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Abstract—Teaching complex assembly and maintenance skills
to human operators usually requires extensive reading and the
help of tutors. In order to reduce the training period and
avoid the need for human supervision, an immersive teaching
system using spatial augmented reality was developed for guiding
inexperienced operators. The system provides textual and video
instructions for each task while also allowing the operator
to navigate between the teaching steps and control the video
playback using a bare hands natural interaction interface that
is projected into the workspace. Moreover, for helping the
operator during the final validation and inspection phase, the
system projects the expected 3D outline of the final product.
The proposed teaching system was tested with the assembly of a
starter motor and proved to be more intuitive than reading the
traditional user manuals. This proof of concept use case served
to validate the fundamental technologies and approaches that
were proposed to achieve an intuitive and accurate augmented
reality teaching application. Among the main challenges were the
proper modeling and calibration of the sensing and projection
hardware along with the 6 DoF pose estimation of objects for
achieving precise overlap between the 3D rendered content and
the physical world. On the other hand, the conceptualization of
the information flow and how it can be conveyed on-demand
to the operator was also of critical importance for ensuring a
smooth and intuitive experience for the operator.

I. INTRODUCTION

Teaching humans new manufacturing skills or advanced
assembly / maintenance operations can be a long and error
prone process that requires reading extensive manuals and a
period of tutoring in which they are trained by field experts.
This teaching period can be shortened and done without
the need of other workers by relying on immersive Human
Machine Interface (HMI) teaching systems that are able to
transmit the knowledge more effectively using step by step
instructions containing text and video along with visual cues
showing the work areas and pick / place locations tagged
with contextual help. Moreover, when coupled with active
perception systems that can detect the assembly objects and
what the operator is doing, the teaching systems can also act
as a supervisor, alerting the operator when a mistake is made
or when a damaged component needs to be replaced. This
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approach to skill transfer using immersive HMIs along with
dynamic feedback can speedup and improve the effectiveness
of the training sessions while also giving continuous quality
control, allowing to reduce the cost and time of product
assembly, repair and maintenance.

With these goals in mind, a spatial augmented reality
teaching system was developed for projecting into the oper-
ator workspace contextual assembly instructions that provide
detailed information about the operations and tools that are
required to assemble a given product. The main advantage of
this approach is its ability to provide accurate 3D information
directly into the environment and only when it is needed.
For production lines that may receive custom products or
have their employees rotating between workstations, a spatial
augmented reality system can quickly and intuitively guide
them throughout the assembly process. Moreover, the pro-
posed system can also be used for coordinating tasks between
human operators and robotic systems, because it is able to
highlight 3D work areas or objects and provide visual cues
for informing the operator what the robot will be doing next
and where it will be working.

In the following section, a brief overview of the augmented
reality systems that were developed over the years will be
given. Then in Section III, the mathematical modeling and
calibration of video projectors will be discussed. Later on, Sec-
tion IV will describe the immersive HMI that was developed.
Given the lack of Computer Aided Design (CAD) models of
the starter motor used for testing our system, Section V will
describe how the 3D model was retrieved using a structured
light 3D scanner. Then, Section VI will present the 6 Degrees
of Freedom (DoF) object pose estimation system. Finally,
Section VII will discuss the results of a training session
while Section VIII will summarize the conclusions and present
possible future work.

II. RELATED WORK

Augmented Reality (AR) interfaces [1] have a wide range
of applications within the manufacturing industry, from the
design [2], simulation and planning phase for fast prototyp-
ing, to the training and guidance [3] of the operators that
will be manufacturing, assembling and providing maintenance
for the final product [4]. They offer an immersive way of
exchanging information between a human operator and a robot
/ machine, allowing the development of cooperative assembly
lines [5]. This immersive environment can be created with
a wide range of devices, such as projectors, smart glasses
/ watches / phones, tablets, Virtual Reality (VR) headsets,978-1-7281-3558-8/19/$31.00 c©2019 IEEE



among others. Projectors allow to perform accurate overlay
of virtual information into physical objects when properly
calibrated [6] and modeled within a 3D rendering engine. They
are typically installed on top of the workstations for spatially
augmenting the environment with digital information without
requiring the operator to wear any special hardware (that may
cause discomfort or impact their productivity). This approach
is very useful for assisting operators in new and complex
operations while also helping them perform their tasks faster
by having dynamic contextual information shown directly into
the environment where it is needed (such as projection of
geometric information for assembly / maintenance [7], cutting
/ welding [8] or even painting operations [9]).

