
Journal of Reliable Intelligent Environments
https://doi.org/10.1007/s40860-018-0056-3

ORIG INAL ART ICLE

Benchmarking Pub/Sub IoT middleware platforms for smart services

Carlos Pereira1 · João Cardoso1 · Ana Aguiar1 · Ricardo Morla2

Received: 15 September 2017 / Accepted: 23 January 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
Middleware is being extensively used in Internet of Things (IoT) deployments and is available in a variety of flavors. Despite
this extensive use and diversity, a fair comparison of the benefits, disadvantages, and performance of eachmiddleware platform
is missing. This comparison is relevant to support the decision process for IoT infrastructure. In this paper, we propose a
set of qualitative and quantitative dimensions for benchmarking IoT middleware. We use the publication–subscription of a
large dataset as use case inspired by a smart city scenario to compare two middleware platforms with standard ambition:
FIWARE and oneM2M. We take these metrics and use case and systematically compare the two middleware platforms in
the wild. We identify inefficiencies in implementations and characterize performance variations throughout the day, showing
that the metrics may also be used for monitoring. Furthermore, we apply the same metrics and use case to two brokers
set up in a controlled environment, providing infrastructure- and networking-independent insights. Finally, we summarize
useful practical know-how acquired in the process that can speed up entrance into the topic and avoid configuration and
implementation pitfalls that impact performance.

Keywords Benchmarking · Internet of things (IoT) ·Machine-to-machine (M2M) communications ·Middleware platforms ·
System performance

1 Introduction

The promises brought forth by Internet of Things (IoT)
have fueled the deployment of large-scale sensing and actu-
ating infrastructures in diverse areas of application, like
smart cities, smart grids, smart home, logistics or healthcare.

This work is a result of the project NanoSTIMA
(NORTE-01-0145-FEDER-000016), supported by Norte Portugal
Regional Operational Programme 2014/2020 (NORTE 2020), under
the PORTUGAL 2020 Partnership Agreement, through the European
Regional Development Fund (ERDF).

B Carlos Pereira
dee12014@fe.up.pt

João Cardoso
jmmesquitacardoso@gmail.com

Ana Aguiar
anaa@fe.up.pt

Ricardo Morla
rmorla@fe.up.pt

1 Faculty of Engineering of the University of Porto, Instituto de
Telecomunicações, Porto, Portugal

2 Faculty of Engineering of the University of Porto, INESC
TEC, Porto, Portugal

Middleware platforms are intermediaries between sensors,
services, and applications, managing the flow of data and
allowing them to interoperate. Different flavors of mid-
dleware are being used to speed up IoT deployment, by
providing a set of common functionalities and allowing inter-
operability between devices and services/applications that
consume the data and make it useful [1]. Because data flows
through the middleware at all components of the system, a
particular implementation of the chosenmiddleware may not
provide the features that a given deployment requires or may
have a detrimental impact on the performance of the appli-
cations.

We have failed to find a systematic study and comparison
of the performance, benefits, and disadvantages of the differ-
ent middleware platforms that can be used in IoT, although
some efforts exist [2–4]. In [5], the authors address the per-
formance of data ingestion rate in OpenIoT [6], but focus
mainly in the resource (CPU and memory) usage effects.

Our goal is to define a set of qualitative and quantitative
dimensions alongwhich it is possible to comparemiddleware
platforms that allow the development of IoT applications and
services. To achieve this, we chose a typical smart cities [7]
IoT scenario that identifies communication models and load

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-018-0056-3&domain=pdf
http://orcid.org/0000-0001-6153-7555


Journal of Reliable Intelligent Environments

scenarios. A typical communication model in this context
is the publish–subscribe model [8] for accessing dynamic
data as it allows greater scalability and flexibility than the
request–response model. Load varies greatly depending on
the process and type of data being sensed. We consider the
motivating use case of the periodic publication–subscription
of a large dataset. The data that our application publishes is
the average speed of traffic in each street of the city of Porto
in an hourly basis, corresponding to 19,884 data points every
hour, e.g., as would be required for a routing service. This
data might be extracted from a wide range of the mobile and
static sensors spread throughout the city, and mapped to the
edges of theOpenStreetMaps’ city graph. The qualitative and
quantitative analyses proposed can provide insights onwhich
middleware is better suited for each scenario, bringing ratio-
nal arguments to the problem of choosing which middleware
platform to use.

In this paper, we start by performing a qualitative and
quantitative evaluation of two middleware platforms in the
wild (as per the shorter version of this paper [9]). The
qualitative analysis identifies middleware functionalities and
characteristics relevant for an IoT application. For quantita-
tive evaluation we define a set of performance metrics on
specific communication scenarios. We apply the method-
ology to two different middleware platforms to which we
have access for these experiments (FIWARE1 and oneM2M/
ETSIM2M2,3). Despite the concrete instantiation, we expect
the proposed methodology to generalize to other middleware
platforms, use cases and loads. The metrics proposed may be
used to monitor the operation of such platforms, by offering
insights on the internal behavior and may allow to uncover
problems with specific implementations. We then extend our
contributions by applying the same methodology in a con-
trolled environment. This removes variability related to the
network and computing infrastructure, and provides fairer
comparison conditions for protocols, marshalling and also
implementation options, e.g., the chosen database engine.

This paper is organized as follows: Sect. 2 presents our
benchmarking dimensions, Sect. 3 describes the middleware
platforms thatwe analyze, andSects. 4, 5, and 6 show, respec-
tively, the results of our qualitative, in thewild, and controlled
quantitative analyses to the two middleware platforms. We
present pitfalls and recommendations that result from our
work in Sect. 7 and concluding remarks in Sect. 8.

1 https://www.fiware.org.
2 http://www.onem2m.org.
3 http://www.etsi.org.

