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Abstract—Time series forecasting is a challenging task, where
the non-stationary characteristics of the data portrays a hard
setting for predictive tasks. A common issue is the imbalanced
distribution of the target variable, where some intervals are very
important to the user but severely underrepresented. Standard
regression tools focus on the average behaviour of the data.
However, the objective is the opposite in many forecasting tasks
involving time series: predicting rare values. A common solution
to forecasting tasks with imbalanced data is the use of resampling
strategies, which operate on the learning data by changing its dis-
tribution in favor of a given bias. The objective of this paper is to
provide solutions capable of significantly improving the predictive
accuracy of rare cases in forecasting tasks using imbalanced time
series data. We extend the application of resampling strategies
to the time series context and introduce the concept of temporal
and relevance bias in the case selection process of such strategies,
presenting new proposals. We evaluate the results of standard
regression tools and the use of resampling strategies, with and
without bias over 24 time series data sets from 6 different sources.
Results show a significant increase in predictive accuracy of rare
cases associated with the use of resampling strategies, and the
use of biased strategies further increases accuracy over the non-
biased strategies.

Keywords—Imbalanced Time Series, Resampling Strategies,
Temporal Bias.

I. INTRODUCTION

Mining time series data is one of the most challenging
problems in the field of data mining [1]. Time series fore-
casting holds a key importance in many application domains,
where time series data is highly imbalanced. This occurs when
certain ranges of values are over-represented in comparison to
others and the user is particularly interested in the predictive
performance on values that are the least represented. Such
examples may be found in financial data analysis, intrusion
detection in network forensics, oil spill detection and prognosis
of machine failures. In these scenarios of imbalanced data
sets, standard learning algorithms bias the models toward the
more frequent situations, away from the user preference biases,
proving to be an ineffective approach and a major source of
performance degradation [2].

A common solution for the general problem of mining
imbalanced data sets is to resort to resampling strategies. These
strategies change the distribution of learning data in order to
balance the number of rare and normal cases, attempting to
reduce the skewness of the data. These strategies commonly
achieve their goal by under or oversampling the data. In the
former, the cases considered as normal (i.e. the majority of
cases) are removed from the learning data; in the latter, cases

considered to be rare (i.e. the minority) are generated and
added to the data. For example, in fraud detection problems
fraud cases are infrequent, and detecting them is the prime
objective. Also, in intrusion detection problems, most of the
behaviour in networks are normal and cases of intrusion, which
one aims to detect, are scarce. This task of predicting rare
occurrences has proven to be a difficult task to solve, but due
to its importance in so many domains, it is a fundamental
problem within predictive analytics [3].

Most existing work using resampling strategies for pre-
dictive tasks with an imbalanced target variable distribution
involves classification problems ([4], [5], [6], [7]). Recently,
efforts have been made to adapt existing strategies to numeric
targets, i.e. regression problems ([8], [9]). To the best of our
knowledge, no previous work addresses this question using
resampling strategies in the context of time series forecasting.
Although time series forecasting involves numeric predictions,
there is a crucial difference compared to regression tasks due
to the time dependency among the observed values. The main
motivation of the current work is our claim that this order
dependency should be taken into account when changing the
distribution of the training set, i.e. when applying resampling.
Our work is driven by the assumption that by biasing the
sampling procedure with information on this order dependency,
we are able to improve predictive performance.

In this paper, we study the use of resampling strategies
in imbalanced time series. Our endeavour is based on two
strategies: i) the first is based on undersampling (random
undersampling [10]) and ii) the second combines undersam-
pling and oversampling (Synthetic Minority Over-sampling
TEchnique [11]). Both strategies were initially proposed for
classification problems, and were posteriorly extended for
regression tasks [8], [9]. We will refer to the extension of the
SMOTE resampling strategy as SmoteR.

Time series often exhibit systematic changes in the dis-
tribution of observed values. These non-stationarities are of-
ten known as concept drift [12]. This concept describes the
changes in the conditional distribution of the target variable
in relation to the input features (i.e. predictors), whilst the
distribution of the latter stays unchanged. This raises the
question of how to devise learning approaches capable of
coping with this issue. We introduce the concept of temporal
bias in resampling strategies associated with forecasting tasks
using imbalanced time series. Our motivation is the idea that
in an imbalanced time series, where concept drift occurs, it
is possible to improve forecasting accuracy by introducing
a temporal bias in the case selection process of resampling



strategies. This bias favours cases that are within the temporal
vicinity of apparent regime changes. In this paper we propose
two alternatives for the resampling strategies used in our work:
undersampling and SmoteR with 1) temporal bias, and 2) with
temporal and relevance bias.

