this placement phase, the arrays current status is
checked to reuse already mapped FUs, if possible, to reduce
resources (this also reduces the number of required routing
bits). Only operations, from two distinct Megablocks, that
occur on the same row and map to the same type of FU
may reuse the same FU between them. Aer placement of
operation FUs, passthroughs are placed. Rows are checked
bottom to top so as to propagate passthroughs upwards. If
an FU requires as an input, an output originating from an
FU that spans more than one row, a passthrough is inserted.
If two FUs require the same operand that originates several
rows above, the same chain of passthroughs is used. is
repeats until all connection spans equal 1.Due to the nature of
theMegablock graphs, passes tend to be created in an inverted
pyramid fashion. As this behavior repeats fromMegablock to
Megablock, passthroughs are heavily reused between them.

�alues for routing and con�guration registers are then
generated and saved to �les. As explained, routing infor-
mation is concatenated across all routing registers, and
selection values depend on the width of the RPU rows. As
a consequence, already generated routing information must
be regenerated if the depth and/or width of the RPU vary.
If the depth increases, passthroughs need to be inserted for
Megablocks of smaller depth. is implies that Megablocks
of a smaller depth will suffer a delay (in clock cycles per
iteration) equal to the difference between their depth and the
maximum depth of the RPU.

5.3. Generating the Communication Routines. Megablock
Extractor outputs also detail which GPP registers contain
RPU inputs and which are destinations of RPU outputs.
An additional �le provided by the RPU generation tool
(aer translating the Megablock) includes the routing and
con�guration register values and associations between each
GPP register in the Megablock and an RPU register. e
Communication Routine generation tool either generates a
PLB CR or an FSL CR, along with a HDL header containing
theMegablock addresses.is �le also contains the addresses
of communication routines if generated for Arch. 2 (RCRs
and CRs) or Arch. 3 (CRs).

For all three architectures, the routines are executed
by the GPP, and they are located in the GPP’s program
memory, along with the program itself. e generated RCRs
and CRs are placed in 𝐶𝐶-code structures (arrays), which are
then compiled together with the application. is does not
imply altering application code.ese instructions aremerely
linked to tool prede�ned memory positions (de�ned in the
linker script), which are known by the Injector.

Figure 13 shows the PLB and FSL CRs for the reverse
benchmark. Not only is the FSL CR shorter, the instruction
latencies are also smaller than those of the PLB case. e
tool attempts to optimize CRs by using relative load/stores
and immediate value assignments to registers (which occur
in the RCRs). Relative instructions may shorten the length of
the CR, depending on the number of values to send/receive.
If such instructions are used, the RPUs scratchpad registers
are used to store the original values of the GPP registers used
by the instructions at the start of the routine.

For the PLB, CR operands are loaded (one is automati-
cally saved into one context register when writing to the �rst
input register), a start signal is written and the RPU is polled



International �ournal of Recon�gurable Computing 11

PLB CR

Load live-ins:

0×1d40: imm -15136

0×1d44: swi r5, r0, 0

0×1d48: imm -15136

0×1d4c:  swi r4, r0, 8

0×1d50: imm -15136

0×1d54: 

Send start signal:

0×1d58: addi r5, r0, −1

0×1d5c:  imm -15136

0×1d60: swi r5, r0, 36

Wait for fabric:

0×1d64: imm -15136

0×1d68:   lwi r5, r0, 64

0×1d6c: 

0×1d70: bnei r5, −12

Check for exit status:

0×1d74: imm -15136

0×1d78: lwi r5, r0, 64

0×1d7c: andi r5, r5, 32

0×1d80: beqi r5, 16

Return if  First fail true:

0×1d84: imm -15136

0×1d88: lwi r5, r0, 68

0×1d8c: brki r0, 440

Restore live-outs:

Set address offset:

0×1d90: imm -15136

0×1d94: addi  r6, r0, 0

0×1d98: lwi  r18, r6, 40

0×1d9c: lwi  r3, r6, 52

0×1da0: lwi  r4, r6, 56

0×1da4: lwi  r5, r6, 60

Recovering carry:

0×1da8: imm -15136

0×1dac: 

0×1db0: 

0×1db4: 

0×1db8: 

0×1dbc: 

Recovering last live-out:

0×1dc0: imm -15136

0×1dc4: lwi r6, r0, 48

Return Jump:

0×1dc8: brki r0, 440

FSL CR

Putting live-ins:

0×1e00: nput r4, rfsl0

0×1e04: nput r6, rfsl0

0×1e08: nput r5, rfsl0

Getting control:

0×1e0c: get r5, rfsl0

0×1e10:  

0×1e14: get r5, rfsl0

0×1e18: brki r0, 440

Getting live-outs:

0×1e1c:  

Getting carry:

0×1e20: msrclr r6, 4

0×1e24: get r6, rfsl0

0×1e28: beqi r6, 8

0×1e2c: msrset r6, 4

Remaining live-outs:

0×1e30: get r6, rfsl0

0×1e34: get r3, rfsl0

0×1e38: get r4, rfsl0

0×1e3c: get r5, rfsl0

Return Jump:

0×1e40: brki r0, 440

 andi r5, r5, 4

swi r6, r0, 4 beqi r5, 12

msrset  r6, 4

bri 8

msrclr r6, 4

bnei r6, 12

lwi  r6, r0, 44

get r18, rfsl0

F 13: Comparison between PLB- and FSL-based CRs for the reverse benchmark.

for a done signal; once done, the status register is checked for
the �rst �a�l bit. If set, values are recovered from the context
registers, and execution immediately returns to soware. If
not, results are retrieved (in this case using relative loads),
including the set/clear of the GPP carry bit according to the
respective RPU result and execution returns to soware. For
the FSL CR, each operand is sent with a nonblocking put
instruction.e get instructions are blocking until the output
FSL contains data; the �rst output sent by the RPU is the
status register. If a �rst �a�l occurs, the GPP reads another
value.is value restores the content of the GPP register used
to perform the �rst �a�l check. If this situation does not occur,
results are recovered, including carry, and a branch back to
soware is taken.

For the benchmarks used in this paper, PLB-based CRs
consist of 32 instructions on average. Arch. 2 (see Figure 6)
also uses RCRs to recon�gure de RPU. eir average length
is 28 instructions. For the case of Arch. 2, amaximumaverage
length of 61 instructions for communication may occur if
recon�guration of the RPU is required at every call. For the
FSL case, the average number of instructions is only 16, with
recon�guration occurring in parallel, if required.

5.4. Example. Figure 14 exempli�es the behavior of the
system for the reverse benchmark. e outlined addresses

(1b8 to 1d0, where 1b8 is the start address) constitute the
Megablock, which iterates 32 times. is totals 255 clock
cycles to execute this kernel. Considering the latency of
each instruction (labeled on the right) and the number of
instructions, the IPC (number of instructions per clock cycle)
of this kernel is 0.89. When the Injector triggers at address
1b8, the execution of these instructions is replaced with the
steps outlined in Figure 14. e �rst part of the CR (sending
operands) takes place. en execution proceeds on the RPU,
and since the array depth is 3 and the number of iterations is
32, a total of 107 cycles are required. e RPU executes eight
instructions in 3 clock cycles and achieves an IPC of 2.67.e
last iteration must be performed in soware for 7 cycles (the
bneid branch is not taken, reducing its latency to 1). Results
are then retrieved during 15 cycles. e resulting reduction
in cycles provides an execution speedup of 1.97.

6. Experimental Results

e proposed architectures and tools were tested and evalu-
ated with 15 code kernels. All kernels work on 32-bit values.
Each individual benchmark calls the corresponding kernel N
times. e reported results were obtained for𝑁𝑁 𝑁 𝑁𝑁𝑁.

Two additional tests (merge1 andmerge2) group together
six kernels in order to evaluate the case where an RPU is
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Original program: Megablock execution in RPU + CR:

⟨reverse⟩: ⟨reversecycles ⟩:
1b0: addk r6, r0 , r0

1b4: addk r4, r6, r0

1b8: andi r3, r5, 1
1bc: or r3, r3, r6
1c0: addik r4, r4, 1
1c4: addk r6, r3, r3
1c8: xori r18, r4, 32
1cc: bneid r18, − 20
1d0: sra r5, r5

1d4: rtsd r15, 8
1d8: addk r3, r6, r0

1
1
1
1
1
2
1

Total cycles per iteration: 8

Total cycles: 8 ∗ 32 − 1 = 255

1b0: addk r6, r0, r0
1b4: addk r4, r6, r0

1b8: Replaced by:

+ 3 CR cycles = 11

+ 3 cycles per iteration:

11 +3 ∗ 32 = 107
+ 15 CR cycles = 122
+ last iteration in software

122 + (8 − 1) = 129
1d4: rtsd 15, 8

1d8: addk r3, r6, r0

delta = 255 − 129 = 126 → Speedup

Injector delay: = 8

F 14: Cycle reduction for the reverse kernel, for a LMB-FSL system.

generated from several Megablocks. e RPUs generated
for these cases have six possible con�gurations. e merge1
benchmark contains count, even�ones, �bonacci, �amming,
popcount32, and reverse. Benchmark merge2 includes com-
press1, divlu, expand, gcd2, isqrt2, and maxstr. For these
cases, we evaluate the scenario where the calls to each kernel
are alternated (for 𝑁𝑁 𝑁 𝑁𝑁𝑁, the total number of RPU
con�guration changes during kernel execution is equal to 500
× 6 = 3,000). is is the worst-case scenario, which requires
RPU recon�guration between each kernel execution.We also
consider an additional scenario where each kernel is called
𝑁𝑁 times in sequence without intermediate recon�guration
(merge1/2 n/s).

e loops of most kernels have a constant number of
iterations (16 or 32). Five kernels iterate a variable number
of times per call, according to the inputs. e number of iter-
ations of �bonacci, for instance, is an arithmetic progression
of the input value. In all benchmarks, the current iteration
count (between 0 and𝑁𝑁 𝑁 𝑁) is used as an input.

