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Abstract Open set recognition is a classification-like task. It is accomplished not only by the
identification of observations which belong to targeted classes (i.e., the classes among those
represented in the training sample which should be later recognized) but also by the rejection
of inputs from other classes in the problem domain. The need for proper handling of elements
of classes beyond those of interest is frequently ignored, even in works found in the literature.
This leads to the improper development of learning systems, which may obtain misleading
results when evaluated in their test beds, consequently failing to keep the performance level
while facing some real challenge. The adaptation of a classifier for open set recognition is not
always possible: the probabilistic premisesmost of them are built upon are not valid in a open-
set setting. Still, this paper details how this was realized for WiSARD a weightless artificial
neural network model. Such achievement was based on an elaborate distance-like computa-
tion this model provides and the definition of rejection thresholds during training. The pro-

Editors: Thomas Gärtner, Mirco Nanni, Andrea Passerini, and Celine Robardet.

Douglas O. Cardoso thanks CAPES (process 99999.005992/2014-01) and CNPq for financial support. João
Gama thanks the support of the European Commission through the project MAESTRA (Grant Number
ICT-750 2013-612944). Felipe M. G. França thanks the support of FAPERJ, FINEP and INOVAX.

B Douglas O. Cardoso
douglas.cardoso@cefet-rj.br
http://docardoso.github.io

João Gama
jgama@fep.up.pt
http://www.liaad.up.pt/area/jgama/

Felipe M. G. França
felipe@cos.ufrj.br
http://www.cos.ufrj.br/∼felipe

1 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, GCOMPET, Petrópolis, RJ,
Brazil

2 Universidade do Porto, LIAAD-INESC TEC, Oporto, Portugal

3 Universidade Federal do Rio de Janeiro, PESC-COPPE, Rio de Janeiro, RJ, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5646-4&domain=pdf
http://orcid.org/0000-0002-1932-334X
http://orcid.org/0000-0003-3357-1195
http://orcid.org/0000-0002-8980-6208


1548 Mach Learn (2017) 106:1547–1567

posedmethodologywas tested through a collection of experiments, with distinct backgrounds
and goals. The results obtained confirm the usefulness of this tool for open set recognition.

Keywords Open set recognition · Classification · Reject option · Anomaly detection ·
WiSARD

1 Introduction

Classification is an activity which models numerous everyday situations. The fundamental
classification problem regards two classes, and assumes the prior availability of a data sample
which reflects the characteristics of the population under consideration. Its most natural
variant ismulti-class classification, inwhich thenumber of classes is greater than two.Another
popular related task is the identification of elements of a single, well-known class, what is
called one-class classification (Khan and Madden 2009), or anomaly detection. As it can be
perceived, all these alternatives differ by the number of classes to be modeled. A third task
based on classification is open set recognition (Scheirer et al. 2013). For its accomplishment,
observations of some classes should be recognized accordingly while inputs which do not
belong to any of these classes should be rejected. In this context, to reject a data point means
to consider it unrelated to all classes learned from the training sample.

Hypothetically speaking, using a classifier for open set recognition would require to make
it capable of identifying extraneous data. Discriminative classifiers, which work based on the
conditional probability P(y|x), can only provide the distance between a given observation
x and the decision margin defined during training. This information is somewhat poor for
the purpose of rejection. Generative classifiers seem to be naturally more appropriate for this
matter: the joint probability P(x, y) they model could be readily used evaluate the pertinence
of x to y. However, the probabilistic foundation of thesemodels does not comprise the reduced
notion of the prior probabilities of the classes, a inherent characteristic of open set tasks.

AWilkes, StonhamandAleksanderRecognitionDevice (WiSARD) classifier (Aleksander
et al. 1984) is composed by a collection of discriminators, which are used to evaluate how
well an observation fits the classes they represent. Despite the name of such structures (dis-
criminators), WiSARD exhibits some generative capabilities: for example, it is possible to
obtain prototypes of the known classes through a procedure called DRASiW (Grieco et al.
2010), a reference to the reversal of the ordinary system operation. Producing such prototypes
is possible thanks to how learning is realized by this model, explicitly collecting pieces of
information from training data for later use. Such generative trait of WiSARD motivated the
analysis of its use for open set recognition. After some exploratory results (Cardoso et al.
2015), now a fully developed methodology is detailed here.

The remainder of this paper is organized as follows: Sect. 2 presents the theoretical basis
used for the development of this work; Sect. 3 explains the computation of rejection thresh-
olds; Sect. 4 presents experiments for practical evaluation of the proposed methodology; at
last, some concluding remarks are provided in Sect. 5.

2 Research background

2.1 Open set recognition

Classification requires that all classes in the problem domain are well-represented in the
training sample. Such condition is called the closed set assumption. As the name implies,
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Table 1 Differences between open set recognition and related problems

Task Goal Training data Predictions

Classification Discrimination
between classes

Abundant data of all
classes

Label of a known
class

Anomaly detection Recall of abnormal
data

Abundant normal
data; few or none
outliers

Outlier: yes or no

Open set recognition Identification of
data from targeted
classes

Abundant targeted
data; few or none
non-targeted

Label of a targeted
class or ‘unknown’

this is not necessary for open set recognition: beyond known classes, there could be an
even larger collection of unknown classes whose observations should be identified as so. A
fundamental difference between classification and recognition tasks is in the set of possible
outcomes of inferences: for regular classification, the best guess for the true class of an input
observation is always provided; for recognition, if none of the known classes appears to be the
true class, the response is to consider the observation foreign to all known classes. The action
of ruling an observation as extraneous, which occurs in detection and recognition tasks, is
referred to as rejection. Table 1 summarizes the differences between open set recognition
and its closest relatives.

Unfortunately, a great number of works which ignore the necessity of rejection can be
found in the literature. These works proposed solutions to problems which are mistaken as
regular classification tasks, although dealing with data from non-targeted classes is not only
hypothetically possible but expected in practice. This could lead to poor results when one of
these solutions is employed out of its test bed. Such questionable approaches can be found in
various contexts: fault detection (Mirowski and LeCun 2012) and human activity recognition
(Anguita et al. 2013) are some examples.