An extensive experimental evaluation was carried out to
evaluate our proposals comprising 24 time series data sets from
6 different sources. The objective is to verify if resampling
strategies are capable of improving the predictive accuracy in
comparison to standard forecasting tools, including those de-
signed specifically for time series (e.g. ARIMA models [13]).

The contributions of this paper are:

• The extension of resampling strategies for time series;

• The proposal of novel resampling strategies that intro-
duce the concept of temporal and relevance bias;

• An extensive evaluation including standard regression
tools, time series specific models (ARIMA) and the
use of resampling strategies.

The remainder of this paper is structured as follows. In Sec-
tion II the problem tackled in our work is introduced and the
assumptions in which our proposals are based are presented.
Resampling strategies are described in Section III along with
the adaptation of previous proposals, and new proposals. The
data used to evaluate the proposals is introduced in Section IV,
as well as the regression tools used and the evaluation methods.
The evaluation process is described and results presented in
Section V. Finally, previous work is discussed in Section VI
and conclusions are presented in Section VII.

II. PROBLEM DEFINITION

The main objective of our proposals is to provide solutions
that significantly improve the predictive accuracy of relevant
(rare) cases in forecasting tasks using imbalanced time series.

The task of time series forecasting assumes the availability
of a time-ordered set of observations of a given continuous
variable y1, y2, . . . , yt ∈ Y , where yt is the value measured
at time t. The objective of this predictive task is to forecast
the future value(s) of variable Y . The overall assumption
is that an unknown function correlates the past and future
values of Y , i.e. Yt+h = f(〈Yt−k, . . . , Yt−1, Yt〉). The goal
of the learning process is to provide an approximation of this
unknown function. This is carried out using a data set with
historic examples of the function mapping (i.e. training set).

Time series forecasting models usually assume the exis-
tence of a degree of correlation between successive values of
the series. A form of modeling this correlation consists of using
the previous values of the series as predictors of the future
value(s), in a procedure known as time delay embedding [14].
This process allows the use of standard regression tools on
time series forecasting tasks. However, specific time series
modelling tools already exist, such as the ARIMA models [13].

In this work we focus on imbalanced time series, where
certain ranges of values of the target variable are more im-
portant to the end-user, but severely under-represented in the
training data. As training data we assume a set of cases built
using a time delay embedding strategy, i.e. where the target

variable is the value of Y in the next time step (yt+1) and
the predictors are the k recent values of the time series, i.e.
yt, yt−1, · · · , yt−k. To formalise our prediction task, namely
in terms of criteria for evaluating the results of modeling
approaches, we need to specify what we mean by “more
important” values of the target variable. We resort to the
work of Ribeiro [15], that proposes the use of a relevance
function to map the domain of continuous variables into a
[0, 1] scale of relevance, i.e. φ(Y ) : Y → [0, 1]. Normally, this
function is given by the users, attributing levels of importance
to ranges of the target variable specific to their interest, taking
into consideration the domain of the data. In our work, due
to the lack of expert knowledge concerning the domains, we
employ an automatic approach to define the relevance function
using box plot statistics, detailed in Ribeiro [15]. Using this
domain-dependent function the author has also proposed an
evaluation framework that allows us to assert the quality of
numeric predictions considering the user bias.

We use the above-mentioned evaluation framework to
ascertain the predictive accuracy when using imbalanced time
series data, by combining standard learning algorithms and
resampling strategies. Additionally, we evaluate the most con-
sistently accurate strategies resorting to paired comparisons
between the proposals. The assumptions that we test in the
evaluation process are:

Assumption 1 The use of resampling strategies significantly
improves the predictive accuracy of imbalanced time series
forecasting models in comparison to the standard use of out
of the box regression tools.

Assumption 2 The use of a temporal bias in resampling
strategies significantly improves the predictive accuracy of
imbalanced time series forecasting models in comparison to
the baseline versions of each respective strategy.

Assumption 3 The use of resampling strategies significantly
improves the predictive accuracy of imbalanced time series
forecasting models in comparison to the use of ARIMA models.