2 Benchmarking IoTmiddleware

2.1 Qualitative dimensions

To define the qualitative dimensions along which to compare
middleware, we took the perspective of an IoT infrastruc-
ture operator that would like to see his data used by services/
applications. In this sense, besides requirements analysis, it
is also important to take into account aspects that foster the
adoption of platforms by developers, like quality of docu-
mentation and support. Thus, we arrived at the following
aspects:

– support for the desired communication model (pub-sub
and/or request–response);

– IoT application requirements, based on the requirements
defined by the IoT-A4;

– viability and possible limitations in each scenario;
– availability and clarity of the documentation, as well as
available tutorials, and the quality of the support and
livelihood of developer communities, e.g., Stack Over-
flow.5

2.2 Quantitative dimensions

Toevaluate their performance,we chose speed and efficiency.
As speed, we mean the time to send or retrieve data. The effi-
ciency measures the overhead imposed by the middleware,
including the increase in the size of the data sent through the
network and the total number of bytes needed to send the
data.

We propose the following metrics:

– publish time: elapsed time between sending the pub-
lish request and receiving the publish response; tPU B in
Fig. 1;

– subscribe time: elapsed time between sending the publish
request and receiving the subscribe notification; tSU B in
Fig. 1;

– total time: elapsed time between sending the first publish
request and receiving the last publish response;

– size of marshalled data: data serialization overhead mea-
sured as the content-length [11] header of the application
protocol, in bytes;

– size of the publication: size in bytes of the payload of the
transport protocol of the publish packet;

– total amount of data used to publish a resource: mea-
sured as the sum of the network level sizes of all packets
exchanged (publisher to broker and reverse direction), in
bytes;

4 http://www.meet-iot.eu/iot-a-requirements.html.
5 http://stackoverflow.com.

123

https://www.fiware.org
http://www.onem2m.org
http://www.etsi.org
http://www.meet-iot.eu/iot-a-requirements.html
http://stackoverflow.com


Journal of Reliable Intelligent Environments

Publisher Broker

Publish Data
tPUB

Time Time Time

NotificationResponse tSUB

Subscriber

Fig. 1 Sequence diagram exemplifying the publish and subscribe times

– goodput: the useful number of bytes sent in a given
period, measured as the size of the serialized data divided
by the publish time.

During analysis of performance results, we defined an addi-
tional set of metrics which is useful to validate results and
provide support for explaining behaviors observed in the
main metrics. These auxiliary metrics are:

– number of request retries in cases where the publish
request fails due to a problemwith the broker. E.g., errors
in the 500 range status code for HTTP [12], RST flags
for TCP, etc.;

– round trip time to broker, obtained through the differ-
ence between the timestamp of the TCP SYN packet and
its response [13] for TCP connections, or measured at
application-level for UDP connections through the dif-
ference between the timestamp of a publish request and
the respective acknowledge;

– number of re-transmissions of transport and applica-
tion protocol packets and the delay verified for the
re-transmission.

By combining main and auxiliary metrics, we can infer
whether:

– an increase in the publish or subscribe times is related to
an increase in the round trip time (network congestion),
or to reduced broker performance;

– an increase in the total time to publish all data is
related to an increase in the number of retries, packet
re-transmissions, or both.

3 IoTmiddleware platforms

3.1 FIWARE

The FIWAREmiddleware has a series of components known
as Generic Enablers. These components aim to ease the

development of complex applications in areas including
security and data management. One of the data manage-
ment components is theOrionContext Broker. Orion uses the
publish–subscribe model and generic data structures, known
as Context Elements, to represent information. This informa-
tion can be, for example, the temperature of a given room.
These context elements are represented using JSON, and
they have a predefined structure (NGSIv2). This platform is
RESTful, and therefore, all operations use one of the CRUD
methods. The broker has twoAPIs, v1 and v2.6 TheAPIs dif-
fer in the data structure and in the fact that only the second
version allows string or geographical filters to be applied to
entity queries. The latter is a useful feature for location-based
services, as often used in smart city applications and in our
use case.

Access control can be provided when Orion is combined
with the Steelskin PEP7 component, which is an authen-
tication mechanism independent of the broker that verifies
whether the client has permissions to access a resource by
intercepting the request before it reaches the broker. The
information verified to allow access is the following:

– an OAuth8 token generated by the authentication server,
which is generated once and then included in the requests
via x-auth-token header;

– a ServiceId, obtained through the Fiware-Service header
and that identifies the component protected by this mech-
anism;

– a SubServiceId, obtained through the Fiware-Service
Path header, that identifies futures sub-divisions of the
service;

– the desired action.

An open source reference implementation of each of the
FIWARE components is publicly available.

3.2 OneM2M/ETSI M2M

Machine-to-Machine (M2M) communications allow wire-
less and wired devices and services to exchange or control
information without the need for human intervention [14].
M2M communications are a key enabler of IoT by, for exam-
ple, making data from several sensors available publicly or
connecting devices and sensors to the Internet (IoT) to pro-
cess the data collected by these.

The oneM2M standard is the reference for global and
end-to-end M2M communications in terms of service level.
Although oneM2M cannot be considered an extension of

6 https://github.com/telefonicaid/fiware-orion.
7 https://github.com/telefonicaid/fiware-pep-steelskin.
8 http://oauth.net.

123

https://github.com/telefonicaid/fiware-orion
https://github.com/telefonicaid/fiware-pep-steelskin
http://oauth.net


Journal of Reliable Intelligent Environments

ETSI M2M, both share the same functions and capabilities
at the service layer as most of oneM2M current specifica-
tions are based on the ETSI M2M service layer. OneM2M/
ETSI M2M settles on an M2M architecture with a series
of generic capabilities for M2M services, and it defines a
resource model, easing the device’s integration and inter-
operability, as well as the development effort of horizontal
applications. The homogeneity the standard provides makes
it easier to develop M2M applications and for objects using
M2M applications to interact.

