
A Portable and Efficient Implementation

of Coinductive Logic Programming

Paulo Moura

CRACS, INESC TEC (formerly INESC Porto), Portugal
pmoura@inescporto.pt

Abstract. We describe the portable and efficient implementation of
coinductive logic programming found in Logtalk, discussing its features
and limitations. As Logtalk uses as a back-end compiler a compatible
Prolog system, we also discuss the status of key Prolog features for an
efficient and usable implementation of coinduction.

Keywords: logic programming, coinduction, objects, implementation,
portability.

1 Introduction

Coinductive logic programming complements classical inductive logic program-
ming by allowing writing of programs that reason about infinite rational entities
such as cyclic terms and ω-automata. Areas of application include modeling and
verification of real-time systems [1,2] and lazy evaluation [3].

This paper describes the current implementation of coinductive logic program-
ming found in Logtalk, discussing its features and limitations.1 As Logtalk uses
as a back-end compiler a compatible Prolog system, we also discuss the status
of key Prolog features for an efficient and usable implementation of coinduction.
We assume that the reader is familiar with the theoretical work in coinduc-
tion (see e.g. [4,5]). Therefore, this paper is written from a practical, technical
point-of-view.

The main motivation for implementing support for coinductive logic program-
ming in Logtalk is to make it the preferred tool for solving problems that require
coinductive reasoning. This is an ambitious and long term goal, but we believe
that the core features of Logtalk, including its code encapsulation and code
reuse mechanisms, provide a strong framework for solving complex problems
where coinduction is one of the solution components. In addition, the inher-
ent requirements on back-end Prolog compiler native features, for example, on
support for rational terms, tabling, and constraints, hopefully help drive future
enhancements to Prolog implementations that will ultimately benefit the logic
programming community at large.

1 The first Logtalk implementation of coinductive logic programming was introduced
in version 2.41.0, released on September 15, 2010.

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 77–92, 2013.
© Springer-Verlag Berlin Heidelberg 2013

78 P. Moura

The remainder of the paper is organized as follows. Section 2 provides an
overview of Logtalk. Section 3 describes the coinductive predicate directives
provided by Logtalk. Section 4 describes the hook predicates that support user-
customization of the coinductive proof algorithm. Section 5 describes in detail
our implementation of coinduction, discussing its features and limitations. Sec-
tion 6 presents some examples of coinductive predicates. Section 7 shows Logtalk
built-in support for debugging coinductive predicates. Section 8 compares our
implementation with related work. Section 9 concludes and outlines future work.

2 Logtalk in a Nutshell

Logtalk [6,7] is an open source object-oriented logic programming language that
can use most Prolog implementations as back-end compilers. Logtalk focuses
on code encapsulation and code reuse features, providing a versatile alterna-
tive to Prolog module systems. As a multi-paradigm language, Logtalk supports
classes, prototypes, parametric objects, categories (fine-grained units of code
reuse), separation between interface and implementation using protocols, event-
driven programming, and high-level multi-threading programming. Logtalk uses
object as a generic term: an object can play the role of, e.g., an instance, a class,
or a prototype. The relations between objects, protocols, and categories define
different patterns of code reuse. Logtalk entities can be static, defined in source
files, or dynamic, created at runtime. Computations are performed by sending
messages (corresponding to predicates) to objects. Logtalk enforces predicate
encapsulation (predicates can be declared public, protected, or private) and fea-
tures a clear distinction between predicate declaration and predicate definition
(using a closed-world assumption when a predicate is declared but not defined).
Logtalk is developed with a strong emphasis on portability and reliability. It is
used worldwide in academic and commercial projects. Its distribution includes
extensive documentation, numerous examples, a library, and basic development
tools (for debugging, unit testing, and documenting).

3 Coinductive Predicate Directives

Logtalk requires coinductive predicates to be explicitly declared, as the predicate
clauses must be compiled with support for checking coinductive success and for
keeping a stack of coinductive hypotheses. When constructing a proof for a
coinductive predicate goal, the coinductive hypotheses are the ancestor goals
for the same coinductive predicate. Coinductive success is achieved when the
current goal unifies with a coinductive hypothesis. We can have multiple proofs,
and thus possibly multiple solutions, when the current goal unifies with more
than one coinductive hypothesis.