Wearable devices such as smart glasses / watches offer a
flexible alternative [10] which is more suitable for providing
guiding information when the operator is performing complex
jobs in environments that are hard to reach by an overhead
projector or when the operator needs to navigate in a large
workspace. Screens with rear mounted sensors provide a quick
and low cost approach for adding environment annotations
which are useful for assembly / maintenance operations. They
may use AR markers [11], markerless 2D / 3D perception [12]
or a combination of both to analyze the environment and detect
where are the target objects and what the operator is doing [13]
in order to overlay virtual models on top of the real objects
or provide contextual and corrective information for helping
the operator work faster while also doing less mistakes. The
exchange of information between a training system and an
operator may take advantage of multimodal HMIs [14] for
effectively guiding the operator during the assembly / main-
tenance tasks (using vibrotactile bracelets along with visual
and audio cues). On the other hand, VR headsets provide an
immersive virtual environment for teaching the robot / operator
[15] without requiring access to the physical objects / robots
/ environment layout, allowing fast testing and prototyping of
new products.

III. SPATIAL AUGMENTED REALITY

Projection mapping is a Spatial Augmented Reality (SAR)
[1] approach in which video projectors are used to overlay
virtual geometry on top of real objects or surfaces, allowing
the creation of an immersive environment that together with
3D perception systems can be used to develop interactive
interfaces that show contextual information for helping or
teaching human operators performing complex tasks faster.
The next sections describe the mathematical modeling of video
projectors within the Open Graphics Library (OpenGL) and
the associated calibration that is necessary for performing
proper 3D rendering of the virtual world in order to achieve
high accuracy projection.

A. Projector modeling

Over the years, several projection technologies were devel-
oped according to the requirements of color fidelity / satu-
ration, image sharpness, brightness, contrast, refresh rate and
price. Currently, the video projection market is split between

reflective Digital Light Processing (DLP) and transmissive
Liquid Crystal Display (LCD) projection technology, with
a small percentage consisting of a hybrid between the two
technologies, such as the Liquid Crystal on a Silicon (LCoS)
projectors. For video projection mapping purposes, reflective
projectors are usually better suited than the remaining tech-
nologies given their ability to create images with smaller gaps
between the projected pixels (smoother images) and they also
have higher contrast, better color accuracy / uniformity, fewer
dead pixels and the image quality does not degrade over time.

Despite the wide range of technologies and hardware con-
figurations (example for DLP shown in Figure 1), the output
of a video projector can be seen as an inverse pinhole camera
(diagram shown in Figure 4) due to the grid disposition of
the projected image and the very low distortion that modern
projectors have. As such, rendering of 3D virtual environments
for spatial augmented reality can be performed efficiently
using an extended version of the OpenGL projection matrix1

(presented in Equation (8)).

Figure 1: Diagram of a single chip DLP projector2

The extension of the default OpenGL projection matrix is
of critical importance for being able to model video projectors
as OpenGL cameras because unlike normal cameras that have
a centered lens (which results in a principal point close to
the image center), projectors normally have an off-centered
lens (causing the principal point to be around the bottom
of the image). This is due to the fact that projector lenses
are assembled slightly tilted for redirecting the projection
light upwards. This way the projector can be installed almost
parallel to a table / ceiling and its projected image will not
intersect the table / ceiling. In higher-end projectors, the lens
shift3 can even be adjusted after the projector is manufactured,
making its installation more flexible (diagram in Figure 2).
The lower cost alternative to lens shift is keystone correction,
but this approach is typically avoided in SAR systems since
it distorts the image and wastes projection pixels.