OneM2M/ETSI M2M is RESTful, thus adhering to the
REST principles and using CRUD methods. Information
is represented in the form of resources that are struc-
tured in a tree-like way [15,16]. OneM2M/ETSI M2M
allows for synchronous communications, using the request–
response model, and asynchronous communications, using
the publish–subscribe model.

Unlike FIWARE, oneM2M/ETSI M2M does not have a
reference implementation andwehad to choose amiddleware
implementation for the broker and API library. We use the
ETSI M2M-compliant broker and client library described in
[17] for the measurements in the wild. We use the oneM2M-
compliant OM2M broker and client library9, called OM2M,
initially described in [18] for compliance with ETSI M2M,
for the controlled measurements.

4 Qualitative analysis

4.1 Communicationmodel

Both FIWARE Orion Context Broker and oneM2M/ETSI
M2M brokers implement the publish–subscribe model.

4.2 IoT-A requirements

It would be too exhausting to go over all IoT-A require-
ments. However, we identified the following as relevant
for an architectural analysis: UNI.001, UNI.002, UNI.005,
UNI.008, UNI.016, UNI.022, UNI.023, UNI.030, UNI.036,
UNI.047, UNI.048, UNI.067, UNI.071, UNI.073, UNI.092,
UNI.094, UNI.240, UNI.245, UNI.405, UNI.406, UNI.426,
UNI.607, UNI.608. These requisites concern interoperabil-
ity at protocol and data level, security, access control and
anonymity, name-based access and self-description, support
for queries (semantic, location). Of these, FIWARE does
not fulfill UNI.405 (support for multiple coordinate sys-
tems), and oneM2M/ETSI M2M does not fulfill UNI.405
and UNI.406 (support for geographic queries). Although we
found no support for geographic queries in oneM2M, we
believe theywill be included in the standard in the near future.

9 http://www.eclipse.org/om2m/.

4.3 Viability and limitations

FIWARE Orion Context Broker imposes a 1 Mbyte limit on
the publish request size and 8 Mbyte limit on the subscrip-
tion/notification size. Our example dataset contains 19884
data points. It is not feasible, or desirable, to publish all this
data as a single resource. The first reason for this is that the
notification size sent to subscribers would exceed the limit.
The second and more important reason is that filter queries
would not be possible, each subscriber only having the possi-
bility to receive the whole dataset. This might not be desired,
e.g., for mobile applications. We thus decided to publish a
single resource per street (graph edge). We define the follow-
ing structure for the resource name: average_speed_edgeId.
This way we can apply regular expressions to select all the
resources whose name starts with ‘average_speed’ (aver-
age_speed_.*) and then apply filters that, for example, return
the edges where the attribute ’speed’ is higher than a given
value.

We also use this mapping in oneM2M/ETSI M2M. Dif-
ferent containers are created to store the different edges, and
inside each container the contentInstance resources, which
are the resources where data is meant to be stored, store the
hourly data. Please note that, oneM2M/ETSI M2M defines
the CRUD methods possible in each resource type, and con-
tentInstance resources shall not be updated viaAPI according
to oneM2M (Clause 7.4.7.2.3 [15]).

4.4 Documentation and support

FIWARE is an open standard with a reference implementa-
tion and thus it has a variety of online documentation. The
documentation includes an API walkthrough that describes
each version of the API, detailing each operation that
the Orion Context Broker component supports, as well as
explaining how to set up an instance of the broker and how
to run it. Furthermore, each version of the API has a specific
web page directed at detailing each operation and also offer-
ing code snippets of these operations in several programming
languages.As the second version is still in beta state, there are
two web pages for this version, one with the latest changes
and the other with a stable version of the API.

There are various documents specifying all aspects of
the oneM2M/ETSI M2M standard, such as the binding with
protocols like HTTP, CoAP, and MQTT, or its functional
architecture [16]. Because oneM2M/ETSIM2Monly defines
the standard, these documents do not cover implementation
issues. Nonetheless, specific implementations do offer their
own documentation and wiki.

In terms of support, FIWARE has a community on the
Stack Overflow web site with over 1800 questions tagged
at the moment of writing this paper. There is also a FAQ
(Frequently Asked Questions) available about the general

123

http://www.eclipse.org/om2m/


Journal of Reliable Intelligent Environments

FIWARE platform.10 Additionally, there are mailing lists
directed at each kind of problem, such as technical issues
with some of the Generic Enablers, that were used to clarify
some doubts in the obtained results.

The oneM2M/ETSI M2M community on Stack Over-
flow is less active, with fewer than 40 questions tagged
with “OneM2M" or “ETSI M2M" or “OM2M". Nonethe-
less, OM2M wiki and forum are available.11

5 Quantitative analysis—in the wild

5.1 Setup

These experiments were done on a DigitalOcean virtual
machine located on their London data center and running
Ubuntu 14.04 x64, on a two core Intel(R) Xeon(R) CPU E5-
2650L v3 @ 1.80GHz with 2 Gbytes of RAM, and a 1 Gbit/s
Ethernet card shared between the virtual machines running
on the same physical machine.

We used a FIWARE account on the public Barcelona
FIWARE broker. This broker was chosen as it is similar to a
production one and no production brokers were available to
us. This broker implements HTTP.

TheETSIM2Mbroker is available to our group in the Fac-
ulty of Engineering in Porto. The broker implementsHTTPS;
due to this, the payload TCP size of the TLS Application
Data packet is evaluated instead of the payload TCP size of
the HTTP protocol.

The publisher and subscriber clients are implemented in
Node.js for FIWARE, and in Java for ETSI M2M using the
library available from [17]. Additionally, a packet capture
process runs the tcpdump12 tool in the background to capture
network level metrics.