Coinductive predicates are declared using the coinductive/1 predicate direc-
tive. The argument of this directive can be a predicate indicator when all the
predicate arguments are relevant for coinductive success. As an example, con-
sider Listing 1.1.

A Portable and Efficient Implementation of Coinductive Logic Programming 79

Listing 1.1. Infinite lists with a repeating pattern of binary digits

:- object(binary).

:- public(p/1).

:- coinductive (p/1).

p([0| T]) :- p(T).

p([1| T]) :- p(T).

:- end_object .

When only some arguments should be considered when testing for coinductive
success, the directive argument must be a predicate template. In this case, coin-
ductive predicate arguments are represented by the atom '+', while arguments
that should be disregarded are represented by the atom '-'. Listing 1.2 illus-
trates an example. In this case, we want to find the cyclic paths in a graph whose
length (of the repeating pattern) is bound by a given value.

Listing 1.2. Length-limited cyclic paths in a graph

:- object(cyclic_paths).

:- public(path /3).

path(From , Path , MaxLength) :-

path(From , Path , 0, MaxLength).

:- private(path /4).

:- coinductive (path(+, +, -, -)).

path(From , [From| Path], Length , MaxLength) :-

arc(From , Next),

Length < MaxLength ,

Length1 is Length + 1,

path(Next , Path , Length1 , MaxLength).

arc(a, b).

arc(b, c).

arc(c, a). arc(c, d).

arc(d, a).

:- end_object .

In this case, coinductive success depends only on the first two arguments of the
path/4 auxiliary predicate. The remaining two arguments are only used to limit
the solutions found and are ignored when checking for coinductive success.

This representation of relevant arguments is the same representation used in
predicate tabling directives in systems such as B-Prolog, where it is possible
to indicate which arguments should be considered for variant checking, allowing

80 P. Moura

selective tabling of answers. The use of a common representation for declaring rel-
evant predicate arguments for coinductive success and for variant checking when
tabling predicate answers may provide, however, benefits other than language
consistency. Intuitively, we expect that the arguments that are relevant for coin-
ductive success are the same that are relevant for variant checking. This would
mean that the coinductive/1 predicate directive would make writing tabling
directives for the same predicates redundant, simplifying programming.

4 Coinductive Success Hook Predicates

Hook predicates are a common solution for user customization of system-imple-
mented algorithms and mechanisms. They may also be used for debugging, by
allowing tracing of the hooked steps.

In the specific case of coinduction, a generic hook predicate, essence_hook/2,
is supported by the DRA meta-interpreter[8]. In this case, the hook predicate is
primarily intended to allow the specification of the relevant predicate arguments
for coinductive success. But, according to the documentation, it may also be
used for defining an alternative to unification when checking for coinductive
success and for calling user code when tabling an answer or using a table answer
(as discussed in the previous section, Logtalk uses an extended coinductive/1

directive for specifying the relevant predicate arguments for coinductive success).
More recently, [9] proposes two hook predicates, finally/1-2, whose usefulness

is demonstrated with several examples. The author shows how these hooks allow
implementation solutions for applications which otherwise would require tabling
support. The current Logtalk development version2 implements these two hook
predicates but under the coinductive_success_hook/1-2 alternative names. The
Logtalk compiler optimizes the calls to these hook predicates and ensures zero
overhead for the coinductive predicates that do not use them. These hook predi-
cates are called in the case of coinductive success. The first argument is the term
resulting from the unification of the current goal with a coinductive hypothesis.
The second argument, when present, is the used coinductive hypothesis. Listing
1.3 shows an example, adapted to Logtalk from [9], of testing for and enumer-
ating the elements of a rational list. An alternative tabling-based definition is
illustrated in Listing 1.7.

Listing 1.3. Testing and enumerating elements of a rational list

:− object (l i s t s) .

% Are there ” occurrences ” o f arg1 in arg2?
:− pub l i c (member /2) .
:− co induct iv e (member /2) .
member (X, [X |]) .
member (X, [| T]) :−

member(X, T) .

2 Publicly available from https://github.com/LogtalkDotOrg/logtalk3

https://github.com/LogtalkDotOrg/logtalk3

A Portable and Efficient Implementation of Coinductive Logic Programming 81

% Are there i n f i n i t e l y many ” occurrences ” o f arg1 in arg2?
:− pub l i c (comember /2) .
:− co induct iv e (comember /2) .
comember (X, [| T]) :−

comember (X, T) .

c o i ndu c t i v e su c c e s s h ook (member (,)) :−
f a i l .

c o i ndu c t i v e su c c e s s h ook (comember (X, L)) :−
member(X, L) .