Figure 2: Diagram of lens shift (left) and keystone correction (right)4

The perspective projection of vertex data is a pivotal stage in
any rendering engine. In OpenGL, the projection matrix is one

1http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl
2https://vimeo.com/blog/post/display-tech-home-projectors
3https://www.projectorpeople.com/resources/lens_shift.asp
4http://www.theprojectorexpert.com/projector-lens-shift



of the 4 main vertex transform stages (presented in Figure 3)
and is responsible for converting 3D geometry from the camera
space into the clipping space (as depicted in Figure 5). This
matrix can be created using the glOrtho function (matrix
shown in Equation (1)) for orthographic projection or the
glFrustum function (matrix presented in Equation (3)) for
perspective projection. Looking at both matrices it can be
seen that the glFrustum can be decomposed to include the
glOrtho matrix and a Q matrix (shown in Equation (2)) that
corresponds to the intrinsic parameters of a pinhole camera
with the same focal length for the X and Y axis along with the
principal point at the origin of the camera coordinate system
while having no axis skew. The main difference between the
Q matrix and the traditional K matrix [16] (shown in Equa-
tion (4)) is the bottom row of Q, in which the w component of
the homogeneous matrix was set to the −Z coordinate. This is
a matrix optimization associated with the perspective z-divide
that is required to convert 4D homogeneous coordinates to
3D Cartesian coordinates. It has a negative sign because by
default the OpenGL camera is setup to look along the −Z axis
(as can be seen in Figure 5), and to simplify and optimize the
calculations using the similar triangles properties (displayed in
Figure 6), the Z coordinate needs to be negated for having a
positive value. Looking at Equation (5), it can be seen that K
can be adapted to take this sign inversion into consideration,
allowing to map the K ′ values into the Q matrix.

Figure 3: OpenGL coordinates transform pipeline5

On the other hand, for being able to bridge between the
intrinsic parameters estimated by the OpenCV calib3d module
(K) and the underlying OpenGL implementation, the relative
orientation of their respective cameras must also be taken
into account. Namely, switching from the reference system
in Figure 4 to the one on left side of Figure 5 requires the
adjustment of the principal point in the Y axis (because in
OpenGL the Y+ goes up and in OpenCV the Y+ goes
down, which results in Cy′ = ImageHeight − Cy). The
other intrinsic parameters are not affected and can be mapped
directly into the extended Q matrix shown in Equation (6),
allowing the usage of the OpenGL rendering pipeline to model
pinhole cameras with different focal lengths for the X and Y
axis (Fx and Fy) while also supporting arbitrary axis skew
(S) and non-centered principal point (Cx and Cy). On this
particular use case, the OpenGL frustum clipping planes were
defined as Near = 0.1 meters, Far = 5.0 meters, and since
Left = 0 pixels,Bottom = 0 pixels, the glOrtho matrix
can be simplified (as seen in Equation (7)) for optimizing
the creation of the extended OpenGL perspective projection
matrix that takes into consideration the full camera intrinsic
parameters shown in Equation (4).

5https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

The correction of lens distortion typically uses 3 coefficients
for removing radial distortions and 2 coefficients for account-
ing for the tangential distortions. Despite being relatively small
in DLP projectors, they can be removed using an OpenGL
vertex shader or in a post-processing stage after 3D rendering
using the OpenCV calib3d module.

Figure 4: Pinhole camera model used in
OpenCV calib3d module6

Figure 5: OpenGL perspective frustum (left)
with the associated NDC cube7

Figure 6: Diagram showing the similar triangles properties8
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B. Projector calibration

High accuracy projection mapping requires proper hard-
ware / software calibration of the camera / projector and
also appropriate positioning within the intended workspace
in order to avoid occlusions caused by the objects 3D shape
or the human operators. The calibration process estimates the
intrinsic parameters of the projector (that do not change when
the projector is moved within the workspace) along with the
extrinsic parameters that are needed to know where is the
projector in the global reference frame in order to be able
to do proper 3D rendering of the scene that will be projected.

The intrinsic parameters of a DLP projector can be com-
puted using image analysis of complementary gray code
patterns (example in Figure 7) projected into a chessboard.
The calibration system proposed in [6] was used to retrieve
the 5 intrinsic parameters (Fx, Fy, Cx, Cy, S) and 5 distortion
coefficients of the projector along with the 3D position and
rotation of the projector in relation to the camera (that remains
firmly attached to the projector support for fast recalibration
of the extrinsic parameters, as seen in Figure 18). It was
used 5 sets of 42 gray code image patterns captured with the
chessboard in different positions and orientations in relation
to the projector, that was pointing to the table workspace at a
distance of 0.81 meters.