6.1. Setup. We used the Megablock Extractor tool to do an
offline detection of the Megablocks from execution traces.
For the detection we disabled inner loop unrolling (except
in the popcount3 case, where we map the Megablock of an
unrolled inner loop), used basic blocks as the elementary
pattern unit, set themaximumpattern size to 32, and rejected
anyMegablockwhich executed less than 100 instructions. For
each kernel (except formerge1/2), we implemented only one
Megablock.emajority of the computation was spent in the
selectedMegablock, the average coverage being 91.59% of the
executed instructions.

Each kernel was compiled with mb-gcc 4.1.2 using the
−�2 �ag and additional �ags which enable speci�c units
of the MicroBlaze processor (e.g., -mxl-barrel-shi for bar-
rel shier instructions). e MicroBlaze version used was
v8.00a.

eprototypewas implemented on aDigilent Atlys board
with a Xilinx Spartan-6 LX45 FPGA and DDR2 memory.
We used Xilinx EDK 12.3 for system synthesis and bitstream
generation. All benchmarks run at 66MHz except merge1/2
and usqrt, which run at 33MHz. In most cases, the RPU

achieved higher operating clock frequencies than the 66MHz
used for the MicroBlaze processor. Since we use the same
clock signal for all the modules of the system, including the
RPU, speedups can be computed from measurements given
in number of clock cycles, and are therefore, independent of
the actual system frequency. To count clock cycles, we used a
timer peripheral attached to the PLB.

6.2. Megablocks and RPUs. Table 1 summarizes the char-
acteristics of the Megablocks used in the evaluation. e
average number of instructions per call of the Megablock is
a product of the number of instructions per iteration and
the average number of iterations. Table 1 includes values
for maximum instruction level parallelism (ILP), percentage
of instructions covered by the Megablocks versus the total
executed instructions, and instructions per cycle achieved
in soware (SW IPC). IPC was computed considering the
number of clock cycles required to complete one iteration
over the number of instructions. As all Megablocks include
branch operations, which have a 2 cycle latency, the SW IPC
is always below 1 instruction per clock cycle. e SW IPC
values shown assume a latency of 1 clock cycle for instruction
fetch, which is not the case for theDDR-PLB architecture, but
is valid for LMB-based architectures. Since all implemented
operations in the tested benchmarks have one clock cycle of
latency, the critical path length (CPL) has a value equal to the
depth of the RPU (see Table 2, RPU characteristics). For the
merge1/2 cases, the values presented are the averages of the
values of the individual kernels implemented in each case.

Table 2 summarizes the characteristics of the RPU for
each kernel. e #OP. FUs column presents the number of
FUs used as operations (i.e., not passthroughs). Due to the
interconnection scheme used, passthroughs oen outnumber
operation FUs. However, the resulting RPUs were relatively
small. Due to FU sharing, the merge1/2 cases use about
35.44% and 50.43% of the total number of FUs for the indi-
vidualMegablocks.is is equivalent to 51 and 58 reused FUs
between kernels (including operations and passthroughs).
Since passthroughs occur frequently in all kernels, they are
reused more oen; merge1 reuses passthrough FUs 41 times
and merge2 104 times. is is equivalent to reducing a total
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T 1: Detected Megablock characteristics.

Kernels
Megablock characteristics

Avg. Inst.
Executed p/call Max. ILP Coverage (%) SW IPC

count 192 2 94.9 0.857
even_ones 192 3 94.0 0.857
��onacci 1,497 2 99.4 0.857
ham_dist 192 3 94.0 0.857
pop_cnt32 256 3 97.2 0.889
reverse 224 3 95.6 0.875
compress 138 3 89.7 0.889
divlu 155 2 90.5 0.833
expand 138 3 89.7 0.889
gcd 330 2 98.8 0.889
isqrt 96 3 84.0 0.857
maxstr 120 2 88.1 0.800
popcount3 15500 3 85.4 0.912
mpegcrc 465 4 87.6 0.934
usqrt 288 6 84.9 0.947
merge1 444 2.7 N/A 0.865
merge2 166 2.5 N/A 0.860

T 2: RPU characteristics.

Kernels
RPU characteristics

#OP. FUs # Pass. FUs Max. row
depth Depth HW

IPC
count 6 6 5 3 2.00
even_ones 5 4 7 3 1.67
��onacci 4 6 4 3 1.33
ham_dist 6 11 6 3 2.00
pop_cnt32 8 7 8 3 2.67
reverse 7 9 7 3 2.33
compress 8 21 8 4 2.00
divlu 5 4 5 3 1.67
expand 8 21 8 4 2.00
gcd 8 17 8 6 1.33
isqrt 6 9 6 3 2.00
maxstr 4 6 4 3 1.33
popcount3 18 33 18 9 2.00
mpegcrc 14 32 14 7 2.00
usqrt 17 42 17 8 2.13
merge1 16 12 16 3 1.65
merge2 24 35 24 6 1.07

of 43 passthroughs to 12, for merge1, and reducing a total of
78 pass–throughs to 35, formerge2.

e maximum ILP achieved by each RPU is the same as
the maximum ILP shown for each Megablock in Table 1. e
average ILP is 2.93 (merge1/2 excluded) and the highest value
occurs for usqrt (6 instructions in parallel).e IPC achieved
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F 15: FPGA resources, synthesis frequency, and required
con�guration bits for each RPU with a PLB interface (LUTs and FFs
shown on the le axis).

by an RPU depends on the total number of operations it
performs per iteration and its depth. Each RPU contains, at
most, as many operations as the Megablock it implements.
Due to graph-level optimizations such as register assignment
simpli�cation and constant propagation, the actual number
of operations can be lower (e.g., popcount3, requires only
18 operations to implement its original 31 assembly instruc-
tions). IMM instructions [23] are an example of instructions
that do not need an additional FU. If ILP is high and depth
of the RPU is low, this results in a higher IPC. Ignoring any
overheads, speedups are obtainedwhen the RPU IPC is larger
than soware IPC.