Taking into consideration the limitations of each middle-
ware, we used the following mapping to comply with our
use case scenario. For ETSI M2M, each edge was published
by creating a new contentInstance resource in an individ-
ual container resource already existent in the broker. For
FIWARE, each edge was published in an individual entity
resource already existent in the broker, that is, in each pub-
lish request we updated the value of an existing, but different
for each edge, entity resource.

The data that is sent in each publication contains the aver-
age speed of traffic in the last hour of the street where the
edge is, the average speed in the last week, and a com-
bined average of the speed, as well as the edge identification,
and the GPS location of the edge. For example, the fol-

10 http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/
FIWARE_Frequently_Asked_Questions_(FAQ).
11 http://www.eclipse.org/om2m/.
12 http://www.tcpdump.org.

lowing JSON string contains the data for a specific edge:
{“last_hour_average" : 8.942157, “weekly_average" :
9.942157, “combined_average" : 7.942157, “edge_id" :
146212295, “lon" : −8.449180921568626, “lat" :
41.51657045098038}.

5.2 Methodology

Publishing a large dataset as individual data elements can be
done in two ways: sequentially, or in parallel. For sequential
publication, we performed 4 publish cycles as the amount of
time required to perform each one limited the total num-
ber of measurements. For the parallel publication, each
experiment consisted of 10 publish cycles with a number
of parallel requests ranging from 50 to 500, in increments
of 50. We limited the number of parallel requests to 500
because brokers were not able to cope with more parallel
requests. This variation on the number of parallel requests
allowed us to observe differences in the behavior of brokers,
as the load on the broker increases, including the number
of retries, the publish–subscribe times, and the number of
packet re-transmissions. FIWARE experiments were done in
the morning, afternoon, and night. In each part of the day, we
repeated each experiment 3 times. In the case of ETSI M2M,
only one experiment was done in the whole day, since the
ETSI M2M’s excessive publish time did not allow for more
than 4 publish cycles in each part of the day. No synchro-
nization was necessary between publisher and subscriber as
they were located in the same machine.

5.3 Measurement results

5.3.1 Parallel publication

ETSI M2M publish, subscribe, and total publish times were
approximately 850%greater thanFIWARE times.Webelieve
it was caused by a problem with the ETSI M2M library we
used that did not allow for more than 2 network connections
at the same time. As such, it was not possible to publish more
than 2 resources at the same time, no matter what number of
parallel requests was chosen. This also led to the absence of
retries.

Each boxplot, in the figures presented throughout this
work, show the distribution of themeasured data. The top and
bottom of each “box” represent, respectively, the 25th and
75th percentiles of the measured samples, and the distance
between these two is the interquartile range. The outliers,
observations outside the whisker length, are the values that
are more than 1.5 times the interquartile range away from the
top or bottom of the box. The line in the middle of each box
represents the median.

Publish times for both middleware platforms can be
observed in Figs. 2 and 3. The ETSI M2M average publish

123

http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_Frequently_Asked_Questions_(FAQ)
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_Frequently_Asked_Questions_(FAQ)
http://www.eclipse.org/om2m/
http://www.tcpdump.org


Journal of Reliable Intelligent Environments

Fig. 2 FIWARE publish times for different number of parallel requests

Fig. 3 ETSI M2M publish times for different number of parallel
requests

times for a single resource publication range from 5992 to
728,58 ms for 50 and 500 requests in parallel, respectively.
This ismuch larger thanFIWAREpublish times ranging from
630 to 7400 ms, again for 50 and 500 requests in parallel,
respectively. The subscribe times are very similar to the pub-
lish times.

The ETSI M2M broker we use always sends the subscrip-
tion notification before sending the HTTP response to the
publish request. This results in a scalability problem when
there are several subscriptions to a given resource, since the

broker will send all the subscription notifications first before
sending the HTTP response to the publish requests, and, ulti-
mately, leading to larger than necessary publish times. On
the contrary, FIWARE sends the subscription notifications
asynchronously, and therefore, sometimes the subscription
notification arrives before the HTTP response to the publish
request and at other times it arrives after.

The average content-length for ETSI M2M is 390 bytes,
55% greater than that of FIWAREwhich is 251 bytes. This is
unexpected as FIWARE data structure format is JSONwhich
tends to be lengthy. We believe the reason behind this larger
than expected ETSI M2M content-length is an implemen-
tation inefficiency of the library: we verified that the ETSI
M2M library sends unnecessary attributes in the payload,
such as the content-type which should only be in the head-
ers of the HTTP packet. The data itself only accounts for
146 bytes, which is lower than in FIWARE that requires the
JSON overhead.

An average of 511 bytes ofTCPpayload sizewas observed
for FIWARE, whereas for ETSIM2M this value is 728 bytes;
we do not include the 40 bytes average TLS overhead in this
value. This difference in size is due to the increase in size of
the content-length discussed above.

ETSI M2M registers an average of 1118 bytes for the
HTTP response to the publish request, whereas FIWARE
registers an average of 417 bytes. There is quite a difference
in size between these two middleware platforms, and that
again is due to the specific implementation we use, since the
response to the publish request of the ETSI M2M library
is not a simple OK with no payload, but instead contains a
copy of the published data which only adds inefficiency to
the communication.

The goodput measured in ETSI M2M is on average 2662
bytes/s, while in FIWARE the goodput ranges from 351
bytes/s (lowest value registered) to 1700 bytes/s (highest
value registered). This is due to the fact that only 2 network
connections are active at the same time, and therefore, the
goodput is higher because the lower the number of active
requests there is, the higher the rate at which they are pro-
cessed. These values are depicted in Figs. 4 and 5.