III. RESAMPLING STRATEGIES

Resampling strategies are pre-processing approaches that
change the original data distribution in order to meet some
user-given criteria. Among the advantages of pre-processing
strategies is the ability of using any standard learning tool.
However, to match a change in the data distribution with the
user preferences is not a trivial task. The proposed resampling
strategies aim at pre-processing the data for obtaining an
increased predictive performance in cases that are scarce and
simultaneously important to the user. As mentioned before, this
importance is described by a relevance function φ(Y ). Being
domain-dependent information, it is the user responsibility
to specify the relevance function. Nonetheless, when lacking
expert knowledge, it is possible to automatically generate the
relevance function. Being a continuous function on the scale
[0, 1], we require the user to specify a relevance threshold,
tR, that establishes the minimum relevance score for a certain
value of the target variable to be considered relevant. This
threshold is only required because the proposed resampling
algorithms need to be able to decide which values are the
most relevant when the distribution changes.



Figure 2 shows an example of an automatically generated
relevance function, with a 0.9 relevance threshold, defined for
the Temperature time series (Figure 1) obtained from the Bike
Sharing data source [16] using observations between 22 March
and 1 May 2011. In this example, we assign more importance
to the highest and lowest values of Y .

Our resampling strategies proposals for imbalanced time
series data are based on the concept of relevance bins. These
are successive observations of the time series where the
observed value is either relevant or irrelevant, for the user.
The bins are created using time stamp information and the
relevance of the values from the original time series, to cluster
them into bins that have the following properties:

1) Each bin contains examples whose target variable
value has a relevance score that is either all above
or all below the relevance threshold tR; and

2) Examples in a given bin are always consecutive cases
in terms of the time stamp.
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Fig. 1. Sample of Temperature time series from the Bike Sharing data source
[16].
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Fig. 2. Relevance function φ(Y ) with a relevance threshold of 0.9 (dashed
line) for the time series showed in Figure 1

Figure 3 shows the bins obtained in the Temperature time
series displayed in Figure 1. The six dashed Y ranges rep-
resent the most relevant ranges, while the non-dashed ranges
represent the common values which have a lower relevance

to the user, based on the automatically generated relevance
function (Figure 2). This means that, for the example under
consideration, we have 13 bins: 3 bins with relevant high
values and 3 bins with relevant low values (dashed ranges), and
7 bins with common values (non-dashed ranges). The relevance
bins are successive periods where the target variable is either
irrelevant or relevant to the user.

Our first proposals are an adaption to the time series context
of the random undersampling and SmoteR strategies proposed
by Torgo et al. [8] for tackling imbalanced regression tasks.
The main change applied in both algorithms is the way the
sampling is carried out. Instead of pure random selection as
in the original algorithms, here we carry out sampling within
each individual relevance bin.

The random undersampling (U B) strategy balances the
number of normal and rare values by randomly removing
examples from the bins with normal cases, i.e., bins with
low relevance examples. The number of examples removed is
automatically calculated to ensure that: 1) each undersampled
bin gets the same number of normal cases; and 2) the total
number of normal and rare cases are balanced.

The second strategy is an adaptation of the SmoteR algo-
rithm to the time series context. The SmoteR algorithm com-
bines random undersampling with oversampling through the
generation of synthetic cases. The random undersampling is
carried out as the previously described process. The oversam-
pling strategy generates new synthetic cases by interpolating
a seed example with one of its k-nearest neighbours from the
respective bin of rare examples. The main changes introduced
in comparison to the original SmoteR algorithm (SM B) are:
1) the application of the oversampling and undersampling
techniques in the bins constructed for the time series based
on characteristics of the bins; 2) the number of cases to
remove/add are determined automatically with the goal of
balancing the distribution of rare and normal cases; and 3)
the number of nearest neighbours set by the user and used for
a given example is k. If an example does not have k nearest
neighbours, it interpolates with the remaining examples of bin.

A. Resampling with Temporal Bias

As we have mentioned, concept drift is one of the main
challenges in time series forecasting. This is particularly true
for our target applications where the preference bias of the user
is related with rare values of the series. In effect, this rarity
makes it even more important to understand and anticipate
when these shifts of regime occur.