Figure 15 shows the implementation characteristics of
the individual RPUs for the PLB interface case (it is very
similar to the FSL case). e reported synthesis maximum
clock frequencies of the RPUs ranged from 52 MHz to 154
MHz. Except for the minimum case (which occurs for usqrt),
all RPU frequencies are higher than the clock frequency of
the MicroBlaze. e largest RPU uses 34.57% (9,433) of the
LUTs and 4.91% (2,680) of the FFs. e average usage for
these resources is 12.62% and 2.32%, respectively. Due to the
reuse of FUs performed by the tools, the RPUs for merge1/2
require a number of LUTs and FFs that is smaller than the
sum of LUTs and FFs of the RPUs for the individual kernels
they implement.emerge1RPUuses about 47% of the LUTs
and 27% of the FFs. For themerge2RPU, these values are 68%
and 40%. In both cases, the RPU frequency is above the GPP
frequency, being 94 MHz and 102.6 MHz, respectively. Since
the RPU only recon�gures interconnections and not FUs, the
number of con�guration bits for each RPU is relatively low,
with an average of 133 bits for the RPUs of individual kernels
(i.e., excludingmerge1/2).

6.3. Speedups. Figure 16 presents speedups for all architec-
tures. In the DDR-PLB scenario, the MicroBlaze has a 23-
cycle penalty for each instruction (note that this scenario does
not use caches), while execution of a single row of the RPU
takes 1 clock cycle. So, most of the achieved speedup comes
from executing operations on the RPU instead of executing
the original instructions in the GPP. However, for each call
to the RPU, the GPP executes an CR and since the CRs are in
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T 3: Communication overhead.

Kernels

Communication overhead
#Inst. of
PLB CR

#Inst. of
FSL CR

DDR-PLB
(%)

LMB-PLB
(%)

LMB-FSL
(%)

count 27 12 92.4 56.39 26.22
even_ones 34 18 92.1 62.25 30.49
��onacci 27 14 63.2 15.58 4.22
ham_dist 35 17 91.8 61.18 29.98
pop_cnt32 35 17 92.1 61.34 30.49
reverse 35 17 92.3 61.34 30.49
compress 35 19 95.0 71.82 39.97
divlu 25 10 92.2 53.79 26.83
expand 35 19 95.0 71.76 40.75
gcd 32 15 77.3 34.51 12.81
isqrt 34 16 96.2 74.77 45.52
maxstr 25 10 92.5 55.25 26.89
popcount3 37 18 46.97 8.16 2.77
mpegcrc 36 20 85.5 47.00 21.69
usqrt 31 18 89.9 59.56 28.93
merge1 56.3 22.5 87.0 58.14 17.07
merge1 (n/s) 32.17 15.8 N/A 41.94 16.13
merge2 57 22.0 89.6 70.32 24.43
merge2 (n/s) 31 14.8 N/A 48.04 21.26

DDR, they also suffer of the DDR access latency. In fact, the
DDR access latency is the main contributor to the very high
overhead of this scenario (Table 3). e situation is aggra-
vated by the relatively low number of instructions executed
per call (Table 1). e overhead includes the detection of the
Megablock, con�guration of the RPU, and execution of the
CR. Since the RM fetches instructions from local memories,
a large part of the overhead comes from executing the CRs
aerwards. It is noticeable that, for a greater number of
iterations, the overhead becomes less signi�cant, as is the case
of ��onacci and popcount3. e speedups measured for the
DDR scenario include all overheads and range from 2.25×
(isqrt) to 43.37× (popcount3). Speedups in this no-cache
scenario do not show the best case for sequential soware
execution. However, it demonstrates the architecture concept
and is a starting point for future work on cache support.

For the LMB-PLB case, slowdowns still occur frequently
since the number of iterations and operations found in
many of the kernels is still relatively small, and the possible
parallelism is not enough to compensate for the overhead.
Since program code is now in local memories, GPP execution
is not hindered by high memory latencies due to the lack
of cache support. However, access to the RPU still suffers
from PLB latency, which in this case results in an average
overhead of 52.98%. For merge1/2, the overhead introduced
by recon�guration is noticeable in the resulting speedup.
In these benchmarks, the kernels are executed alternately:
every time the RPU is called, it has to be recon�gured. e
speedup ofmerge1/2 is lower than that ofmerge1/2 n/s due to
recon�guration overhead. Speedups formerge1/2 are equal to

57% and 72% of the speedups for merge1/2 n/s, respectively.
is is equivalent to recon�guration overheads of 27.8% and
42.9%, respectively.