:− end object .

The idea behind this solution is that the definition of the comember/2 traverses
the list until it finds the repeating pattern (achieving coinductive success at
that point), thus skipping any existing prefix. When that happens, the member/2

predicate enumerates the elements in the repeating pattern, thanks to the sec-
ond clause for the coinductive_success_hook/1 predicate. The first clause of the
hook predicate ensures termination of a call to the member/2 predicate when
coinductive success is achieved.

5 Implementation

A coinductive predicate is compiled by adding a preflight predicate that checks
for coinductive success and, if not yet achieved, pushes the current goal to the
stack of coinductive hypotheses (i.e., the ancestor goals for the coinductive pred-
icate query). This preflight predicate calls the coinductive predicate defined by
the programmer. The user clauses are modified by replacing the recursive call to
the coinductive predicate by a call to the preflight predicate. The per-object ta-
ble of defined predicates ensures that a message corresponding to the coinductive
predicate is translated to a call to the preflight predicate.

The stack of coinductive hypotheses is represented using a list and passed be-
tween predicate calls using a hidden extra argument that is used for representing
the execution context. This extra argument is added by the Logtalk compiler
to the compiled form of all predicates.3 An alternative implementation of the
coinductive hypotheses stack would be to use the destructive assignment built-in
predicates that are found on some Prolog compilers. But these predicates are
not standard and our goal is a portable implementation.

Checking for coinductive success is performed by attempting to unify the cur-
rent goal with an elements of the coinductive hypotheses stack. This unification
may succeed, on backtracking, for more than one hypothesis, thus leading to

3 Logtalk uses an extra predicate argument for passing execution context information,
which includes the sender of a message and the object that received the message
(self). This allows a simple implementation of the stack of coinductive hypotheses
as just an additional argument of the execution context term.

82 P. Moura

multiple solutions. On the other hand, the current goal is only pushed to the
stack of coinductive hypotheses if it does not unify with any of its elements. This
semantics is efficiently implemented using the soft-cut control construct found
on several Prolog compilers, including all of those that provide the necessary
minimal support for rational terms.4

The following example of the compilation of the coinductive predicate p/1

in Listing 1.1 illustrates our current implementation (with all non-relevant de-
tails, including the internal names of the coinductive and preflight predicates,
abstracted for clarity of presentation):

Listing 1.4. Compiled code for a coinductive predicate p/1

p_1_coinduction_preflight(A, Stack) :-

(member(p(A), Stack) *->

true

; p(A, [p(A)| Stack])

).

p([0| A], Stack) :-

p_1_coinduction_preflight(A, Stack).

p([1| A], Stack) :-

p_1_coinduction_preflight(A, Stack).

In the code above, the predicate member/2 has its traditional inductive definition
and the (*->)/2 operator denotes the soft-cut control construct, as found on
several Prolog compilers such as ECLiPSe, GNU Prolog, SWI-Prolog, and YAP.5

When the coinductive_success_hook/1 or the coinductive_success_hook/2

hook predicate are defined for a coinductive predicate, they are called in the
place of the goal true/0 in the code in Listing 1.4 (the Logtalk compiler looks
first for a user definition of the arity two version of the hook predicate).

5.1 Implementation Limitations

In the current Logtalk implementation, the stratification of programs mixing
non-coinductive predicates and coinductive predicates is neither checked nor
enforced. Thus, ensuring stratification is a responsibility left to the programmer.

A second, more fundamental limitation is partially a consequence of the lack
of native Prolog support for tabling of rational terms (see Section 5.3). The
practical consequence is that, while coinductive predicates can recognize any
valid solution, they can only generate a (finite) subset of all possible solutions.

4 In this paper, we use the usual definition of rational term: an infinite term with a
finite representation.

5 Some other Prolog compilers such as SICStus Prolog use a built-in meta-predicate,
if/3, for implementing a soft-cut. Logtalk uses either the (*->)/2 control construct
or the if/3 built-in meta-predicate depending on the used back-end Prolog compiler.