For validating both the calibration and also the proposed
camera modeling within OpenGL, the 6 DoF pose of a
chessboard (in relation to the camera) was estimated using the
OpenCV calib3d module, followed by the computation of the
6 DoF pose of the projector in relation to the chessboard using
the camera-projector extrinsic parameters. Then, a Gazebo vir-
tual world was created with a virtual camera positioned in the 6
DoF pose computed earlier (for simulating the video projector)
and a 3D model was placed at the origin of the virtual world
with the dimensions matching the physical chessboard. After
rendering an image using the intrinsic projector parameters
and projecting it on top of the physical chessboard (shown in
Figure 8), it can be seen that the white squares were projected
into the chessboard with sub-millimeter accuracy.

Figure 7: One of the projector gray code
calibration patterns

Figure 8: Projector validation pattern (projected
white squares)

C. Scene rendering

For achieving accurate projection mapping, the Gazebo
simulator9 camera implementation was improved for allowing
the setting of a custom projection matrix in order to perform
3D rendering with the camera model proposed earlier, that

9http://gazebosim.org

takes into account the projector intrinsic parameters. Moreover,
it was added the possibility to dynamically change image,
video and text during runtime for allowing the display of
the relevant information for each assembly step. For efficient
3D scene rendering, the Gazebo simulator relies on the cross
platform open source Ogre3D graphics engine10, that in turn
uses the OpenGL Graphics Processing Unit (GPU) Application
Programming Interface (API) to take advantage of the mas-
sively parallel graphics cards currently available to generate
raster images for the DLP projector (example of a rendered
scene for the last assembly step in Figure 9).

For user interaction the Gazebo simulator has a Qt11 Graph-
ical User Interface (GUI) that allows visual inspection of the
scene while also giving the option to add new objects or
move and rotate existing models. Moreover, for lightweight
rendering it can also start in server mode without a GUI.

Figure 9: 3D scene rendering using the Gazebo simulator

IV. HUMAN MACHINE INTERFACE

The immersive HMI developed (shown in Figures 9 and 10)
projects into the workspace detailed textual information of
the current assembly task along with a video showing the
operation being performed by an expert operator. Given the
high variability of assembly / maintenance operations, the
system was designed to decompose the assembly process into
a set of small and concise operations. This allows to keep the
operator focused on the current task and reduces the required
projection area. Moreover, the operator can pause and move
the video forwards and backwards, allowing him to inspect a
given complex operation with more time.

The user interaction with the projected HMI is done by
analyzing the 3D point cloud sensor data that falls within a
set of Regions of Interest (ROIs), that are shown in Figure 11
as 4 green cubes for navigating within the assembly steps
(first, previous, next and last), 1 dark blue box for pausing
/ playing the video and 1 yellow box for the video seek
functionality (examples of a user interacting with the HMI
shown in Figures 12 to 14).

For ensuring robust detection of the user intentions, each
ROI has a state machine that triggers its associated action only
when a minimum number of points falls within the specified
ROI boundaries (avoids sensor noise problems) and the user

10http://www.ogre3d.org
11https://www.qt.io



holds his finger within it for at least 0.25 seconds. Moreover, to
avoid unintentionally triggering the same action several times,
the user needs to remove and insert the finger into the ROI to
request the action again.

When a ROI state machine activates its action, the 3D sensor
data centroid (shown as spheres in Figure 11) is computed
for providing a visual debugging feedback of the HMI state
and also for being used in higher level perception, namely in
the seek bar ROI (the vertical yellow box in Figure 11), in
which the seek time is computed by considering the relative
position of the finger within the ROI (the bottom of the ROI
is associated with the start of the current video while the top
corresponds to the end of the current video).