For the LMB-FSL case, the average overhead for individ-
ual kernels is 26.54%. Performing the RPU recon�guration in
parallel with the transfer of input operands reduces the effect
of recon�guration overhead. For merge1, recon�guring the
RPU at every call introduces negligible additional overhead
when compared tomerge1 n/s, since the number of operands
is close, on average, to the number of recon�guration values.
is is not the case for merge2, which requires over twice
as much con�guration values. is means compact RPUs
with many con�gurations and implementing Megablocks
with many inputs can be done by switching between con-
�gurations within the operand transfer time, that is, without
suffering from additional overhead.e overhead introduced
by recon�guration in this case is near zero for merge1 and
4.03% formerge2.

e effect of different overheads is visible in Figure 16,
where the speedup trend across benchmarks is consistent,
and where the LMB-FSL case is the one closest to the
maximum possible speedups. is maximum was computed
assuming a soware instruction fetch latency of 1 clock cycle
(implying IPC = 1), which does not hold true for the DDR
case. Table 3 shows the overhead for each scenario along with
the number of instructions in the communication routines
(CRs) for each interface type. e average number of cycles
for an FSLCR, for these kernels, is 17, and the average number
of instructions is 16. Since recon�guration occurs in parallel
in this architecture, if necessary, the time required to start
computation depends on the maximum between the number
of operands to send and the number of con�guration values
to send. Considering this, the average number of cycles for a
complete communication with the RPU in this architecture
can be as high as 23.5, formerge1, and 31, formerge2.

For PLB-basedCRs, the averages are 129.2 cycles and 32.2
instructions. For recon�guration routines (RCRs), which are
used in the LMB-PLB architecture, these averages are 110.9
and 28.73, respectively. In the worst-case scenario for this
architecture, in which recon�guration has to be performed
at every call, the sequence of RCR and CR takes an average
of 239.47 cycles and totals an average of 60.93 instructions.
Since generating an RPU for several kernels will increase
the number of con�guration registers, the RCRs for each
kernel in a combined RPU will differ (as the structure of the
RPU differs). For merge1, the average number of cycles in
an RCR is 138.83 and the average number of instructions is
32.8. Formerge2, the averages are 223.2 and 52.2, respectively.
Since the RPU formerge2 is larger (higher depth and width),
it requires more con�guration information and the RCRs
increase in size.

e gain, in cycles, of using the RPU, as shown in the
example of Figure 14, must exceed these communication
cycles, in order for a speedup to still be possible. Speedup
is a direct function of the ratio between SW IPC and HW
IPC, as shown in (1), and is valid for all three architectures
(the fetch latency of the DDR-PLB case is accounted for
in the IPCSW factor). In (1), 𝑁𝑁rSW represents the number
of assembly instructions per iteration of a Megablock in
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three cases. e different overheads dictate the relative scales of the attained speedups.

soware, 𝑁𝑁rHW represents the number of operations per
iteration in the RPU (these values are not necessarily the same
since some operations can be optimized during translation),
OHc represents the number of clock cycles due to overhead
(in which the communication routine, injector delay and last
iteration cycles are accounted for), and 𝑁𝑁it is the number of
iterations of the Megablock:

Speedup ≅
𝑁𝑁rSW
𝑁𝑁rHW

×
IPC−1

SW

IPC−1
HW +OHc/ 󶀡󶀡𝑁𝑁it × 𝑁𝑁rHW󶀱󶀱

. (1)

ere is a 2.0% difference for the LMB-FSL case and
1.5% for the LMB-PLB between the values given by (1)
and actual measured speedup values; deviations occur due
to additional clock cycles. ese correspond to instructions
that are executed between the activation and deactivation of
the timer and are not part of the Megablock. e speedup
estimates have been corrected for these effects. e FSL case
is less precise because measurement errors become more
signi�cant as the measurements become �ner (i.e., smaller
number of cycles).

e maximum speedup would be the direct ratio of
both IPCs, if there were no overhead cycles. e overhead
effect can be reduced when there are many iterations and/or
instructions mapped on the RPU. See for example the
following equation for the reverse kernel in the LMB-FSL
architecture:

Speedup ≅
7
7
×

1.143
0.429 + 38/ (32 × 7)

= 1.91. (2)

6.4. Hardware Module for Megablock Detection. We devel-
oped a proof-of-concept HDL generator which outputs

VHDL for a Megablock Detection hardware module, as
depicted in Figure 3 in Section 2. Figure 17 presents the
resources needed to implement the module when varying
some of the parameters accepted by the generator (maximum
pattern size and the bit width of the pattern element).

For the explored parameter ranges, the number of LUTs
and FFs increases linearly with the increase of the maximum
pattern size. Higher bit widths generally represent a higher
number of used resources, although the increase is more
signi�cant for FFs than for LUTs. e shape of the LUT
resources used is more irregular than the shape of the FFs.
We attribute this to the way the synthesis tool maps certain
FPGA primitives (e.g., SRLs), used in the HDL code.