As a simple and clear-cut description, open set recognition can be seen as an automated
learning task in which:

– any data point x ∈ R
n is related to a single class, or label, y = f (x) ∈ N;

– a training set, i.e., a collection of data points X = {xi } and respective labels Y = {yi }, is
available a priori;

– if f (xi ) is a targeted class, then yi = f (xi ), else yi = −1 (i.e., ‘unknown’);
– ŷ = f̂ (x) denotes a prediction of the true class of x, based on training data;
– as a task goal, if f (x) is targeted, f̂ (x) = f (x), else f̂ (x) = −1;
– the possibility of predicting ŷ = −1 is referred to as reject option, an alternative to

regular class prediction;
– elements of non-targeted classes in { f (x) : x ∈ X} as well as those of classes not

represented in the training sample should be rejected;
– the use of reject option should be adjusted, as part of the learning process.

An interesting aspect of a task which requires rejection is how important this action is for
its accomplishment. This comes from the fact that for different problems, the amount of data
which should be rejected may differ. For example, rejection is less useful for the recognition
of chickens and ducks among farm animals than among birds in general, as the last group
is broader than the first. From this intuition, the openness of a given problem is an estimate
of the indispensability of rejection for its proper solution. Scheirer et al. (2013) defined this
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measure as shown in Eq. (1), using three quantities: Ce, the number of all existing classes,
which could have to be handled while performing predictions;Ct , the number of classes with
observations in the training sample; and Cr , the number of targeted classes. The following
relation holds: Cr ≤ Ct ≤ Ce.

Openness = 1 −
√

2Ct

Cr + Ce
. (1)

Open set recognition requires learning not only the differences between targeted classes
but also what distinguishes data of these classes to extraneous data. This first requirement is
already covered by existing classifiers functioning. Therefore, the adaptation of these models
to this second requirement can be considered reasonable. A straightforward idea in this regard
is to attach to each class prediction some sort of confidence rate of such inference.

A margin classifier, as a multilayer perceptron or a support vector machine (SVM) works
by the definition of a function f : R

d → R, x �→ y which provides class predictions
ŷ = sgn( f (x)). For any x ∈ R

d , f (x) is nothing but the signed distance between x and a
decision margin. This naturally induces the idea of using this value to identify extraneous
elements: the farther x is from the margin, the stronger is the evidence that it does not belong
to the known classes. However, the distance to the margin of two hypothetical observations
can be the same, while their distance to train data is arbitrarily different. In the end, the
only information any margin classifier can provide is this observation-to-margin distance.
Consequently, a confidence rate to be used for rejection is hard to compute for a class
prediction realized by a classifier of this kind.

As a matter of fact, this limitation can be related to the kind of probabilistic model a
margin classifier is, trying to approximate argmaxy P(y|x)using the learneddecision function
f (x). Alternatively, generative classifiers estimate the joint probability P(x, y), from which
the conditional probability can be computed. Although it may seem acceptable to use the
probability P(x, y) as the desired confidence rate for the association of x to class y, this
is not true. The fact that prior probability of the classes is generally unknown in open set
problems disallows inference based on probabilistic principles as the Law of Total Probability
and Bayes’ theorem (Scheirer et al. 2014). Besides this, a good estimation of the probability
density targeting rejection would require a large, noise-free data set (Tax and Duin 2008),
richer in the informative aspect than a data set to be used just for classification.

There is a rich variety of works in the literature regarding classification with reject option
(Fischer et al. 2016; Herbei and Wegkamp 2006; Bartlett and Wegkamp 2008; Yuan and
Wegkamp 2010; Fumera and Roli 2002; Zhang and Metaxas 2006; Grandvalet et al. 2008).
Although related in some sense, this task should not be mistaken by open set recognition.
Indeed, both allow to reject an observation instead of classifying it. However, their difference
lies in the purpose of such action: for classification with reject option, such alternative action
targets avoid ruling an observation of one class as a member of another one; for open set
recognition, rejection is primarily intended to observations which do not belong to any known
class. Thus, their association to any class represents a wrong prediction, while rejection is the
only right decision. Therefore, methods and techniques for classification with reject option
should not be carelessly used for open set recognition.

There exist approaches for open set recognition in the literature. Many of these are based
on discriminative principles: rejection-adapted support vector classifiers (Scheirer et al. 2013,
2014; Jain et al. 2014) and ensembles of one-class classifiers based on support vectors (Chen
et al. 2009; Hanczar and Sebag 2014; Homenda et al. 2014) are possibly the most common
descriptions of methods recently proposed for this task. This can be considered a natural
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consequence of the popularity of these techniques, previously used in huge variety of closed
set tasks. However, for open set recognition, a solution with a generative background could
fit in more naturally thanks to its embedded confidence estimation. That is, the adaptation
of a solution of this kind looks less painful than the same for a discriminative solution.
A promising alternative is the development of a distance-based (Tax and Duin 2008) or
prototype-based (Fischer et al. 2015) method. Such solution would have some capabilities
similar to generative methods, while avoiding the probabilistic premises which are not valid
in open set tasks.

2.2 Weightless artificial neural networks and WiSARD

Mostmainstreamartificial neural network (ANN)models (McCulloch andPitts 1943) accom-
plish learning modifying weights associated to edges which interconnect network nodes.
Weightless ANNs (Aleksander et al. 2009) are memory-based alternatives to weights-based
ones. All links of these networks have no weight, acting as the simplest communication
channels, exercising no effect on data traffic. Therefore, their nodes are responsible for the
learning capability these networks exhibit. These nodes operate as memory units, keeping
small portions of information. Such parts are combined when a query regarding the knowl-
edge the system possess needs to be answered. These information pieces are the outcome of
mapping the data used as knowledge source.

The biological inspiration of these nodes is the influence of dendritic trees on neuron
functioning. In the first abstraction described, such trees were modeled as a weighted edges,
which multiply the neuron inputs before the application of the activation function on their
summation. Although practical, this is a rough simplification of how these trees operate. As a
matter of fact, the input signals of biological neurons, which can be of two types (excitatory
or inhibitory), are combined by the dendritic tree before reaching the neuron soma, where
they prompt the generation of a new signal. This action can be naturally compared to the
definition of a boolean key used to access a index of boolean values. In fact, this is how the
most basic neurons of weightless ANN models work.