Figure 6 shows that the number of retries in the FIWARE
experiments grows throughout the day, indicating a possi-
ble a memory leak in the broker. To verify this hypothesis,
additional measurements were conducted on two consecu-
tive days. We observed that the number of retries grew only
throughout the day and did not pick up from the last value reg-
istered on the previous day, as seen in Fig. 7. We updated our
hypothesis and assumed that the broker had been restarted
somewhere in between the period where no measurements
were taken. To confirm this hypothesis, we contacted the
FIWARE team via email and were told that the retries were
due to the authentication proxy—Steelskin PEP, mentioned
in Sect. 3—and not due to the broker load itself, as was

123



Journal of Reliable Intelligent Environments

Fig. 4 FIWARE goodput for different number of parallel requests

Fig. 5 ETSI M2M goodput for different number of parallel requests

suspected. The FIWARE team also told us that they were
not aware of any broker malfunction, restart, or memory
leak.

5.3.2 Sequential publication

We observe differences between the sequential and the paral-
lel publication scenarios for bothmiddleware platforms. This
is expected as the sequentialmechanismhas an implication in
the publish time, subscribe time, total time to publish all data,
and goodput. Publish times are smaller in the sequential pub-
lication for both middleware platforms. FIWARE’s average
publish time is 175 ms, while ETSI M2M’s is 282 ms which

Fig. 6 Number of retries in FIWARE throughout a day

Fig. 7 Number of retries in FIWARE throughout two consecutive days

is almost 61% greater than FIWARE’s. Subscribe times were
also smaller for both middleware platforms in the sequential
publishing. FIWARE’s average subscribe time was 227 ms
with a performance similar to ETSI M2M with 237 ms.

ETSI M2M performs considerably better for sequential
publication, as its implementation limits the performance
in parallel publication. This scenario allows a fair compari-
son between bothmiddleware platforms; however, the results
show that FIWARE performs better overall.

The observed total time to publish all data sequentially is
48% greater in ETSI M2M than in FIWARE. FIWARE took
nearly 64minutes to publish all data sequentially, an increase

123



Journal of Reliable Intelligent Environments

of 1180% from parallel publication. ETSI M2M took nearly
98 minutes publish all data sequentially, an increase of 98%
from parallel publication. As expected, the parallel publica-
tion is the recommended choice for the timely dissemination
of data.

The average goodput for ETSI M2M is 1444 bytes/sec,
while for FIWARE it is 2660 bytes/s. Both middleware plat-
forms show different behaviors in terms of goodput when
compared to the previous scenario which can be once again
due to differences in the implementation.

6 Quantitative analysis—controlled
environment

6.1 Setup

These experiments were performed in our lab, with the bro-
kers installed on a dedicated server running CentOS 6.9,
on a Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with 8
Gbytes ofRAM, andwith a connection of 100Mbit/swith our
client machine running Debian 8.9, on a Intel(R) Core(TM)2
Quad CPU Q9300 @ 2.50GHz with 2 Gbytes of RAM. We
followed the same approach as previously by deploying pub-
lisher and subscriber in the same client machine.

We installed an Orion Context Broker instance to evaluate
FIWARE’s performance and the OM2M broker to evaluate
oneM2M’s performance. FIWAREusesHTTP as application
protocol. TheOM2Mcontains bindings forHTTP,CoAP, and
MQTT application protocols. The use of MQTT, however, is
only possible with the use of an external MQTT broker as
intermediary. For that, we used the Mosquitto broker.13

The publisher and subscriber clients were implemented in
Java for all cases. For FIWARE and OM2M HTTP clients,
we used our own REST clients, based in the HTTPClient
Apache implementation. We used the Eclipse Paho open-
source client implementation of MQTT as base for our
OM2M MQTT clients, and CoAP Californium as base for
our OM2M CoAP clients. We used MQTT with QoS 1 and
CoAP with confirmable messages to get publish responses.

We followed the same approach in all clients to create
publish requests to have the same payload, a JSON format
payload, except for MQTT as the client requires additional
data. No security was added to any of the brokers, and only
a short token was added to both OM2M (11 Bytes) and
FIWARE (5 Bytes) as access control.

We use the same mapping as in the previous section:
for OM2M, each edge is published by creating a new con-
tentInstance resource; contentInstances are located under
different container resources representing different edges.
For FIWARE, each edge is published in an individual entity

13 https://mosquitto.org/.

resource that is created in the broker beforehand, and in each
publish request we update the value of the entity resource of
the corresponding edge.

The sensor data that is sent in each publication is the same
as presented in the previous section.

6.2 Methodology

We performed sequential as well as parallel publication mea-
surements. We varied the number of parallel requests from
1 (i.e., sequential) to 5. We limited the number of parallel
requests to 5 because we observed that because of some con-
figurations of the local implementation of the OM2M broker
it was not able to cope with more parallel requests. Nev-
ertheless, this methodology allows us to perceive not only
differences in the behavior of the brokers but differences
of the same broker for different application protocols. We
repeated each measurement 3 times.

There is only one broker running during each measure-
ment. Between measurements the broker is reset—including
its database—to ensure the same conditions for all measure-
ments. In the case of updating values in FIWARE we only
start the measurements after the entity resources are created.

6.3 Measurement results

6.3.1 Publish and subscribe times

OM2M HTTP and OM2M CoAP have much better average
publish times than FIWARE. FIWARE’s publish times range
from 21251 to 98,635 ms for 1 and 5 requests, respectively.
The average publish times of OM2M CoAP are the best,
ranging from5873 to8696ms.TheuseofCoAP represents an
average decrease of 1.1% of the publish timewhen compared
with the use of HTTP in OM2M, which shows small benefits
of using UDP in addition to the smaller, binary base header
format.