For the base case with a maximum pattern size of 24
elements, and considering an address space for instructions
of 20 bits, the module needs 455 LUTs and 636 FFs, which
represent around 1% of the targeted FPGA (a Xilinx Spartan-
6 LX45). ese values include the encoder and the state
machine for determining the current state of the detector.e
decrease of the maximum clock frequency with the increase
of the maximum pattern size was expected, as higher values
for the maximum pattern size implies more complex logic
paths in some parts of theMegablock Detectionmodule (e.g.,
the comparison between the current pattern element and all
the positions in the FIFO).

However, the current implementation working frequen-
cies are sufficient for the considered scenarios. For instance,
considering the base case of a maximum pattern size of
24 elements, the maximum estimated clock frequency is
between 134MHz and 147MHz (depending on the bit width
of the elements), which is enough tomeet the clock frequency
of the MicroBlaze socore for the targeted FPGA. Higher bit
widths generally produce designs with lower clock frequen-
cies, although the impact is relatively small. e maximum
impact of the bit width on the clock frequency is on average
14% for the cases studied.
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F 17: LUTs, FFs, and estimated maximum frequencies for Megablock Detector hardware designs.

T 4: Execution times for several implementations of the pattern
detector for megablocks.

# Addrs
Execution times (ms)

HM@50
MHz

MB@50
MHz

Cortex-
A8@1GHz

Speedup
(HM versus

MB/HM versus A8)
12 0.0002 2.7 0.6 11,251/2,500
24 0.0005 5.7 1.3 11,963/2,708
48 0.0010 14.0 2.8 14,594/2,917
96 0.0019 30.8 5.9 16,036/3,073
192 0.0038 64.3 12.5 16,757/3,255
384 0.0077 131.5 24.8 17,118/3,229
768 0.0154 265.7 78.7 17,298/5,124

Table 4 contains execution times for three implementa-
tions of the pattern detector used to detect Megablocks, exe-
cuting on different targets. e execution times represent the
time each implementation needed to process the given num-
ber of addresses (column #Addresses).e given addresses are
repetitions of the 6 address sequence of the �r Megablock.
e values in the column HM@50MHz correspond to an
implementation of the architecture described in Section 2.2,
clocked at 50MHz. It can process one address every clock
cycle.e columnMM@50MHz represents a C implementa-
tion of the equivalent detection functionality running directly
on a MicroBlaze processor clocked at 50MHz. Column
Cortex-A8@1GHz corresponds to an implementation in Java,
running on a Cortex-A8 clocked at 1GHz, over the Android
2.2 platform.

Generally, the execution times grow linearly with the
input (doubling the size of the input doubles the execution
time). ere is an exception in the Cortex case, where going
from 384 addresses to 768 addresses tripled the execution
time, instead of doubling. We think this is due to calls from
the system to the garbage collector, during execution of the
detector.

When comparing execution speeds, the hardwaremodule
for Megablock detection is much faster than the soware
implementations of the same functionality: around 3,000x
faster than the Cortex case and around 16,000x faster than
the MicroBlaze case. is difference can be explained by
the highly parallel design of the hardware module, and by
the soware version not being fully optimized for the target
platforms.

Table 5 shows average execution times for the several
phases needed to perform the translation step, when running
their Java implementation on theCortex-A8, and considering
a Megablock of the �r loop. e translation step took, on
average, about 79ms to transform the assembly code of the
Megablock into a mapping con�guration for a general pur-
pose RPU architecture [15]. e most expensive operation is
the conversion from assembly code to the graph intermediate
representation, which needs 58% of the execution time.
e following most expensive operations are Placement
and Transform, which take 20% and 12% of the execution
time, respectively. e most light-weight steps are Routing
and Normalization, each one with 6% and 4% of the total
execution time, respectively.

From the values of Table 4, we expect soware execution
times for the Translation phase below 1s (possibly around
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T 5: Average execution times in milliseconds of the translation
step.

Normalize Graph
generation Transform Mapping Total

Placement Routing
3.03 46.00 9.71 15.45 4.89 79.09

400ms) when executed in a MicroBlaze at 50MHz. Our
future work will consider a complete soware implementa-
tion of the tools in order to achieve a fully runtime mapping
system. We will then consider the need to accelerate by
hardware the most computationally intensive stages of the
mapping process.

7. RelatedWork

ere have been a number of research efforts to map com-
putations to RPUs during runtime. Typically, those efforts
focused on schemes to execute in the RPU one or more
iterative segments of code, that is, loops, in order to reduce
execution time.

ese systems can be classi�ed based on the level of
coupling between the RPU and the GPP, the granularity
of the RPU, the capability to support memory operations,
and on the type of approach: online or offline. Although
there have been many authors focusing on partitioning and
compilation of applications to systems consisting of an GPP
and an RPU (see, e.g., [24]), we focus here on the approaches
that consider runtime efforts. Related to our work are the
approaches proposed byWarp [4, 10], AMBER [12, 13], CCA
[5, 11], and DIM [6, 14].

e Warp Processor [4, 10] is a runtime recon�gurable
system which uses a custom FPGA as a hardware accelerator
for a GPP. e system performs all steps at runtime, from
binary decompilation to FPGA placement and routing. e
running binary code is decompiled into high-level structures,
which are then mapped to a custom FPGA fabric with
tools developed by the authors. Warp attains good speedups
for benchmarks with bit-level operations and is completely
transparent. It relies on backward branches to identify small
loops in the program.