The WiSARD (Aleksander et al. 1984) is a member of the family of weightless ANN
models. Such model was originally designed for classification. To realize a class predic-
tion, it provides for each class a value in the interval [0, 1]. The value concerning a class
represents how well the provided observation matches the acquired knowledge regarding
that class. The values which compose an answer given by WiSARD are computed from
structures called discriminators. Each discriminator is responsible for storing the knowledge
regarding a class, as well as assessing the matching between the class it represents and any
observation whose class has to be predicted. Because its functioning comes down to explic-
itly managing information divided into tuples of bits, this model is also known as n-tuple
classifier.

How a discriminator learns about its respective class is described in Algorithm 1. In
a sentence, it records in its nodes the values resulting from mapping the observations in
the training sample. Mind some notation introduced next. The discriminator of class ẏ is
represented by Δẏ . The j th node of Δẏ is represented by Δẏ, j . The number of nodes which
compose each discriminator is represented by δ, a model parameter. Vector addressing(x) =
(a1 a2 . . . aδ) has δ entries, and its j th entry addressing j (x) = a j is a binary string with β

bits. At last, β is also a model parameter.
After training, a WiSARD instance can rate the matching between any known class ẏ and

an observation x as shown in Eq. (2a). Consider that X ẏ denotes the subset of observations
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1: for all Δẏ, j , the network nodes do
2: Δẏ, j ← ∅ � Initially, nodes are empty sets

3: for all pairs (xi , yi ), the training sample do
4: Let addressing(xi ) = (a1 a2 . . . aδ) be a δ-dimensional vector mapped from xi
5: for all addresses a j in addressing(xi ) do
6: Δyi , j ← Δyi , j ∪ {a j }

Algorithm 1: A description of WiSARD training procedure

(a) (b)

Fig. 1 An illustration of an addressing procedure, considering: n = 6, γ = 10, δ = 12, β = 5 and x =
(0.64, 0.27, 0.24, 0.76, 0.46, 0.22) ∈ [0, 1]n . a Binary matrix resulting from the application of Eq. (3a) on
x. Each row of b is an address, to be used as a RAM node key during WiSARD training or its matching
computation. a e(x). b m ◦ e(x)

in the training set X which belong to class ẏ. At last, classification happens according to
Eq. (2b).

matching(x, X ẏ) = 1

δ

∑
j

[
addressing j (x) ∈ Δẏ, j

] ;1 (2a)

ŷ = argmax ẏ matching(x, X ẏ). (2b)

Mathematically,WiSARD addressing procedure can be described as a composite function
m ◦ e : R

n → {0, 1}δ×β , such that: e : R
n → {0, 1}n×γ is any encoding function (Kolcz

and Allinson 1994; Linneberg and Jorgensen 1999) which provides binary representations
of the observations; and m : {0, 1}n×γ → {0, 1}δ×β is a random mapping defined prior
to training, described as A �→ B, Bi, j = Ai ′, j ′ , for arbitrary i, j, i ′, j ′. Variable γ , which
controls encoding resolution, is another model parameter. If data is originally binary, an
identity-like function can be used for encoding: that is the case for black-and-white images,
the kind of data for which WiSARD was originally developed. Otherwise, for example, if all
data features are scaled to interval [0, 1], the zero-padded-unary encoding function, Eq. (3a),
can be used. Still in this regard, Fig. 1 illustrates an hypothetical addressing operation.

e(x) = (h(x0), h(x1), . . . , h(xn)) , (3a)

h(y) = ([�γ y
 ≥ 1
]
,
[�γ y
 ≥ 2

]
, . . . ,

[�γ y
 ≥ γ
])

.2 (3b)

1 Iverson bracket: [L] = 1 if the logical expression L is true; otherwise, [L] = 0.
2 �x
 represents the nearest integer of real number x .
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As previously stated, in Sect. 2.1, open set recognition implies working with significantly
poorer prior knowledge compared to regular classification. The same can be said about the
variant of such task in which rejection is allowed, but the probabilistic premises of the task
remain unaltered (Scheirer et al. 2014). This motivates using WiSARD in this condition, as
it does not rely on an estimation or assumptions regarding data distribution, what opposes
various classifiers. Instead, it works rating how well an observation to be classified fits to
stored knowledge based on counting corresponding features. One of the goals of this research
was to verify the utility of such fitting level for rejection, despite the apparent simplicity of
its calculation.

From a certain perspective, a discriminator works as a complex “distance” meter. That is,
during training it stores numerous binary features extracted from observations of the class
it represents. Then, the proximity between an observation and the knowledge maintained
by the discriminator is measured according to the number of binary features extracted from
this observation which match those features previously stored. Still in this regard, model
parameters δ and β control the granularity of such measure. Such interpretation of WiSARD
matching is alignedwith previously established ideas about distance-based rejection (Tax and
Duin 2008). However, its characterization in this regard is important to confirm the validity
of such point of view for the intended application.

Additionally, WiSARD quasi-generative trait also inspired the examination of its func-
tioning in an open-set context. For this purpose, an alternative setup of this model was
conceived. In such setup, instead of simply storing features obtained during training, the
absolute frequency of each feature would be computed. These counts would be used for the
definition of prototypes of the modeled classes (Grieco et al. 2010), similarly to a generative
model. The embedded rejection capability of generative classifiers and the previous use of
prototype-based methods in this regard (Fischer et al. 2015) complete this idea.

Having in mind the aforementioned characterization of WiSARD matching computation,
Figs. 2, 3 and 4 depict a comparison of it to some well-known data analysis tools. This
comparison concerns proximity assessment based on toy data samples. This aims to provide
some intuitive notion of how WiSARD differs from alternatives with some similar capabili-
ties. Each test case follows the same idea: given a base data sample of 100 two-dimensional
observations and a delimited area in the space, estimate the distance between each point in
this area and the sample. The measurements were scaled in order to indicate the proximity to
the sample, as values from 0 to 1, the farthest to closest, respectively. Using these proximity
rates, a contour plot was drawn to highlight subareas in which the assessed proximity is
similar. A dotted line was used to delimit where proximity rate is above zero.