The use of MQTT as application protocol—including the
Mosquitto broker as proxy between the client and the OM2M
broker—represents an increase of the publish time of nearly
9.6 times when compared with the use of HTTP and an
increase of approximately 9.7 times when compared with
the use of CoAP. The publish times for the middleware plat-
forms with the different configurations can be observed in
Fig. 8.14

Figure 9 shows the difference between publish and sub-
scribe times for the different configurations of the two
middleware platforms. Subscription notifications are sent
asynchronously, and therefore, sometimes the subscription
notification arrives at the subscriber before the response to

14 Y axis are truncated for visualization purposes in boxplots through-
out this section.

123

https://mosquitto.org/


Journal of Reliable Intelligent Environments

Fig. 8 Publish times for different broker configurations and different number of parallel requests (Left: 1; Right: 5)

Fig. 9 Observed difference between publish and subscribe times for different broker configurations and different number of parallel requests (Left:
1; Right: 5)

the publish request arrives at the publisher. This produces
both positive and negative values for the publish–subscribe
difference that are independent of the number of parallel
requests and practically the same—with the exception of
OM2MMQTT. Because theMosquitto broker is also used as
intermediary in the notifications, the publish–subscribe dif-
ference in OM2M MQTT is much larger than in the other
cases.

Wedetected a problemwith the use ofOM2MCoAP.After
almost 1000 publish requests, a router internal error occurs
in the broker. This error originates from a DatabaseExcep-
tion and causes the broker to stop delivering notifications.
Therefore, the OM2M CoAP’s subscribe time and publish–
subscribe difference are based on this number of publica-
tions/notifications.

Figure 10 shows the total time to publish all data for all
scenarios. The average total time to publish all data was
nearly 395 (423 to 392) s for FIWARE, 58 (118 to 37) s
for OM2M HTTP, 58 (117 to 35) s for OM2M CoAP, and
567 (755 to 358) s for OM2M MQTT. The latter represents
an increase of nearly 8.8 times to the fastest (OM2M HTTP
and OM2M CoAP). We observe that although the average
publish time increases with the number of parallel requests
(as per Fig. 8.), the total time to publish all data decreases—
except for FIWARE. This shows that the parallel publication
is thus the recommended choice for sending large datasets;
in the end of this section we discuss the reasons for this not
happening with FIWARE. We further observe that the use of
Mosquitto considerably decreases the performance.

123



Journal of Reliable Intelligent Environments

Fig. 10 Total time to publish all data for different broker configurations
and different number of parallel requests (Left: 1; Right: 5)

6.3.2 Goodput and publish subscribe sizes

The goodput values measured for each packet and shown
in Fig. 11 are a clear indicator of the performance of the
different configurations. FIWARE’s average goodput is 5
Kbyte/s, similar to the 6 Kbyte/s measured with OM2M
MQTT. OM2M CoAP and OM2M HTTP have an average
of 40 Kbyte/s. We did not observe publish request retries
on any of FIWARE’s or OM2MMQTT’s measurements. We
observed a negligible number of retries onOM2MHTTP and
OM2M CoAP.

Given that in a controlled environment we have extended
flexibility over both FIWARE and OM2M clients, we aim
to create payload contents with similar sizes for publishing
data. As such, the average content-length is 235 bytes for
OM2MHTTP and 241 bytes for OM2MCoAP. As FIWARE
does not require the use of specific JSON fields in the pay-
load, the average content-length is slightly smaller at 220
bytes. The average content-length for OM2M MQTT is 349
bytes— larger than for the others and as expected given that
the payload must contain the necessary data for the OM2M
broker to decode the client’s request. This payload includes

the identification of the operation to be performed and a
request identifier. FIWARE uses 296 bytes for the HTTP
protocol headers (Token and URI path are different) and 52
bytes for TCP. The use of MQTT specifically in OM2M
MQTT only adds 36 bytes of application protocol headers
including the topic filter and in addition to the 52 bytes of
the TCP header. OM2M CoAP uses 71 bytes for applica-
tion protocol overhead and 20 bytes for UDP. OM2M HTTP
uses 301 bytes for the HTTP headers and 52 bytes for TCP.
We used shorter URIs with oneM2M than previously with
ETSI M2M, as in oneM2M there is no need to send literal
strings preceding each resource like inETSIM2Mis – such as
applications/<app>, containers/<container>, or contentIn-
stances/<contentInstance>.

For response to the publish request we register an average
of 164 bytes for the HTTP protocol headers with no payload
in FIWARE. FIWARE does not include a copy of the infor-
mation published, while OM2M responds every time with
the resource being created plus a series of additional M2M
verbosity. The publish responses of the Mosquitto broker
also do not have payload, because identifying the topic is not
needed in the response. As such only 4 bytes are used for
MQTT protocol headers. The average response length for
OM2M HTTP and OM2M CoAP is 465 bytes. The OM2M
HTTP application protocol headers are an average of 210
bytes long; application protocol headers are 50 bytes long in
OM2M CoAP. The oneM2M-compliant broker adds signif-
icant inefficiency to the communication by responding with
the published data—a fact we observe also in our on the
wild experiment in Sect. 5. This behavior is allowed, but not
mandatory by standard.

We register an average of 741 bytes for each subscription
notification in FIWARE—including 310 bytes for the HTTP
protocol headers and 365 bytes for content. OM2M HTTP

Fig. 11 Goodput for different broker configurations and different number of parallel requests (Left: 1; Right: 5)

123



Journal of Reliable Intelligent Environments

Fig. 12 Publish request (left bar), response (center bar), and notification
(right bar) sizes for the different configurations

and OM2M CoAP each have an average content-length of
677 bytes per notification. CoAP protocol headers are on
average only 37 bytes as they contain less header options
than in publishing, and HTTP protocol headers use 255 bytes
on average. Notifications of OM2MMQTT have an average
content-length of 682 bytes, and MQTT protocol headers
have an average of 36 bytes once again. Fig. 12 shows these
values.