A Portable and Efficient Implementation of Coinductive Logic Programming 83

For example, using the coinductive predicate p/1 in Listing 1.1, we get the results
illustrated in Listing 1.5.6

Listing 1.5. Solutions generated for the coinductive predicate p/1 in Listing 1.1

?- binary::p(X).

X = [0|X] ;

X = [1|X] ;

false.

?- L = [0,1,0| L], binary::p(L).

L = [0, 1, 0|L] ;

false.

We describe the finite set of generated solutions as the set of basic cycles, where
a basic cycle is a solution that cannot be expressed as a combination of other
solutions. Ideally, any possible solution could be generated from a combination
of these basic cycles. But we do not have yet a formal proof and our intuition can
be wrong. With tabling support available, we could use an alternative compila-
tion scheme where the current goal would be added to the stack of coinductive
hypotheses, independently of the current goal unifying with any of the existing
coinductive hypotheses. Without tabling, and for the example in Listing 1.1,
this alternative compilation scheme repeatedly generates, as expected, and as
long as memory is available, the first solution, as illustrated in Listing 1.6. With
a suitable tabling implementation, we would not get stuck repeating the same
solution, but we could still get an infinite number of solutions. As an alterna-
tive, a breadth-first inference mechanism can also avoid repeatedly generating
the same solution. In fact, this approach is used in one of the variations of the
U.T.Dallas Prolog meta-interpreter for coinductive predicates. But a solution
where we generate the finite set of basic cycles and use it to construct an ex-
pression representing all possible combinations of these basic cycles would be
preferable as this expression could then be used to both generate and test solu-
tions as necessary.

Listing 1.6. Solutions generated for the coinductive predicate p/1 in Listing 1.1 using
the alternative compilation scheme

?- binary::p(X).

X = [0|X] ;

X = [0|_S1], % where

_S1 = [0| _S1] ;

X = [0, 0|X] ;

X = [0, 0|_S1], % where

_S1 = [0| _S1] ;

...

6 Using SWI-Prolog as the Logtalk back-end compiler.

84 P. Moura

5.2 Implementation Portability

The current coinduction implementation supports a subset of the Logtalk
compatible back-end Prolog compilers. Namely, ECLiPSe, SICStus Prolog,
SWI-Prolog, and YAP. The two main Prolog native features necessary for our
implementation are (1) a soft-cut control construct or built-in predicate7 and
(2) minimal support for rational terms. The soft-cut control construct is already
implemented or is being implemented on most Prolog compilers. The most prob-
lematic feature is the the support for rational terms, as we discuss next.

5.3 Rational Terms Support

Although an implementation of coinductive logic programming must be able
to create, unify, and print bindings with rational terms, there is very limited
standard support for this kind of terms. The latest official revision of the ISO
Prolog Core standard [10] added an acyclic_term/1 built-in predicate but does
not specify a comprehensive set of operations on rational terms that should be
supported. In addition, for a long time, rational terms were regarded more as a
problem than as a feature in Prolog compilers. Thus, the supported operations
on rational terms depend on the Prolog compiler. Fortunately, implementing
coinduction requires only three basic operations: (1) creation of rational terms,
(2) unification of rational terms, and (3) a suitable printing of rational terms,
such that bindings resulting from queries to coinductive predicates can be non-
ambiguously interpreted. Creating and unifying rational terms are supported by
all compatible back-end Prolog compilers. But non-ambiguous printing of ratio-
nal terms is a problem for most compilers. To illustrate the problem, consider
the p/1 coinductive predicate in Listing 1.1 and the query p(X). Our implemen-
tation provides two solutions for this query, the rational terms X = [0|X] and
X = [1|X]. The solutions as printed by ECLiPSe, SICStus Prolog, SWI-Prolog,
and YAP are presented in Table 1.

Table 1. Printing of rational terms bindings

Prolog compiler First solution Second solution

ECLiPSe 6.1.115 X = [0, 0, 0, 0, ...] X = [1, 1, 1, 1, ...]

SICStus Prolog 4.0.4 X = [0, 0, 0, 0, ...] X = [1, 1, 1, 1, ...]

SWI-Prolog 6.1.11 X = [0|X] X = [1|X]

YAP 6.3.2 X = [0|**] X = [1|**]

The only reason we do not get into trouble when using ECLiPSe and SICStus
Prolog is that both limit, by default, the maximum length of a list when printing

7 Although it is possible to implement the preflight predicate without using a soft-cut,
the resulting code would provide poor performance as it would require, in the worst
case, traversing the list that implements the stack of coinductive hypotheses twice.