3 Computation of rejection thresholds

The starting point of the proposed development is the view of matching computation as
an observation-to-data proximity meter. From this, it is possible to move on to the next
step in the conception of a rejection-capable WiSARD. As originally defined, classification
comes down to the identification of the best matching class, based on the knowledge kept
by its respective discriminator. Therefore, the matching rates of the classes were used just to
separate each other in the feature space. Now, considering the general proximity information
these measurements provide, it is acknowledged that their use can be extended, for example,
to the identification of extraneous data.
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Fig. 2 The ‘gaussian blob’ toy example. The most evident difference between WiSARD matching and its
alternatives is the irregularity of the provided contour levels. This can be related toWiSARD lower granularity
compared to its rivals. However, WiSARD best reflects data idiosyncrasies, thanks to its distinct feature
matching principle. Such mechanism is inherently discontinuous, contrasting with the smoothness of other
methods

Fig. 3 The ‘two circles’ toy example. Again, WiSARD roughness is clear, but also its overall proper data
representation, clearly superior to those of Mahalanobis and Naive Bayes options. An adequate approach for
this test should have an improved sense of locality and enough precision to separate both circles, what was
successfully accomplished byWiSARD. The nearest neighborsmethod concentratedmost of its measurements
in the interval [0.6, 1.0], while measurements of the one-class SVM are mostly under 0.2, while the range
[0.2, 0.8] is underused. WiSARD seems to distribute the measurements more evenly, providing an alternative,
possibly more meaningful, proximity assessment
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Fig. 4 The ‘two moons’ toy example. Assuming the independence between input attributes, the Naive Bayes
method is unable to measure proximity to data. Mahalanobis distance (and presumably any method based
on global average distance or centroid) lacks locality, what leads to poor results when handling complex,
detail-rich data sets, and multi-modal classes. The nearest neighbors method provides adequate results, but
is unable to highlight minutiae of the sample. The one-class SVM yields smooth contours and great deal of
detail, but concentrates its measurements on the extremes of the scale, either close to 0 or 1. WiSARD’s most
patent characteristics are its meaningful proximity assessment and precise reproduction of data peculiarities,
but also its irregularity. This way, this test confirms what the previous ones show

The most straightforward mechanism to label possible foreign examples is to consider as
so any observation x for which matching(x, X ŷ) < t . It could be considered that t ∈ [0, 1]
is an additional parameter which controls how prone to rejection is the system. This would
work if the distributions of matching scores of all classes were the same. However, these
distributions generally differ, according to characteristics of training data respective to each
class, as sample size, density and homogeneity. Thus, a scheme using individual thresholds
tẏ for each targeted class ẏ is preferred, allowing to handle unbalanced and noisy data sets
properly (Fumera et al. 2000). Equation (4) is the rejection-capable alternative to Eq. (2b)
which represents such scheme. The ultimate target is to learn these thresholds from data,
making their definition as flexible as possible.

ŷ =
{
y′ if y′ = argmax ẏ matching(x, X ẏ) ∧ matching(x, Xy′) ≥ ty′

−1 otherwise
(4)

The multiple-threshold rejection scheme proposed here was developed in two steps. First,
it was analyzed how to efficiently infer some knowledge about the matching of a class and
its own elements, according to available training data. From such analysis, it was derived
one rejection mechanismwhich resembles the aforementioned naive alternative, but provides
thresholds adapted to each class. The next step comes down to identifying, for each class,
the threshold which maximizes a measure of classification effectiveness defined according to
a model parameter. These optimal thresholds, whose definition is based on the information
obtained in the first step, are employed by a second rejection method also introduced here.
Sections 3.1 and 3.2 are dedicated to each of these parts.
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3.1 Manual thresholding

Consider, for a certain class ẏ and some training data, that matching(x, X ẏ) is a random vari-
able, since it depends on x, another random variable. Suppose that although the distribution
of matching(x, X ẏ) is not fully determined, the minimum value this variable can assume
for observations whose true class is ẏ, {x : f (x) = ẏ}, is known. The intuition behind the
rejection method presented next is to use such value for thresholding:

tẏ = min
x: f (x)=ẏ

matching(x, X ẏ).

In practice, this minimum is indeterminable: the set {x : f (x) = ẏ} is impossible to realize
without complete knowledge of data from class ẏ. However, it could be estimated from the
training sample:

tẏ = min
x∈X ẏ

matching(x, X ẏ\{x}). (5)

Naively, this calculation requires performing regularWiSARD training |X ẏ | times, as a leave-
one-out rotation of the data sample. Thismeans aO(|X ẏ |2δβ) time complexity. This quadratic
relation to the size of the data set would reduce WiSARD usual applicability for larger data
sets. Therefore, it would be interesting to avoid its establishment. This was possible through
the exploration of some properties of this model.

In order to reduce the computational cost of tẏ calculation, it is proposed a modification
of WiSARD training procedure to embed such calculation, avoiding to perform it separately.
Equation (5) hints to compute the matching of each observation in X ẏ , one at a time. As
a matter of fact, this can be realized collectively, keeping track of addresses obtained from
observations in X ẏ but not shared between them. This enables to compute Eq. (6a) efficiently,
and subsequently to provide a specialized redefinition of matching: Eq. (6b).

exclusive(x, X ẏ) = {i : �x′∈X ẏ\{x} addressingi (x) = addressingi (x
′)}; (6a)

matching(x, X ẏ\{x}) = 1 − 1

δ
|exclusive(x, X ẏ)|. (6b)

Algorithm 2 describes the modified training procedure ofWiSARD. In a comparison to its
original version (Algorithm 1), there are basically two changes. First, every time an address
is to be written, its ‘ownership’ status is updated (Sects. 3.1, 3.2). Second, after all addresses
are written, a loop over all exclusive addresses (i.e., those related to a single observation in
the training set) is used to compute incrementally |exclusive(xi , Xyi )| for all observations
(Sect. 10). The additional operations represent an increase of the computational cost of
WiSARD training, but its time complexity remains O(|X |δβ). That is as good as possible in
this case. After this procedure is concluded, EXCLUSIVEi = |exclusive(xi , Xyi )|.

Equation (6b) and, consequently, Eq. (5) can be easily calculated based on array EXCLU-
SIVE. This leads to a definition of thresholds strongly oriented to avoid mistaken rejections.
This way, no element of the training sample would be incorrectly ruled as extraneous if it had
not been considered during training. Such setting is useful, but in some situations mistaken
rejections may be preferred to wrong associations of extraneous data to targeted classes. For
example, to reject few observations of a targeted class in order to correctly identify a large
amount of outliers is generally interesting. Furthermore, training data may be contaminated
with incorrectly labeled observations, whose influence on threshold definition should be as
small as possible. Figure 5 contrasts these positions.