AMBER [12, 13] uses a pro�ler alongside a sequencer.
e sequencer compares the current Program Counter (PC)
with previously stored PC values. If there is a match, it
con�gures the proposed accelerator to execute computations
starting at that PC. e accelerator consists of a recon�g-
urable functional unit (RFU), composed by several levels of
homogeneous functional units (FUs) placed in an inverted
pyramid shape, with a rich interconnection scheme between
the FUs. e RFU is con�gured whenever a basic block
is executed more times than a certain threshold. Further
work considered a heterogeneous RFU [12], and introduced
a coarser-grained architecture to reduce the con�guration
overhead. e AMBER approach is intrusive as the RFU is
coupled to the GPP’s pipeline stages.

e CCA [5, 11] is composed of a recon�gurable array
of FUs in an inverted pyramid shape, coupled to an ARM
processor. e work addresses the detection of computations

suitable to bemapped to a given CCA, as well as discovering a
CCA architecture that best suits a set of detected control-data
�ow graphs (CDFGs). Initially, the detection was performed
during runtime, by using the rePLay framework [25], which
identi�es large clusters of sequential instructions as atomic
frames. e detection was later moved to an offline phase,
during compilation [11]. Suitable CCA CDFGs are discov-
ered by trace analysis, and the original binary ismodi�edwith
custom instructions and rearranged to enable the use of the
CCA at runtime.

e DIM recon�gurable system [6, 14] proposes a recon-
�gurable array of FUs in a multiple-row topology and uses
a dynamic binary translation mechanism. e DIM array
is composed of uniform columns, each with FUs of the
same type. DIM transparently maps single basic blocks
from a MIPS processor to the array. DIM also introduced
a speculation mechanism which enables the mapping of
units composed by up to 3 basic blocks. e system is
tightly coupled to the processor, having direct access to the
processor’s register �le.

Table 6 presents the main characteristics of the
approaches previously described and of our approach
(Megablock column). e main difference between our
approach and previous ones is the use of repetitive patterns
of machine instructions (Megablocks, in this case) as the
partitioning unit [7, 8, 15]. To the best of our knowledge,
we have presented the �rst automated toolchain capable
of transparently moving repetitive instruction traces from
an GPP to an RPU at runtime without changing the
executable binary. Our system is fully operational and all
evaluations presented in this paper were actually based on
real measurements using an FPGA board. We have shown in
greater detail how the hardware system works. Although we
previously presented the main concepts, this paper extends
them by presenting details for three architectures (two of
them implemented for the �rst time) and an evaluation using
a more representative set of benchmarks. Furthermore, three
architecture prototypes were implemented and tested on a
current commercial FPGA.

8. Conclusion

is paper presented an automated approach to transparently
move computations from GPP instruction traces to recon-
�gurable hardware, without changing the executable binary
of the application being run on the GPP. e computations
of interest are represented by Megablocks which are patterns
of machine instructions that repeat contiguously. ose
Megablocks are then mapped to a recon�gurable processing
unit implemented with an FPGA.

Using an FPGA board, we evaluated three system archi-
tectures that are fully operational. We implemented the
detection and translation steps offline to generate RPU
descriptions and we introduced an architecture which allows
for very fast identi�cation and replacement of Megablocks
at runtime. Preparing for a full online approach, we also
introduced a hardware module for Megablock detection at
runtime.
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Our current system is runtime recon�gurable, both in
terms of the resources of the RPU and in terms of the
insertion of communication and synchronization primitives.
e hardware infrastructure for migration is easily adaptable
to other GPPs. For the small benchmark kernels used in
the evaluation, the speedups are very dependent on commu-
nication latencies. In the most favorable scenario for GPP
performance (program code in local memory), the present
approach achieved speedups in the range from1.26× to 3.69×.
Furthermore, we have shown that the runtime detection
and translation of Megablocks on FPGA-based embedded
systems is feasible when assisted by a dedicated hardware
detector. However, to consider a fully online partition,
mapping, and synthesis approach, one needs to consider
the migration to speci�c hardware of the most execution
time demanding tasks. Our future work will be focused on
providing full support for the dynamic identi�cation and
mapping of Megablocks.

Although the results presented in this paper are encour-
aging, further work is required to process larger kernels, and
in particular kernels which contain memory accesses. Future
work will also address the support for caches.

Acknowledgments

is work was partially funded by the European Regional
Development Fund through the COMPETE Programme
(Operational Programme for Competitiveness) and by
National Funds (ERDF) through the Fundação para
a Ciência e a Tecnologia (FCT) (Portuguese Foun-
dation for Science and Technology) within (project
FCOMP-01-0124-FEDER-022701). J. Bispo and N.
Paulino acknowledge the support of FCT through
Grants SFRH/BD/36735/2007 and SFRH/BD/80225/2011,
respectively.

References

[1] J. Henkel, “Low power hardware/soware partitioning
approach for core-based embedded systems,” in Proceedings of
the 36th Annual Design Automation Conference (DAC ’99), pp.
122–127, June 1999.