A Portable and Efficient Implementation of Coinductive Logic Programming 85

terms.8 YAP prints an ambiguous mark, **, to alert the user that is printing a
rational term. Only SWI-Prolog provides a non-ambiguous printing of rational
terms bindings.

5.4 Tabling of Rational Terms

The set of coinductive problems that can be tackled by the current implementa-
tion is limited by the lack of a compatible back-end Prolog compiler that natively
supports tabling of rational terms. A simple example where tabling is required is
in the following alternative definition of the comember/2 predicate. This predicate
succeeds when an element occurs an infinite number of times in a list. It can be
defined as illustrated in Listing 1.7.

Listing 1.7. Definition of the coinductive predicate comember/2

:- coinductive (comember /2).

comember(X, L) :-

drop(X, L, L1),

comember (X, L1).

:- table(drop /3).

drop(H, [H| T], T).

drop(H, [_| T], T1) :-

drop(H, T, T1).

The auxiliary predicate drop/3 is used to drop elements from the input list non-
deterministically. But, without tabling support for rational terms, the call to
this predicate in the definition of the comember/2 will unify the first element
and will limit the coinductive predicate to return that solution repeatedly (on
backtracking) without ever moving to the next solution.

Although it is always possible to implement a high-level tabling solution, the
relatively poor performance of such solution makes it preferable to work with
Prolog implementers that already provide a native tabling system in extending
it to support rational terms. The current alternative, as illustrated in Section 4,
can provide a good alternative. However, more experience is necessary for mean-
ingfully compare the programmer effort of writing the necessary hook predicate
definitions versus writing tabling-based solutions for the same problems. In ad-
dition, the programmer must be aware that tabling-based solutions can feature
better complexity properties by avoiding recomputing solutions.

5.5 Coroutining and CLP(R) Libraries

Some of the recent research on coinduction focuses on model checking and timed
automata (see e.g. [11,2,12]). The implementation of solutions for these classes of

8 ECLiPSe uses, by default, a depth(20) output option. SICStus Prolog uses, by
default, a max_depth(10) output option.

86 P. Moura

problems require the use of coroutining and CLP(R) libraries. All the back-end
Prolog compilers we support for coinduction provide built-in coroutining primi-
tives and these constraint libraries, although the ECLiPSe versions differs in its
interface from those found on SICStus Prolog, SWI-Prolog, and YAP. Logtalk
can account for the differences using its conditional compilation directives. Not
an ideal solution, however, as it still results in code duplication. But there are
two other, more significant, potential issues: lack of active maintenance of some
of these libraries and semantic differences between the different implementations
of coroutining and constraint libraries. In fact, there is currently no standardiza-
tion effort for constraint programming in Prolog, despite the area being widely
recognized as fundamental for the practical success of logic programming.

6 Examples

The current Logtalk distribution includes sixteen coinduction examples, most of
them adapted from publications on coinductive logic programming or originating
from discussions with researchers in this area. The examples are complemented
by unit tests, thus providing a handy solution for testing our implementation
across compatible back-end Prolog compilers. In this section, we present and
briefly discuss some of the most interesting examples, mainly to familiarize the
reader on how to define coinductive predicates. The example queries output are
produced using Logtalk with SWI-Prolog as the back-end compiler.

6.1 A Tangle of Coinductive Predicates

Our first example (Listing 1.8) illustrates a coinductive predicate with two start-
ing points and no common solution prefix. This example was originally written
by Feliks Kluźniak in the context of a discussion on how to combine coinductive
predicate solutions to construct other valid solutions.

Listing 1.8. A coinductive predicate with two starting points and no common solution
prefix, wrapped in a tangle object

:- object(tangle).

:- public(p/1).

:- coinductive (p/1).

p([a| X]) :- q(X).

p([c| X]) :- r(X).

:- coinductive (q/1).

q([b| X]) :- p(X).

:- coinductive (r/1).

r([d| X]) :- p(X).

:- end_object .

A Portable and Efficient Implementation of Coinductive Logic Programming 87

Listing 1.9 shows two queries for the tangle::p/1 predicate. The first query works
as a solution generator, while the second query tests a specific solution.