Thus, for a more flexible rejection criterion, Eq. (7) was used as an alternative to Eq. (5).
Pα denotes the α-th percentile of the considered values. Variable α ∈ (0, 100) is a model
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1: Let OWNER be an empty dictionary

2: for all pairs (xi , yi ), the train sample do

3: for all addresses a j in addressing(xi ) do

4: if a j /∈ Δyi , j then

5: Δyi , j ← Δyi , j ∪ {a j }
6: OWNERyi , j,a j ← i � Adding a new dictionary entry

7: else

8: Remove entry OWNERyi , j,a j � Address is not exclusive

9: Let EXCLUSIVE = 0|X | be an array of |X | zeros
10: for all 〈(yi , j, a j ), i〉, entries in OWNER do

11: EXCLUSIVEi ← EXCLUSIVEi + 1

Algorithm 2: WiSARD training procedure, modified to track exclusive addresses

Fig. 5 Two histograms depicting the distribution of matching rates for hypothetical data. The one with solid
contour regards data from targeted class, {matching(x, X ẏ\{x}) : x ∈ X ẏ}, while the other one regards the
remaining data, {matching(x, X ẏ) : x ∈ X\X ẏ}. The vertical lines represent threshold values, which would
lead to the rejection of observations to their left. Using Eq. (5), the 0.2 threshold would be chosen. This assures
that no x ∈ X ẏ would be considered extraneous to its class. However, the 0.6 threshold could be preferred
despite some bad rejections it would make, because of the much greater portion of observations extraneous to
ẏ it would rightfully reject

parameter. The definition of rejection thresholds based on percentiles, which are robust
statistics, is interesting in the light of the bias-variance trade-off. As an alternative approach,
a combination of mean and standard deviation (e.g., the three sigma rule) could be used here.
However, this could enhance the influence of noise and outliers on thresholds definition.

tẏ = Pα
x∈X ẏ

matching(x, X ẏ\{x}) (7)

The combination of Algorithm 2 and Eqs. (6b), (7) provides a rejection criterion based
on what can be inferred about a class from its own observations only. This is particularly
interesting for situations in which all training data concerns a single, targeted class, as in
various unary classification tasks. Even in this scenario it is still possible to use α to control
rejection tendency.
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3.2 Optimal thresholding

The manual thresholding scheme which was just described defines tẏ using no observation
besides those from X ẏ . However, there is no reason to avoid employing observations from
X\X ẏ to establish a rejection criterion if those are available. Moreover, to use data from
other classes looks reasonable considering that such data is extraneous to class ẏ and should
be rejected accordingly. In other words, to reject observations of the targeted classes which
would be otherwise misclassified is just another perspective of the same original goal.

Ideally, tẏ would be set so that

∀x matching(x, X ẏ) ≥ tẏ ⇐⇒ f (x) = ẏ. (8)

Such condition wherein the rejection threshold establishes a perfect dichotomy of the obser-
vations possibly related to class ẏ is generally infeasible. That is because it is quite common to
have some observations truly related to ẏ but with a low matching value, while the opposite
happens for some elements of other classes. Therefore, instead of looking for such unre-
alistic threshold, finding the best value for tẏ according to some measure of classification
effectiveness was the alternative used in this regard. This can be enunciated similarly to an
optimization problem:

maximize
tẏ

α′(LABELS, PREDICTIONS);
subject to LABELSi = [ f (xi ) = ẏ],

PREDICTIONSi = [matching(xi , X ẏ) ≥ tẏ].
(9)

Equation (9) is defined according to the binary classification task of ruling if observations
as xi are related to class ẏ or not. LABELS is an array which represents the ground truth of
such task. PREDICTIONS indicates the labels inferred according to matching computation
and a given tẏ . Here α′ represents the aforementioned measure of classification effectiveness.
Previously (Fumera et al. 2000) only accuracywas considered to guide thresholds adjustment.
However, any method to rate prediction quality can be employed for this: for example, F-
measure (Goutte and Gaussier 2005). This way, α′ would represent a model parameter which
plays the same role of parameter α introduced in the previous subsection. However, α′-based
thresholds computation uses training data classification [Eq. (8)], instead of relying just on
matching rates of these observations [Eq. (7)].

Still in the same regard, consider α ′̇
y(LABELS, PREDICTIONS) the objective function

of Eq. (9) with respect to class ẏ. A single objective function regarding the optimization
of all thresholds, respective to each known class, is described by Eq. (10). This way, all
observations in the training set can be used to define the rejection threshold of a class, instead
of its observations only (Fischer et al. 2016). Such scheme provided better results in the
performed experiments, what could be possibly related to the difference between open set
recognition and classification with rejection-option: the first requires a global notion of the
uncertainty with respect to ruling an observation as an element of a known class, while the
second is focused on minimizing the cost resulting from misclassifications.∑

ẏ

α ′̇
y(LABELS, PREDICTIONS) (10)

The idea here is to obtain a reasonable tẏ by solvingEq. (9) just for the training sample. That
is, each of the mentioned xi is an observation of X which would be classified with respect
to ẏ. Then, the search for the optimal value of tẏ can be limited to all matching(xi , X ẏ)

values. Again, Algorithm 2 is used for training in order to avoid performing explicitly the
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leave-one-out rotation of the data set. Subsequently, Algorithm 3 is carried out to tackle the
aforementioned optimization problem. At last, considering that number of targeted classes
is denoted by |Ẏ |, the time complexity of training becomes O(|X ||Ẏ |δβ). This related to the
fact that the loop starting at Sect. 3.2 of Algorithm 3, which dominates the computation of
tẏ , can be performed in O(|X |δβ) steps.

1: Let ẏ be the targeted class whose optimal threshold tẏ is to be computed

2: for all xi ∈ X do

3: LABELSi ← [ f (xi ) = ẏ]
4: for all t : ∃x∈X matching(x, X ẏ) = t do

5: for all xi ∈ X do

6: PREDICTIONSi ← [matching(xi , X ẏ) > t]
7: SCOREt ← α′(LABELS, PREDICTIONS)

8: tẏ ← argmaxt SCOREt

Algorithm 3: Threshold optimization procedure

As already mentioned, each class-related rejection threshold is defined according to the
best solution of a binary classification subtask. Such solution may vary according to which
measure α′ is picked to evaluate classification effectiveness. The choice of α′ should consider
that, for any of these subtasks, class ‘1’ is the targeted class, while class ‘0’ just gathers
misclassified observations (i.e., f (xi ) �= ẏ): comparing extreme scenarios, it is better to reject
no observation, as the original WiSARD does, than to reject them all, including elements of
the targeted classes.