Figure 10: Rendering of the human machine
interface using Gazebo

Figure 11: ROIs for the HMI (overlaid on
top of the Kinect 2 point cloud sensor data
using Rviz)

Figure 12: Example
of video play / pause
interaction

Figure 13: Visual highlight
of the request to move to
the next assembly step

Figure 14: Example of video
seek interaction

V. OBJECT 3D RECONSTRUCTION

For performing proper 3D rendering and also be able to
estimate the 6 DoF pose of an object within the workspace, a
3D CAD or mesh model of the final product is required. Given
the lack of public available CAD models for the Mitsubishi
M000T20873 starter motor (shown in Figure 15), it was
necessary to perform object 3D reconstruction. The 3D mesh
model shown in Figure 16 was generated using the David
Laser 3D structured light system12, and was built by surface
matching algorithms using sensor data retrieved from 38 scans
in which the starter motor was moved and rotated several times

12http://www.david-3d.com

in order to capture enough sensor data for reconstructing the
entire surface. This particular object created some challenges
for the structured light scanner because it contains polished
metallic sections and also black coated surfaces. As such, it
was necessary to capture the same object sections several times
with different projector brightness and camera exposure times
(the dark regions required the maximum projector brightness
and very high exposure times while the polished sections
required dimmer projector brightness and very short exposure
times for the surface to be fully reconstructed). Moreover, for
ensuring that the point cloud matching algorithms worked as
expected, all captured point clouds needed to be manually
cleaned using the David Laser scanning software before per-
forming the alignment and reconstruction of the mesh model.

The last step of the assembly process included a vi-
sual inspection stage performed by the operator in which
he compared the final assembled product with a projected
surface outline that was computed from the reconstructed
mesh and then overlaid on top of the physical object after
its 6 DoF pose was estimated. The outline was generated
using a curvature estimator available in MeshLab13. Namely,
the "Compute curvature principal directions" filter was used
with the principal component analysis method and the mean
curvature color mapping algorithm (result shown in Figure 16).
For improving the visibility of the outline, the color palette was
remapped to show the high curvature regions (associated with
surfaces boundaries) using the green color and the remaining
intermediate curvatures were changed to very dark blue, for
giving high contrast between the outline and the other surfaces.
This was achieved by exporting the mesh to the .dae format
(require by Gazebo for displaying colored models) with the
color information separated to a .png texture. This way, it was
possible to use Gimp14 for remapping and enhancing the colors
of the mesh outlines (as seen in Figures 9 and 29).

Figure 15: Mitsubishi M000T20873 starter motor

Figure 16: 3D model of the starter motor reconstructed using the David Laser structured
light 3D scanner

13http://www.meshlab.net
14https://www.gimp.org



VI. 6 DOF POSE ESTIMATION OF OBJECTS

Robust and accurate estimation of the 6 DoF pose of objects
is a requirement when virtual information must be overlaid
on top of objects that may change their location over time.
To achieve this goal, the 3D point cloud registration system
(drl15) described in [17] was fine-tuned for our table top
use case16. Namely, the reference point cloud preprocessing
pipeline was configured to randomly select 3000 vertices of the
starter motor reconstructed mesh (small green circles shown
in Figure 17) and compute the Scale Invariant Feature Trans-
form (SIFT) keypoints [18] (large yellow circles) and their
associated Fast Point Feature Histogram (FPFH) descriptors
[19]. Later on, the registration pipeline for the sensor point
clouds was setup. Its filtering stage was configured to segment
the target object (starter motor) by extracting the points that
were within a ROI specified in a calibrated frame on top of
the table. The ROI defined the plausible space in which the
object could be placed and also allowed to remove the points
associated with the table. Moreover, for ensuring that the initial
pose estimation would take less than 3 seconds, a random
sample filter was also configured to downsample the point
cloud within the ROI to 2500 points.

Given that in this use case only a single object appears
within the ROI, the clustering algorithms were not added to
the drl runtime pipeline. But they will be very useful in the
future when extending the proposed SAR system to provide
contextual information and visual feedback for all the parts
visible by the sensor (the clustering stage will then provide
input for a object recognition module, which will estimate
which CAD is the best fit for each group of 3D points).

After finishing the setup of the preprocessing stage for the
sensor point clouds pipeline, its initial alignment algorithms
were configured and fine-tuned. Namely, the SIFT keypoint
detector along with the FPFH keypoint descriptor and the
Random Sample Consensus (RANSAC) feature matcher [19].
Moreover, the Iterative Closest Point (ICP) [20] algorithm was
also added for refining the point cloud registration in order to
achieve a 6 DoF pose estimation with high accuracy (less than
2 mm of alignment error, as can be seen by the good overlap
between the physical starter motor and its projected virtual
outline displayed in Figure 29).