Listing 1.9. Sample queries for the tangle::p/1 coinductive predicate

?- tangle::p(X).

X = [a, b|X] ;

X = [c, d|X] ;

false.

?- L = [a, b, c, d| L], tangle::p(L).

L = [a, b, c, d|L] ;

false.

?- L = [a, c| L], tangle::p(L).

false.

6.2 An Omega-Automaton

Our third example (Listing 1.10) is adapted from [3] and illustrates an ω-
automaton, i.e. an automaton that accepts infinite strings. The commented out
code shows how we can go from an automaton recognizing finite strings to an
ω-automaton by simply dropping the base case in the recursive definition.

Listing 1.10. A omega-automaton

:- object(automaton).

:- public(automaton /2).

:- coinductive (automaton /2).

automaton (State , [Input| Inputs]) :-

trans(State , Input , NewState),

automaton (NewState , Inputs).

% automaton (State , []) :- % we drop the base case in order

% final(State). % to get an omega -automaton

trans(s0, a, s1).

trans(s1, b, s2).

trans(s2, c, s3).

trans(s2, e, s0).

trans(s3, d, s0).

final(s2).

:- end_object .

88 P. Moura

Listing 1.11 shows generating and testing queries for the automaton::automaton/2
coinductive predicate.

Listing 1.11. Sample queries for the automaton::automaton/2 predicate

?- automaton :: automaton (s0, X).

X = [a, b, c, d|X] ;

X = [a, b, e|X] ;

false.

?- L = [a, b, c, d, a, b, e| L], automaton :: automaton (s0, L).

L = [a, b, c, d, a, b, e|L] ;

false.

?- L = [a, b, e, c, d| L], automaton :: automaton (s0, L).

false.

6.3 A Sieve of Eratosthenes Coinductive Implementation

The second example (Listing 1.12) presents our coinductive implementation
of the Sieve of Eratosthenes. An alternative solution, based on coroutining, is
sketched in [3].

Listing 1.12. A Sieve of Eratosthenes coinductive implementation

:- object(sieve).

:- public(primes /2).

% computes a coinductive list with all the

% primes in the 2..N interval

primes(N, Primes) :-

generate_infinite_list(N, List),

sieve(List , Primes).

% generate a coinductive list with a 2..N

% repeating pattern

generate_infinite_list(N, List) :-

sequence (2, N, List , List).

sequence (Sup , Sup , [Sup| List], List) :-

!.

sequence (Inf , Sup , [Inf| List], Tail) :-

Next is Inf + 1,

sequence (Next , Sup , List , Tail).

:- coinductive (sieve /2).

sieve([H| T], [H| R]) :-

filter(H, T, F),

A Portable and Efficient Implementation of Coinductive Logic Programming 89

sieve(F, R).

:- coinductive (filter /3).

filter(H, [K| T], L) :-

(K > H, K mod H =:= 0 ->

% throw away the multiple we found

L = T1

; % we must not throw away the integer used for

% filtering in order to return a filtered

% coinductive list

L = [K| T1]

),

filter(H, T, T1).

:- end_object .

Listing 1.13 illustrates how to use our sieve::primes/2 coinductive predicate to
enumerate all the prime numbers in the [1..20] interval.

Listing 1.13. Enumerating prime numbers using coinduction

?- sieve::primes(20, P).

P = [2, 3|_S1], % where

_S1 = [5, 7, 11, 13, 17, 19, 2, 3|_S1] .

7 Debugging Coinductive Predicates

As most extensions to existing logic programming languages, the practical use of
coinduction depends not only on robust implementations with good performance
but also on development tools support, in particular for debugging. Logtalk pro-
vides specific support for debugging coinductive predicates by allowing (1) tracing
of coinductive success checks, (2) tracing of pushing the current goal to the stack
of coinductive hypotheses, and (3) printing of the stack of coinductive hypotheses
at any time. Operations (1) and (2) are collectively described as a coinduction pre-
flight step, which takes place at every coinductive predicate call before proceeding
to the clauses defined by the programmer (as detailed in Section 5). The example
in Listing 1.14 shows a debugging section (with internal variable names renamed
for clarity and using SWI-Prolog as the Logtalk back-end compiler).

Listing 1.14. Debugging a coinductive predicate call

?- binary::p(X).

Call: (1) binary::p(X) ?