Measures as accuracy are indifferent to distinct roles the classesmayhave,while others like
F-measure are calculated based on a positive (in other words, targeted) class. Consequently,
measures of the last kind should be preferred for this use. Still with respect to F-measure,
its parameter β can be used to control how prone to rejection is the system: if precision is
prioritized, by setting β < 1, there is a stronger rejective tendency; otherwise, if recall is
favored, rejections should occur less frequently. This is similar to setting the cost of a single
rejection, as commonly seen in the literature (Herbei andWegkamp 2006; Fischer et al. 2016).
The F1 score (i.e., β = 1), which considers precision and recall equally important, was the
default standard for threshold optimization used in this research. In this case, a mistaken
rejection is considered half as bad as a wrong classification.

4 Experimental evaluation

In this section a collection of learning tasks with open-set premises are presented. These
are accompanied by the results obtained when they were approached with rejection-capable
WiSARD-based systems which follow the ideas just detailed. Alternative approaches to
these tasks, some which can be found in the literature, are used to provide baseline results
for comparison. Through these experiments it can be noticed how harmful it is to tackle
recognition problems with regular classifiers, ignoring the existence of extraneous data.
Indeed, some data sets used here were, before this work, only considered for classification.
Therefore, the introduction of each data set is followed by an exposition of its open-set nature.
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Aiming to provide a rich description of each task, a measure of the coverage of all classes
by the training samples is indicated together with other relevant information. Class coverage,
proposed here as shown in Eq. (11), is a measure in the same spirit of openness. However, the
first can be seen as an improvement over the last one, considering the following reasons: by
definition, it is assured that coverage ∈ [0, 1]; and it is reasonable to relate a greater number
of targeted classes to a smaller need for rejection. This second point is consistent with the
fact that classes to be recognized are expected to be comprehensively detailed in the training
sample. This way, they help to portrait the task domain more precisely than available data
from other classes.

Coverage =
√
Cr + Ct

2Ce
. (11)

4.1 Closed-set versus open-set anomaly detection

The ‘DGA’ data set (Mirowski and LeCun 2012) regards power transformers in one of two
possible states: operating regularly, as desired, or in the imminence of failure. The challenge
here is to rule if a transformer is faulty or normal, according to the concentration of 7 gases
dissolved in its insulation oil. This is a small data set, composed of 50 ‘normal’ and 117
‘faulty’ observations. Originally this data set was used for classification, so that previously
reported results were obtained considering random train-test data splits.

However, it makes sense to consider the existence of a single normal state, opposed to
various abnormal, faulty ones: power transformers can deviate from their standard functioning
in many ways. In practice, it is impossible to guarantee that all possible abnormal conditions
are known a priori. An accurate reproduction of the concrete task related to the DGA data
set should feature such incompleteness of the training sample. Since plain random partitions
of the data set do not ensure such condition, a suitable alternative to those was employed:
Algorithm 4 describes how train-test splits in the aforementioned mold were generated; in
short, instead of single faulty observations, clusters of them were split into the training and
test samples.

1: Let KMeans(X, n) = {C1, . . . ,Cn} be a partition of X in n clusters

2: function MakeSplitsDGA(data set X , s ∈ {1, . . . , 9})
3: SPLITS = ∅ � SPLITS is a set of train-test splits of X

4: C ← KMeans(Xfaulty, 10) � C is a partition of all faulty observations in clusters

5: Let SC = {C choose s} be the set of all s-combinations of clusters in C

6: for all SCi ∈ SC do � SCi is a collection of clusters of faulty observations

7: Tfaulty ← ∪ j SCi j � SCi j is the j th cluster in SCi

8: Let Tnormal be a random 80% excerpt of Xnormal

9: T ← Tnormal ∪ Tfaulty
10: SPLITS ← SPLITS ∪ {(T, X\T )}
11: return SPLITS

Algorithm 4: Generator of train-test splits of the DGA data set

The class coverage of the sample partitions provided by function MAKESPLITSDGA
varies according to its parameter s: if each cluster of faulty observations Ci is considered a
class, a lower s means a smaller number of classes in each training set T . Consequently, it
also means more classes in its testing counterpart X\T . To assess the influence of coverage
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Table 2 Characteristics of tasks based on the DGA data set

Characteristics Tasks

s = 2 s = 5 s = 8 Fivefold CV

# Train-test splits 4500 25,200 4500 5000

Targeted classes (Cr ) 1 1 1 2

Known classes (Ct ) 3 6 9 2

Existing classes (Ce) 11 11 11 2

Coverage (%) 43 56 64 100

Fig. 6 Results for the tasks based on the DGA data set

in this task, different values of s were used: 2, 5 and 8. For each of these three values,
MAKESPLITSDGA was called 100 times, generating a mass of partitions of the original
data set. Additionally, 5000 splits from random fivefold cross validation settings were also
used, for the sake of comparison to a closed-set classification scenario. The reported results
regard each train-test split in the 4 groups just described. Table 2 summarizes the information
about these groups.

Two tWiSARD (‘t’ stands for threshold) versions were tested: one using the manual
thresholding scheme, with α = 5; and another whose thresholds were optimized according
to α′ = F1 score; other parameters of both were set as β = δ = γ = 100. It is also reported
the performance of the following alternatives, with respective parameter setups: a 5 nearest
neighbors classifier; a Gaussian Naive Bayes classifier; a SVM and a 1-vs-all PI SVM, both
with C = γ = 10; a one-class SVM, with ν = 0.005 and γ = 0.025; a WiSARD with
β = γ = 100 and δ = 10. These settings were obtained in a best-effort search and provided
optimal results. PI SVM (Jain et al. 2014) represents the state of art regarding open set
recognition.