The drl modules discussed earlier were enough for estimat-
ing the 6 DoF pose of objects, but for improving the efficiency
of the drl, the tracking and recovery matching pipelines were
also configured. These two pipelines allow the definition of a
set of cloud matchers that are fine-tuned to align the sensor
data by successively updating the 6 DoF pose of the object
as new sensor data arrives. This allows to run the robust, but
computationally intensive feature matching algorithms once,
and then rely on dense point cloud matching algorithms to
quickly and accurately update the object pose at the frame
rate of the 3D sensor (up to 30 Hz, depending on the CPU
used). The tracking pipeline was configured to rely on the ICP

15https://github.com/carlosmccosta/dynamic_robot_localization
16https://github.com/carlosmccosta/object_recognition

algorithm with the point-to-point metric with a search radius
of 0.07 m for establishing correspondences during the iterative
matching process and with the maximum number of iterations
set to 300. On the other hand, the recovery pipeline was fine-
tuned to use the ICP algorithm with the point-to-plane metric
with the search radius and number of iterations increased to
0.2 m and 400 respectively. This approach of starting with
robust feature matching algorithms and then rely on tracking
algorithms with the sporadic usage of recovery methods was
critical for being able to track the object with a reasonable
frame rate, which will be useful in the future when extending
the proposed SAR system to monitor the operator actions for
ensuring that he is following the instructions and did not forget
or misplaced assembly parts.

In Figure 17 is shown an example of the estimation of the
6 DoF pose of the starter motor. The left image displays the
overlay of the reference point cloud on top of the 3D sensor
data in the previously estimated pose (before the operator
occluded the part with its hand and moved it to a new place)
while the right image shows the updated pose after alignment,
that correctly detected that the operator moved the part to the
right and rotated it 90o clockwise.

Figure 17: Example of 6 DoF pose estimation of the assembled starter motor before
(left) and after (right) the alignment of the 3D reconstructed mesh with the 3D sensor
data

VII. TRAINING OPERATORS TO ASSEMBLE A STARTER
MOTOR USING AN IMMERSIVE HMI

Small parts assembly of flexible components is a very
challenging task to automate given the advanced sensing and
gripping technologies that it requires. As such, currently it
is more cost effective to have cooperative assembly lines in
which humans perform the tasks that require robust perception,
adaptive grasping and high-level cognition while the robots do
the remaining tasks. In the next sections, the application of our
immersive training system for the assembly of a starter motor
will be presented. This is a representative use case of small
parts assembly given its diversity of operations and compo-
nents. Moreover, since it has flexible parts (rubbers, wires,
springs), it would be a prime candidate for a collaborative
assembly line, in which besides teaching human operators,
our immersive HMI system could also be used to assign and
coordinate tasks in which human operators and robotic systems
are involved.

A. Testing platform

Our immersive teaching system17 was developed as a Robot
Operating System (ROS)18 package for fast integration into

17https://github.com/carlosmccosta/assembly_projection_mapping_teaching
18http://www.ros.org



robotic workstations and relies on the Gazebo simulator for
3D rendering and the Point Cloud Library (PCL) for 3D
perception. It was tested with a BenQ W1070 DLP projector
for overlaying the teaching information into the environment,
an Asus Xtion Pro Live structured light 3D sensor for 6 DoF
pose estimation of objects and a Kinect 2 Time of Flight (ToF)
3D sensor for the user interaction analysis. In Figure 18 it can
be seen the work area and the hardware disposition (in the
right image the projector is on the top right, the Kinect 2 is
on the left, the Asus Xtion is below the projector and the
David Laser 3D structured light system camera is at the top).

Figure 18: Hardware setup

B. Training session

The training session started by gathering all the assembly
parts and the required tools for performing the starter motor
assembly (shown in Figure 19). Then using the proposed
immersive teaching system, the operator read the instructions,
watched the videos and navigated through the assembly steps
using the projected interaction buttons (displayed in Figures 12
to 14) until he completed the assembly process. Namely, the
operator started by assembling the brushes into the brush
holder (seen in Figure 20) and then bended the braided
cables for ensuring that the brushes were perpendicular to the
armature, that was assembled later on (shown in Figure 21).
These kind of operations that involve flexible parts with
cables and rubbers are very hard to automate with robotic
manipulators, and as such, are the ideal candidate for being
assigned to operators. On the other hand, assembly steps that
deal with large and rigid parts can be delegated to robots,
which is the case of step 4 (displayed in Figure 22), in which
the operator assembled the rear bracket and attached the large
cylindrical yoke. This way, the operator could be performing
steps 5 to 8 (which involved the lower section of the starter
motor) while the robot would be finishing in parallel the
assembly of the top sections. Later on, step 5 included the
placement of the large bottom bracket on top of a fixture for
holding it vertically, followed by the assembly of the clutch
and shift lever (presented in Figure 23). Then, step 6 included
the assembly of the 3 planetary gears (shown in Figure 24)
while in step 7 the plunger and several isolation rubbers were
installed (displayed in Figure 25). Later on, the plunger spring