Rule: p_1_coinduction_preflight(X) ?

90 P. Moura

Call: (2) check_coinductive_success(p(X),[]) ?

Fail: (2) check_coinductive_success(p(X),[]) ?

Call: (3) push_coinductive_hypothesis(p(X),[],S) ?

Exit: (3) push_coinductive_hypothesis(p(X),[],[p(X)]) ?

Call: (4) p(X) ?

Rule: (clause #1) p([0|L]) ?

Call: (5) p_1_coinduction_preflight(L) ? x

Sender: user

This: binary

Self: binary

Meta -call context: []

Coinduction stack: [p([0|L])]

Call: (5) p_1_coinduction_preflight(L) ?

Rule: p_1_coinduction_preflight(L) ?

Call: (6) check_coinductive_success(p(L),[p([0|L])]) ?

Exit: (6) @(check_coinductive_success(p(S_1),[p(S_1)]),

[S_1=[0| S_1]]) ?

Call: (7) true ?

Exit: (7) true ?

Exit: (5) @(p_1_coinduction_preflight(S_1),[S_1 =[0| S_1]]) ?

Exit: (4) @(p(S_1),[S_1 =[0| S_1]]) ?

Exit: (1) @(binary::p(S_1),[S_1 =[0| S_1]]) ?

X = [0|X] ;

...

8 Related Work

The U.T.Dallas research group on coinduction makes available a Prolog meta-
interpreter, implemented by Feliks Kluźniak in 2009, that supports both tabling
and coinduction [8]. The meta-interpreter distribution includes example appli-
cations for the model checker. Although the meta-interpreter suffers from slower
performance when compared with the Logtalk implementation, the high-level
implementation of tabling allows it to solve a wider class of problems, with-
out being dependent on native Prolog tabling support. For problems that do not
require tabling, the U.T.Dallas implementation provides a simple program trans-
former that adds an extra argument (with the stack) to coinductive predicates,
thus enabling them to be executed without the overhead of interpretation.

Two Prolog compilers, SWI-Prolog and YAP, include limited support for coin-
duction, implemented by a library module. The YAP implementation takes ad-
vantage of non-portable primitives for destructive assignment for representing
the coinduction stack when constructing a proof for a coinductive predicate. The
SWI-Prolog implementation uses proprietary hook predicates to access a goal
and its parent goal during a proof. Although these choices render the imple-
mentations non-portable, they also make them potentially more efficient than a
portable implementation such as the one found in Logtalk. Both the SWI-Prolog

A Portable and Efficient Implementation of Coinductive Logic Programming 91

and YAP implementations only support the most simple form of the coinduc-
tive directive where only a predicate indicator can be specified. As in the current
Logtalk implementation, stratification of programs mixing non-coinductive pred-
icates and coinductive predicates is neither checked nor enforced.

A set of Prolog meta-interpreters for coinductive logic programming are pre-
sented and discussed in [9], together with several illustrating examples. Although
these meta-interpreters are best viewed as a proof-of-concept (giving the inher-
ent performance penalty of meta-interpretation), they clearly illustrate several
problems and conceptual solutions when implementing coinductive logic pro-
gramming. In particular, the proposed hook predicates provide a practical and
strong alternative to tabling for some problems. These hook predicates are effi-
ciently implemented in the latest Logtalk development versions.

9 Conclusions and Future Work

Logtalk provides a widely available and portable implementation of coinductive
logic programming. It features basic coinductive debugging support and includes
several examples that are complemented by unit tests. It can be easily used for
demoing the basic ideas of coinductive logic programming in the classroom and
for solving actual problems. Its implementation avoids meta-interpretation by
compiling both coinductive predicate definitions and any used hook predicates,
thus providing good performance for coinduction applications that do not require
tabling support.

The current implementation is designed with the intuition is that it can gener-
ate, by backtracking, all basic cycles, whose combinations account for all possible
solutions. If our intuition is correct, it should be possible to derive an expression
that represents that combination and that can be used for checking or gener-
ating any solution. Assuming that deriving such an expression can be soundly
accomplished in practice and for any problem, this would provide a potential
alternative to all current implementations, which all suffer from the fact that an
infinite set of solutions cannot be enumerated in a finite time. Thus, the problem
of how to discover all basic cycles and how to combine them in an expression
appears to be the most interesting open problems and thus a promising line for
future work.