Figure 6 illustrates the results of this first experiment. It shows four bar groups, related
to each task based on the DGA data set. From left to right, the tasks are ordered from the
lowest to the highest coverage. This way, it is possible to observe some patterns related to
such variation. For example, the overall performance grows with coverage, what is expected
using richer training data. All regular classifiers (the first four alternatives) obey this trade-
off. On the other hand, the one-class SVM, a rejection-oriented method, best performed in
the lowest coverage scenario. The three rejection-based methods stand out among the rest,
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producing top results regardless of the coverage level. This is an interesting evidence in favor
of the unrestricted use of methods for open set recognition, even when coverage could be
considered high, or for any classification-like task.

Statistically, both tWiSARD versions excel: according to Wilcoxon signed-rank tests
with a significance level of 0.01, they were superior to any other tested alternative in all
three open-set scenarios. However, in the fivefold CV setting, SVM, WiSARD and PI SVM
were, by a thin margin, the top performers. Despite this fact, it would be reasonable to
choose any of the two tWiSARD alternatives to be used for a recognition task based on
the DGA data set wherein the coverage level was unknown: on average, they produced the
best results of this experiment. At last, in three of the four tasks tWiSARD with α′ = F1
score performed as well or better than tWiSARD with α = 5 for most of the train-test
splits.

4.2 Open set recognition with multiple targeted classes

It was just shown how a two-class classification task may be better interpreted as an open
set recognition problem, with a single targeted class. This is also possible in scenarios with
more than two classes, what requires the discrimination between classes of interest as well
as the identification of data extraneous to all of them. These two goals are conflicting in
some way: observations which would be correctly classified can be mistaken as foreign data.
Therefore, it is necessary to find an equilibrium to avoid spoiling good class predictions while
still rejecting accurately. An interesting question in this regard is: can such balance be found
using data from the targeted classes only, without using extraneous data during training? This
was analyzed through the experiment described next.

For such purpose, the ‘UCI-HAR’ data set (Anguita et al. 2013) was employed. It is,
quoting its authors, “anActivityRecognition database, built from the recordings of 30 subjects
doing Activities of Daily Living (ADLs) while carrying a waist-mounted smartphone with
embedded inertial sensors”. Each observation is a collection of 561 statistics of the sensor
readings. However, in this work just a subset of 46 attributes was used: those related to the
mean of the readings. This data set is composed of over ten thousand elements, each of them
related to one of six activities (i.e., the classes): ‘Walking’, ‘Upstairs’, ‘Downstairs’, ‘Sitting’,
‘Standing’ and ‘Laying’.

As the DGA data set, the UCI-HAR data set was first used for classification. This way,
each of the six classes was represented in both training and test samples. However, in prac-
tice, activities beside those known a priori can be realized in an unprecedented way (Hu
et al. 2013), and they should be recognized as so. In order to mimic a realistic human
activity recognition task, in which not all possible activities are known and modelled, each
of the six classes was omitted at a time from training: the train-test splits of the data set
were defined by a total of 40 fivefold cross-validation runs; each of the 200 test sets was
processed six times, considering the same respective train sets, except for the class left
out. Thus, in each train-test round, Cr = Ct = 5, Ce = 6 and, consequently, coverage
≈91%.

The same group of methods compared in the anomaly detection experiments is employed
here, except for the one-class SVM, which can not handle multiple classes. These methods
are enumerated next, with respective parameter setups: a 5 nearest neighbors classifier; a
Gaussian Naive Bayes classifier; a WiSARD classifier; two tWiSARD versions, one with
α = 10 and another with α′ = F2.5 score; a SVM; and a 1-vs-all PI SVM, with P = 0.4;
Both SVM and PI SVM were set with C = 1000. WiSARD and both tWiSARD were set
with β = 50, δ = 200 and γ = 20.
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Fig. 7 Results for the tasks based on the UCI-HAR data set. Error bars were omitted because deviations
were negligible

The UCI-HAR data set features some class imbalance: 18.8% of the data is related to the
most frequent class, while 13.6% belongs to the least frequent one. Despite this difference, all
six classes can be considered equally important in the task domain. In order to avoid taking
this data set condition into account on the evaluation of the provided predictions, the Macro
F1 score (Sokolova and Lapalme 2009) was chosen as performance metric for this task. Such
choice is explained by the fact this metric is insensitive to class imbalance: the assignment
of elements to each class can be seen as a separate binary classification problem, with true
and false positives, as well as negatives; the Macro F1 score is the average of the F1 scores
of these sub-problems.

The results of the experiment with the UCI-HAR data set are portrayed in Fig. 7. Each
bar group is associated to one collection of train-test rounds in which a class was left
out of the training sample. On most cases, the rejection-capable methods had better per-
formances than their regular counterparts: both tWiSARD versions edged the WiSARD
classifier on 5 of the 6 tasks, while the same happened for PI SVM and the regular SVM
on the first 4 tasks. For all cases, except for that of class ‘Standing’, one of the last three
alternatives was the best performer. These can be seen as evidences which support to take
specific care of extraneous data in situations like the one represented by the UCI-HAR
data set. The superiority of the methods for open set recognition was verified in this set-
ting with relatively high coverage (91%). This performance difference could be expected
to increase when dealing with lower coverage, as shown in the test with the DGA data
set.

According toWilcoxon signed-rank tests with a significance level of 0.01, tWiSARDwith
α = 10 had the best results overall. This can be partially credited to its distinct performance
when the ‘Laying’ class was considered extraneous. The explanation for such outcome is the
following: when trying to reject elements of the ‘Laying’ class, which is the most dissimilar
of all, each individual rejection is more likely to be correct; this way, a more rejection-prone
criteria should perform better in this case. This is confirmed by Table 3: when rejecting the
‘Laying’ class, tWiSARD with α = 10 was the uncontested best alternative regarding not
only extraneous-data recall, which grows with rejection tendency, but also precision. This
table also shows that on average both tWiSARD versions were superior to PI SVM rejection-
wise. Still in this regard, PI SVMwas almost entirely ineffective to reject classes ‘Standing’
and ‘Laying’, what opposes tWiSARD performance.
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Table 3 Rejection performances for tasks based on the UCI-HAR data set

Omitted class Precision Recall

tWiSARD tWiSARD PI SVM tWiSARD tWiSARD PI SVM
α′ = F2.5 α = 10 α′ = F2.5 α = 10

Walking 0.029 0.185 0.368 0.004 0.111 0.107

Upstairs 0.464 0.459 0.700 0.153 0.479 0.404

Downstairs 0.661 0.518 0.342 0.406 0.672 0.114

Sitting 0.201 0.373 0.388 0.030 0.279 0.125

Standing 0.341 0.288 0.021 0.094 0.173 0.004

Laying 0.464 0.706 0.000 0.062 0.999 0.000

Average 0.360 0.421 0.303 0.125 0.452 0.126

4.3 Open set recognition with very low coverage

The concept of coverage was defined to provide a quantitative degree of complexity of open-
set problems. It looks reasonable to rate this according to the number of classes represented
in the training sample compared to those to be handled during the effective use of the consoli-
dated knowledge. The DGA and UCI-HAR data sets, originally considered for classification,
were used to define tasks with coverage under 43 and 91% respectively. This last experiment
is an interesting benchmark, designed specifically for open set recognition, with coverage
under 20%.