6.3.3 FIWARE and the database

OM2M complies with the oneM2M technical standards that
strictly define howandwhere on the resource structure should
be published. The flexibility in FIWARE allows us to com-
pare three different approaches of publishing data using its
Orion Context Broker—that we could not compare in the
previous section on the wild. The first approach is the one
we have been using up to here in this section: we previously
create an entity for each edge and upon incoming edge data
we update the values of all entities. In the second approach,
upon incoming edge data we create a new set of entities—
each entity with the new value for its edge. This requires
additional mechanisms for entity cleanup and subscription.
In the third approach, a single entity is used to publish new
data for all edges. We update the edge id attribute together
with edge data in the entity, once for every edge and upon
incoming edge data.

Figures 13 and 14 show the publish times and goodput for
the three different approaches. There is a clear decrease in
performance for updating the values of several entities (first
approach) and for creating entities (second approach) when
compared to updating the attributes of a single entity (third
approach). The average total time to publish all data in the
second approach is nearly 176 (223–167) s and only 40 (65–
30 s) in the third approach. The average publish time is 58
s for the first approach, 25 s for the second, and 5 s for the
third.

Fig. 13 Publish times for FIWAREwith three different ways to publish
data and for different number of parallel requests (Left: 1; Right: 5)

Fig. 14 Goodput for FIWAREwith three different ways to publish data
and for different number of parallel requests (Left: 1; Right: 5)

Publishingdata using the third approach results inFIWARE
having slightly better performance than OM2M HTTP and
OM2M CoAP. We relate this variation in FIWARE’s perfor-
mance to the database. We observe that in the boxplots of the
first approach there are no publish requestswith small publish
times. As we are doing updates to entities in a database with
a rather large number of entities, each update takes longer,
and more parallel requests mean larger times due to con-
currency. In the second approach, we see that the boxplots
havemeasurement points spread across the entire Y axis. The
database locks writing updates to the different entities. The
requests that can access the lock to create a new entity will
have low publish times; the rest of the requests must wait and
experience larger publish times. As a final argument for the
impact of the database on the FIWARE broker performance,
we stress the fact that all reported measurements were done
in a clear broker and empty database. To have a better sense
of the effect of the database on performance, we ran the third
approach in a database that we did not reset after running the
first approach. This means we create entities for every edge
first—but measure and update incoming edge data on a sin-
gle entity only. We observe much worse performance with
this approach than with the third approach in which a single
entity exists in the database and thus confirm the effect of
database size on broker performance.

123



Journal of Reliable Intelligent Environments

7 Pitfalls and recommendations

In this section, we present important observations from
designing these measurement campaigns that we believe can
be useful to other researchers and developers.

– Enabling multi-connection capable clients: Default con-
figurations for managing connections tend to limit the
number of connections possible. For example, the
Apache’s PoolingHttpClientConnectionManager15 cre-
ates andmanages a pool of connections,where the default
size of concurrent connections that can be open by the
manager is 2 for each route or target host, and the total
open connections is limited to 20. Furthermore, Eclipse
Paho uses three threads for each client, where one is for
sending, one for receiving, and one for call backs, which
means that i different clients are necessary for each i
number of parallel requests desired. Therefore, client-
side implementations need to be tuned to allow multiple
parallel connections;

– Java configurations: different OS can be packed with dif-
ferent defaults JavaVMs packages. Although Java Server
andClient VMs are rather similar, the ServerVM is tuned
tomaximize peak operating speed. The ServerVM,while
takingmore time to analyze and compile code and requir-
ing higher memory footprint, executes several complex
optimizations since it contains an adaptive compiler that
supports several types of optimizations. Server VMs are
more adequate for applications that require the faster
possible operating speed, instead of, for instance, faster
startup time;

– Application development: Developers need to pay close
attention to how and where data is published. Publish-
ing resources in different locations of the platform’s
resource tree, associated to different and/or inefficient
ways to perform such requests, can cause different over-
all performance leading to different publishing times.
Furthermore, while the execution of several parallel pub-
lications can in fact decrease the overall transmission
time, in average each publication will be delayed. There-
fore, if some resources need to be published with some
type of quality of service requirements, then a sequential
publication can be a better approach.

8 Conclusion

In this paper, we proposed a set of qualitative dimensions and
quantitative metrics to compare IoT middleware. We used

15 https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/
org/apache/http/impl/conn/PoolingHttpClientConnectionManager.
html.

them together with a smart city use case with data from the
FutureCities project to evaluate the performance of twowell-
knownmiddleware platforms: FIWARE andOneM2M/ETSI
M2M.

For publish–subscribe scenarios in which a user pub-
lishes large volumes of data either sequentially or in parallel,
we measured larger publish times, subscribe times, and
total times to publish all data with ETSI M2M than with
FIWARE—on the wild with two specific deployments of
these brokers. We conclude that the significant differences
between the two middleware platforms observed in the par-
allel publication are mainly due to limitations of the ETSI
M2M’s implementation. On the other hand, we also observed
performance variations throughout the day in FIWARE.
We also conclude that parallel publication can significantly
reduce the total time required to publish all data when com-
pared to publish in a sequential way.

In amore controlled environment wewere able to find that
broker performance can depend on different components like
the database and underlying communications protocol. For
example, FIWAREperformancewith the same load degrades
with single versus multiple entities in the database and the
OneM2M performance is much larger with HTTP and CoAP
protocols than with MQTT and its intermediate broker.

These results allow us to have a better understanding of the
internal functioning of these middleware platforms, show-
ing that the metrics proposed may be used to monitor their
operation, and, by discovering implementation errors in the
middleware itself or in their libraries, they allowed us to con-
tribute for possible improvements.

Futurework should focus in benchmarking and comparing
more and more different middleware platforms in different
use cases, eventually looking atwhich changes to themethod-
ology and metrics would have to be included for different
middleware platforms.

Acknowledgements The authors would like to thank Luís Zilhão for
the support provided during the controlled experiments and thank the
anonymous reviewers for their helpful feedback.