[2] L. Jóźwiak, N. Nedjah, andM. Figueroa, “Modern development
methods and tools for embedded recon�gurable systems� a
survey,” Integration, the VLSI Journal, vol. 43, no. 1, pp. 1–33,
2010.

[3] T.Wiangtong, P. Y. K. Cheung, andW. Luk, “Hardware/soware
codesign,” IEEE Signal Processing Magazine, vol. 22, no. 3, pp.
14–22, 2005.

[4] R. Lysecky and F. Vahid, “Design and implementation of a
MicroBlaze-based warp processor,” Transactions on Embedded
Computing Systems, vol. 8, no. 3, article 22, 2009.

[5] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner,
“An architecture framework for transparent instruction set
customization in embedded processors,” in Proceedings of the
32nd Interntional Symposium on Computer Architecture (ISCA
’05), pp. 272–283, June 2005.

[6] A. C. S. Beck,M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Trans-
parent recon�gurable acceleration for heterogeneous embed-
ded applications,” in Proceedings of the Conference on Design,

Automation and Test in Europe (DATE ’08), pp. 1208–1213,
Munich, Germany, March 2008.

[7] J. Bispo and J. M. P. Cardoso, “On identifying and optimizing
instruction sequences for dynamic compilation,” in Proceedings
of the International Conference on Field-Programmable Technol-
ogy (FPT ’10), pp. 437–440, Beijing, China, December 2010.

[8] J. Bispo, N. Paulino, J. M. P. Cardoso, and J. C. Ferreira,
“From instruction traces to specialized recon�gurable arrays,”
in Proceedings of the International Conference on ReConFig-
urable Computing and FPGAs (ReConFig ’11), pp. 386–391,
Cancun, Mexico, 2011.

[9] J. Bispo, N. Paulino, J. C. Ferreira, and J. M. P. Cardoso,
“Transparent trace-based binary acceleration for recon�gurable
HW/SW systems,” IEEE Transactions on Industrial Informatics.
In Press.

[10] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” ACM
Transactions on Design Automation of Electronic Systems, vol.
11, no. 3, pp. 659–681, 2006.

[11] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-speci�c processing on a general-purpose core via
transparent instruction set customization,” in Proceedings of
the 37th International Symposium onMicroarchitecture (MICRO
’04), pp. 30–40, Portland, Ore, USA, December 2004.

[12] A. Mehdizadeh, B. Ghavami, M. S. Zamani, H. Pedram, and F.
Mehdipour, “An e�cient heterogeneous recon�gurable func-
tional unit for an adaptive dynamic extensible processor,” in
Proceedings of the IFIP International Conference on Very Large
Scale Integration (VLSI-SoC ’07), pp. 151–156, October 2007.

[13] H. Noori, F. Mehdipour, K. Murakami, K. Inoue, and M. S.
Zamani, “An architecture framework for an adaptive extensible
processor,” Journal of Supercomputing, vol. 45, no. 3, pp.
313–340, 2008.

[14] A. C. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro,
“Run-time adaptable architectures for heterogeneous behavior
embedded systems,” in Proceedings of the 4th International
�orkshop Recon�gurable Computing: Architectures, Tools and
Applications, pp. 111–124, 2008.

[15] J. Bispo,Mapping runtime-detected loops frommicroprocessors to
recon�gurable processing units �Ph�D� thesis�, Instituto Superior
Técnico, 2012.

[16] P. Faes, P. Bertels, J. Van Campenhout, and D. Stroobandt,
“Using method interception for hardware/soware co-
development,” Design Automation for Embedded Systems, vol.
13, no. 4, pp. 223–243, 2009.

[17] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execu-
tion using the hyperblock,” in Proceedings of the 25th Annual
International Symposium on Microarchitecture, pp. 45–54, IEEE
Computer Society Press, December 1992.

[18] J. V. Leeuwen, Handbook of eoretical Computer Science:
Algorithms and Complexity, MIT Press, 1990.

[19] J. Bispo and J. M. P. Cardoso, “Synthesis of regular expressions
for FPGAs,” International Journal of Electronics, vol. 95, no. 7,
pp. 685–704, 2008.

[20] H. P. Rosinger, “Connecting Customized IP to the MicroBlaze
So Processor Using the Fast Simplex Link (FSL) Channel,”
XAPP529 (v1. 3), Xilinx2004.

[21] I. Xilinx, “Microblaze processor reference guide v13. 4,” refer-
ence manual, 2011.

[22] I. Xilinx, “ChipScope pro 11. 1 soware and cores user guide
(v11. 1),” 2009.



20 International Journal of �econ�gurable �omputing

[23] I. Xilinx, “Microblaze soware reference guide v2. 2,” reference
manual, 2002.

[24] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek, “Memory access
optimization in compilation for coarse�grained recon�gurable
architectures,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 16, p. 42, 2011.

[25] S. J. Patel and S. S. Lumetta, “rePLay: a hardware framework for
dynamic optimization,” IEEE Transactions on Computers, vol.
50, no. 6, pp. 590–608, 2001.