and its magnetic switch were attached to the lower section of
the starter motor (as seen in Figure 26). Finally, the lower and
upper section of the starter motor were assembled together
(presented in Figure 27), followed by a visual inspection of
the assembled product using the projected 3D model outline
(seen in Figures 28 to 30).

For helping the operator during the final inspection phase,
the proposed SAR system estimated the 6 DoF pose of the
starter motor and then projected its expected outline on top
of it. The main purpose of this final stage was to test the
accuracy of the proposed SAR system. Namely, to evaluate
if the proposed SAR system was able to achieve a good
overlap between the physical and virtual objects. This would
implicitly confirm that the approach proposed to model the
3D camera within Gazebo along with the subsystems that
influence the rendering of the starter motor outline (calibration
of the projector, cameras and 3D sensors along with 6 DoF
pose estimation) were suitable for achieving a usable SAR
system. Looking at Figures 28 to 30, the overall overlap error
seems to be below 2 mm, making the proposed SAR system
ready to be applied to other use cases and be used as a starting
point for developers wanting to incorporate SAR into their
products, such as cooperative workstations in which operators
and robots work side by side.

Figure 19: Step 1 - starter motor parts and
assembly tools

Figure 20: Step 2 - assembly of the brush
holder

Figure 21: Step 3 - assembly of the brushes
into the armature

Figure 22: Step 4 - assembly of the rear
bracket and yoke

Figure 23: Step 5 - assembly of the front
bracket, clutch and shift lever

Figure 24: Step 6 - assembly of the plane-
tary gears

Figure 25: Step 7 - assembly of the plunger
and rubbers

Figure 26: Step 8 - assembly of the plunger
spring and magnetic switch



Figure 27: Step 9 - assembly of the arma-
ture and its bolts

Figure 28: Step 10 - visual inspection of
the assembled product

Figure 29: Detailed view of the val-
idation projection for the inspection
phase

Figure 30: Projection of the outline of the recon-
structed 3D model after 6 DoF pose estimation

VIII. CONCLUSIONS

This paper presented the fundamental technologies required
to implement an accurate SAR system within the domain
of small parts assembly. Namely, it proposed an efficient
and accurate approach for modeling video projectors using
the OpenGL projection matrix while also describing how to
calibrate the intrinsic and extrinsic parameters of the sensing
and projection hardware, which together with the 6 DoF pose
estimation system proposed are critical for ensuring that the
system as a whole is able to achieve an overlap error between
the physical and projected virtual objects below 2 mm. These
technologies were validated using our immersive teaching
system, that is capable of guiding the operator throughout the
assembly process using a projected HMI containing text and
video content while also providing a visual inspection phase
in which the expected product outline is overlaid on top of
the assembled components. This proof of concept use case
served to validate the approaches suggested and can be used
as a starting point for other applications, namely, cooperative
workstations in which a SAR system can be used to coordinate
tasks between humans and robotic systems by showing directly
on the environment the expected work areas and operations
associated to each operator and robot.

The presented immersive teaching system can be improved
further by adding an assembly analysis module for monitoring
what the operator is doing in order to provide contextual help
(such as detecting that the current component was mounted
correctly and projecting the next part that the operator needs
to assemble) and also alert for possible mistakes done by
the operator during assembly. This would allow continuous
analysis and quality control of the assembly process, reducing
the time required for the detection and correction of assembly
problems. On the other hand, the expansion of the SAR system
to other use cases and its evaluation with a large group of
operators would provide useful feedback for its improvement
and would allow to quantify how much effective it can be
when compared with traditional methods.
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