Our plans for better coinduction support in Logtalk, while maintaining or
improving portability, are partially dependent on the evolution of the compatible
Prolog systems. There are two main issues. First, printing of rational terms,
which is used when printing bindings for solutions to coinductive queries, only
works acceptably on SWI-Prolog. For all the other supported back-end Prolog
compilers, the bindings printed are often ambiguous. Second, tabling of rational
terms. This will enable Logtalk to tackle problems that cannot currently be
solved or that can be solved but with non-practical time/space complexity. We
plan to work closely with Prolog implementers on solving both issues.

We are also following progress on the theoretical aspects of coinduction, spe-
cially when combined with constraint programming, and hope to be able to
implement new, proven, ideas when feasible and in a timely manner.

92 P. Moura

Acknowledgements. We thank Gopal Gupta, Feliks Kluźniak, Neda Saeedloei,
Brian DeVries, and Kyle Marple for helpful discussions on coinduction during a
sabbatical visit to U.T.Dallas and for most of the coinduction examples that are
currently adapted and distributed with Logtalk. We thank Davide Ancona for
feedback on hook predicates and the corresponding examples. We also thank Jan
Wielemaker and Vitor Santos Costa for feedback on using destructive assignment
primitives for representing coinduction stacks and on representing and printing
rational terms. A preliminary version of this work was presented on the 1st
Workshop on Coinductive Logic Programming (CO-LP 2012). This revised and
extended version includes a new section on coinductive success hook predicates
and a revised discussion on tabling support. This work is partially supported
by the LEAP project (PTDC/EIA-CCO/112158/2009), the ERDF/COMPETE
Program and by FCT project FCOMP-01-0124-FEDER-022701.

References

1. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. SIGBED
Rev. 8, 31–34 (2011)

2. Saeedloei, N.: Modeling and Verification of Real-Time and Cyber-Physical Systems.
PhD thesis, University of Texas at Dallas, Richardson, Texas (2011)

3. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive Logic Pro-
gramming and Its Applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

4. Gupta, G., Saeedloei, N., DeVries, B., Min, R., Marple, K., Kluźniak, F.: Infinite
Computation, Co-induction and Computational Logic. In: Corradini, A., Klin, B.,
Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 40–54. Springer, Heidelberg
(2011)

5. Simon, L.: Coinductive Logic Programming. PhD thesis, University of Texas at
Dallas, Richardson, Texas (2006)

6. Moura, P.: From Plain Prolog to Logtalk Objects: Effective Code Encapsulation
and Reuse (Invited Talk). In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 23–23. Springer, Heidelberg (2009)

7. Moura, P.: Logtalk - Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior, Portu-
gal (September 2003)

8. Kluźniak, F.: Metainterpreter supporting tabling (DRA) and coinduction with ap-
plications to LTL model checking, http://www.utdallas.edu/~gupta/meta.html

9. Ancona, D.: Regular corecursion in Prolog. In: Ossowski, S., Lecca, P. (eds.) SAC,
pp. 1897–1902. ACM (2012)

10. ISO/IEC: International Standard ISO/IEC 13211-1 Information Technology —
Programming Languages — Prolog — Part I: General core, Corrigenda 2. ISO/IEC
(2012)

11. Saeedloei, N., Gupta, G.: Coinductive Constraint Logic Programming. In: Schri-
jvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 243–259.
Springer, Heidelberg (2012)

12. Saeedloei, N., Gupta, G.: Verifying complex continuous real-time systems with
coinductive CLP(R). In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 536–548. Springer, Heidelberg (2010)

http://www.utdallas.edu/~gupta/meta.html

	A Portable and Efficient Implementation of Coinductive Logic Programming
	1 Introduction
	2 Logtalk in a Nutshell
	3 Coinductive Predicate Directives
	4 Coinductive Success Hook Predicates
	5 Implementation
	5.1 Implementation Limitations
	5.2 Implementation Portability
	5.3 Rational Terms Support
	5.4 Tabling of Rational Terms
	5.5 Coroutining and CLP(R) Libraries

	6 Examples
	6.1 A Tangle of Coinductive Predicates
	6.2 An Omega-Automaton
	6.3 A Sieve of Eratosthenes Coinductive Implementation

	7 Debugging Coinductive Predicates
	8 Related Work
	9 Conclusions and Future Work
	References