The ‘LBP88’ data set3 is composed by elements from two image sets, Caltech 256 (Griffin
et al. 2007) and ImageNet (Deng et al. 2009). The firstwas used to provide train data, while the
test sets were composed of positive observations of the first source and negative ones from the
last. This cross-data set design requires the proper rejection of observations from classes not
targeted, independently of its origin. In each of 5 rounds, 88 classes were randomly selected.
Each of these 88 classes was used once as the one to be recognized, being represented in
the training and test samples by 70 and 30 observations, respectively. The remainder of the
training sets were 70 (5×14) observations of 5 classes randomly chosen from the 87 negative
classes. In turn, the test sets also had 5 observations from each of the 87 classes not targeted.
Adding up, the training and test samples had 140 and 465 observations, respectively. Each
observation was described by 59 attributes.

The open-set nature of the LBP88 data set is quite similar to that of the DGA data set.
That is, both are used to define tasks in which one class is well-known a priori and should
base the decision criterion, while scarce information from other classes can be used in order
to refine such criterion. From another point of view, their respective tasks differ with respect
to the desired goal and, consequently, the performance evaluation: for anomaly detection,
implied by the DGA data set, the goal is to identify elements extraneous to the base class as
abundantly and precisely as possible; for the LBP88 data set, the goal is inverted in a certain
way, as the identification of elements of the base class is desired.

The samemethods compared through the tasks defined using theDGAdata setwere reused
for the LBP88 data set, but with different parameters: a WiSARD classifier; two tWiSARD
varieties, one with α = 50 and another with α′ = F0.4 score; a 5 nearest neighbors classifier;
a Gaussian Naive Bayes classifier; a SVM, a one-class SVM and a 1-vs-all PI SVM, all with

3 http://www.metarecognition.com/openset/ (accessed 2016/03/06), LBP-like Features, Open Universe of 88
Classes.
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Fig. 8 Results for the experiment on the LBP88 data set

γ = 35. WiSARD and both tWiSARD were set with β = 100, δ = 590 and γ = 1000.
SVM and its variants were set with γ = 35. PI SVM was also set with P = 0.5.

Figure 8 depicts the results for this experiment, described by three different performance
measures: recall, precision and F1 score. The last measure, which is the harmonicmean of the
first two, is the quality standard which should be maximized. However, these three distinct
points of view help to highlight some interesting details. Regular classifiers (the first four
alternatives) exhibit a higher recall level but also a lower precision level than the rejection-
capable methods (the last four alternatives). This happens because regular classifiers have no
rejection option. Therefore, they can not mistakenly reject an observation which would be
correctly classified despite its dissimilarity to training data. However, this has an expected
negative effect on precision level. Consequently, the first quartet had theworse overall results,
represented by the F1 score. Among this last quartet, PI SVM had the poorest performance.
That is, despite achieving a good recall level, the effect of its relatively low precision on F1
score is noticeable. This can be compared to tWiSARD with α′ = F0.4, which had the best
recall level inside the group just mentioned, but also top results regarding precision and F1
score.

Considering Wilcoxon signed-rank tests with a significance level of 0.01 over the F1
scores obtained by the tested methods, the one-class SVM was the single top performer. The
proposed tWiSARD with α = 50 and with α′ = F0.4 score had the second and third best
results, respectively. However, prioritizing recall over precision, tWiSARD with α′ = F0.4
score could be considered the best alternative. Still concerning overall performance, it can be
noticed that the two best methods (one-class SVM and tWiSARD with α = 50) work using
data from the targeted class only. This can be seen as an evidence that available information
about extraneous classes may be misleading and produce negative effects on performance. In
other words, depending on characteristics of the extraneous elements as variety, distribution
and others, it may be wiser, safer, to avoid drawing conclusions based on scarce data about
those.

5 Conclusion

Classification will always be one of the most difficult, ubiquitous and important machine
learning tasks. Open set recognition is a classification-derived task, in which not all classes
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are represented in the training set. After training, besides regular classification, examples of
the classes not represented in the training set should be properly rejected.

Because of its proximity to classification, some approaches to open set recognition found in
the literaturewere built on top of regular classifiers.While this is not wrong, it requires special
attention to the differences between these tasks, which should guide the adaptation of those
previously existing methods. The method introduced here, tWiSARD, was developed with
such requisite inmind, based on the recognition-friendlyWiSARDclassifier. Such conception
boosts the use of a well-established learning technique in situations where it is necessary to
define more strictly the boundaries inside which it is possible to make conscious decisions.

The results of the experiments performed are insightful. They highlight some interesting
characteristics of the data which did not emerge during the exclusive use of the classifiers
to which the proposed approach was compared. An example of such fact is the variation of
the performance of the tested methods in the proposed tasks of anomaly detection, compared
to regular k-fold cross-validation. The distinct behavior of regular-classifiers compared to
rejection-capable methods in the test scenario featuring low coverage data is another example
in this sense.

In general, the proposedmethodologywas not only effective combining classificationwith
precise identification of extraneous data. It also provided singular points of viewof the context
modeled from data. Even the comparison of the performances of its manual-thresholding and
optimal-thresholding versions was informative: their behavior can be notably different, as
evidenced in the multi-class recognition tests, for example. All these facts can be regarded
as evidences in favor of the applicability of tWiSARD. Moreover, its superiority compared
to other open-set- or rejection-oriented methods was statistically assessed in all three test
scenarios considered. This credits such approach as a safe and versatile solution for open set
recognition.

Acknowledgements Douglas O. Cardoso thanks Daniel Alves, Diego Souza and Kleber de Aguiar for the
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