References

1. Bernstein PA (1996) Middleware: a model for distributed system
services. Commun ACM 39(2):86–98. https://doi.org/10.1145/
230798.230809

2. KonstantinosV,Vlasios T (2014) Performance evaluation of an IoT
platform. In: Eighth international conference on next generation
mobile apps, services and technologies, Oxford. https://doi.org/
10.1109/NGMAST.2014.66

3. Martin A, Manish M, Gowtham B, Amip S, Jeff H, Ben V
(2015) IoTAbench: an internet of things analytics benchmark.
In: Proceedings of the 6th ACM/SPEC international conference
on performance engineering (ICPE ’15). https://doi.org/10.1145/
2668930.2688055

123

https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingHttpClientConnectionManager.html
https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingHttpClientConnectionManager.html
https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/conn/PoolingHttpClientConnectionManager.html
https://doi.org/10.1145/230798.230809
https://doi.org/10.1145/230798.230809
https://doi.org/10.1109/NGMAST.2014.66
https://doi.org/10.1109/NGMAST.2014.66
https://doi.org/10.1145/2668930.2688055
https://doi.org/10.1145/2668930.2688055


Journal of Reliable Intelligent Environments

4. PROBE-IT benchmarking framework (2017). http://www.probe-
it.eu. Accessed 15 Dec 2017

5. Medvedev A et al (2016) Data ingestion and storage performance
of IoT platforms: study of OpenIoT. In: Interoperability and open-
source solutions for the internet of things (InterOSS-IoT). https://
doi.org/10.1007/978-3-319-56877-5_9

6. SerranoM et al (2015) Defining the stack for service delivery mod-
els and interoperability in the internet of things: a practical case
with OpenIoT-VDK. IEEE J Select Areas Commun 33(4):676–
689. https://doi.org/10.1109/JSAC.2015.2393491

7. Caragliu A, Del Bo C, Nijkamp P (2011) Smart cities in Europe.
J Urban Technol 18(2):65–82. https://doi.org/10.1080/10630732.
2011.601117

8. Eugster PTH, Felber PA, Guerraoui R, Kermarrec A-M (2003) The
many faces of publish/subscribe. ACM Comput Surv 35(2):114–
131. https://doi.org/10.1145/857076.857078

9. João C, Carlos P, Ana A, Ricardo M (2017) Benchmarking IoT
middleware platforms. In: IEEE 18th international symposium on
aworld ofwireless,mobile andmultimedia networks (WoWMoM).
https://doi.org/10.1109/WoWMoM.2017.7974339

10. Fielding RT (2000) Architectural styles and the design of network-
based software architectures. PhD thesis

11. W3C. HTTP/1.1: Header Field Definitions (2017). https://www.
w3.org/Protocols/rfc2616/rfc2616-sec14.html. Accessed 15 Dec
2017

12. W3C. HTTP Status Code Definitions (2017). https://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html. Accessed 15 Dec 2017

13. Comer D (2000) Internetworking with TCP/IP, 4th edn. Prentice
Hall, Upper Saddle River, New Jersey, USA

14. Pereira C, Aguiar A (2014) Towards efficient mobile M2M com-
munications: survey and open challenges. Sensors 14(10):19582–
19608. https://doi.org/10.3390/s141019582

15. oneM2M (2016) oneM2M TS 0001 V2.10.0 (2016-08)—
oneM2M Technical specification; functional architecture. http://
www.onem2m.org/images/files/deliverables/Release2/TS-0001-
%20Functional_Architecture-V2_10_0.pdf. Accessed 15 Dec
2017

16. ETSI (2013) ETSI TS 102 690 V2.1.1 (2013-10)—Machine-to-
Machine communications (M2M); functional architecture. http://
www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_
60/ts_102690v020101p.pdf. Accessed 15 Dec 2017

17. Carlos P, Antonio P, Ana A, Pedro R, Fernando S, Jorge S (2016)
IoT interoperability for actuating applications through standardised
M2M communications. In: IEEE 17th international symposium on
aworld ofwireless,mobile andmultimedia networks (WoWMoM).
https://doi.org/10.1109/WoWMoM.2016.7523564

18. Alaya MB, Banouar Y, Monteil T, Chassot C, Drira Khalil (2014)
OM2M: extensible ETSI-compliant M2M service platform with
self-configuration capability. Proc Comput Sci 32(1):1079–1086.
https://doi.org/10.1016/j.procs.2014.05.536

123

http://www.probe-it.eu
http://www.probe-it.eu
https://doi.org/10.1007/978-3-319-56877-5_9
https://doi.org/10.1007/978-3-319-56877-5_9
https://doi.org/10.1109/JSAC.2015.2393491
https://doi.org/10.1080/10630732.2011.601117
https://doi.org/10.1080/10630732.2011.601117
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/WoWMoM.2017.7974339
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://doi.org/10.3390/s141019582
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
https://doi.org/10.1109/WoWMoM.2016.7523564
https://doi.org/10.1016/j.procs.2014.05.536

	Benchmarking Pub/Sub IoT middleware platforms for smart services
	Abstract
	1 Introduction
	2 Benchmarking IoT middleware
	2.1 Qualitative dimensions
	2.2 Quantitative dimensions

	3 IoT middleware platforms
	3.1 FIWARE
	3.2 OneM2M/ETSI M2M

	4 Qualitative analysis
	4.1 Communication model
	4.2 IoT-A requirements
	4.3 Viability and limitations
	4.4 Documentation and support

	5 Quantitative analysis—in the wild
	5.1 Setup
	5.2 Methodology
	5.3 Measurement results
	5.3.1 Parallel publication
	5.3.2 Sequential publication


	6 Quantitative analysis—controlled environment
	6.1 Setup
	6.2 Methodology
	6.3 Measurement results
	6.3.1 Publish and subscribe times
	6.3.2 Goodput and publish subscribe sizes
	6.3.3 FIWARE and the database


	7 Pitfalls and recommendations
	8 Conclusion
	Acknowledgements
	References