A first step in the identification of these different regimes
according to user preferences is implemented by the previously
described creation of relevance bins (c.f. Figure 3). Still,
within each bin the cases are not equally relevant. We claim
that the most recent cases within each bin may potentially
contain important information for understanding these changes
in regime. In this context, we propose two new algorithms
(Undersampling and SmoteR with Temporal Bias) that favour
the selection of training cases that are in the vicinity of
transitions between bins. This resembles the adaptive learning
notion of gradual forgetting, where the older cases have a
higher likelihood of being excluded from the learning data.
However, this concept is applied to the extent of the data and
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Fig. 3. Bins generated for time series of Figure 1 with relevance function (φ()) provided in Figure 2 using a relevance threshold of 0.9 (dashed ranges represent
bins with important cases).

in our proposal of temporal bias it is applied in each bin of
normal cases.

Concerning the Undersampling with Temporal Bias (U T)
proposal, the main difference is the process of selecting exam-
ples to undersample within each bin of normal cases. Instead
of randomly selecting cases, we use a biased undersampling
procedure. In U T, for each bin where undersampling is
applied, the older the example is, the lower is the preference
of it being selected for the new training set. This provides
a modified distribution which is balanced in terms of normal
and rare cases with a probabilistic preference towards the most
recent cases, i.e. those in the vicinity of bin transitions. The
integration of the temporal bias is performed as follows:

• order the cases in each bin B of normal cases by
increasing time in a new bin OrdB;

• assign the preference of i × 1

|OrdB| for selecting exi

in OrdB, where i ∈ (1, . . . , |OrdB|);

• select a sample from OrdB based on the former
preferences.

Our second proposed strategy is SmoteR with Temporal
Bias (SM T). This approach combines undersampling with
temporal bias in the bins containing normal cases, with an
oversampling mechanism that also integrates a temporal com-
ponent. The undersampling with temporal bias strategy is
previously described. Regarding the oversampling strategy, we
included in the SmoteR generation of synthetic examples a
preference for the most recent examples. This means that when
generating a new synthetic case, after evaluating the k-nearest
neighbours of the seed example, the neighbour selected for the
interpolation process is the most recent case. This includes, in

the synthetic cases generation, a time bias towards the most
recent examples instead of randomly selecting cases.

B. Resampling with Temporal and Relevance Bias

This section describes our final proposals of resampling
strategies for imbalanced time series forecasting. The idea of
the two algorithms described in this section is to also include
the relevance scores in the sampling bias. The motivation is
that while we assume that the most recent cases within each bin
are important as they precede regime changes, we consider that
older cases that are highly relevant should not be completely
disregarded. To combine the temporal and relevance bias we
propose two new algorithms: undersampling with temporal and
relevance bias and SmoteR with temporal and relevance bias.

The integration of temporal and relevance bias in under-
sampling (U TPhi) is performed as follows:

• order examples in each bin B of normal cases by
increasing time in a new bin OrdB

• for each example exi in OrdB use i

|OrdB|×φ(exi[y])
as the preference of selecting example exi;

• sample a number of examples from OrdB assuming
the previously determined preferences.

The same integration of time and relevance bias was also
done in SmoteR algorithm. In this case, we have changed both
the undersampling and oversampling steps of SmoteR algo-
rithm. These changes correspond to biasing the undersampling
process for considering the time and relevance of the examples
in each bin, as previously described: the most recent examples
with higher relevance are preferred to others for staying in
the changed data set. Regarding the oversampling strategy, the



generation of synthetic examples also assumes this tendency,
i.e., the new examples are built by prioritising the selection of
highly relevant and recent examples. The bias towards more
recent and high relevance examples is achieved in the selection
of a nearest neighbour for the interpolation, as follows:

• calculate the relevance of the k-nearest neighbours;

• calculate the time position of k-nearest neighbours by
ascending order and normalized to [0, 1];

• select the nearest neighbour with the highest value of
the product of relevance by time position.

In summary, for each of the two resampling strategies
considered (random undersampling and SmoteR), we have
proposed three new variants that try to incorporate some form
of sampling bias that we hypothesize as being advantageous
in terms of forecasting accuracy on imbalanced time series
tasks where the user favours the performance on rare values
of the series. The first variants (U B and SM B) carry out
sampling within relevance bins that are obtained with the goal
of including successive cases with similar relevance according
to the user preference. The second variants (U T and SM T)
add to the first variant a preference toward the most recent
cases within each bin as these are the cases that precede regime
transitions. Finally, the third variants (U TPhi and SM TPhi)
add a third preference to the sampling procedures, to also
include the relevance scores of the cases and avoid discarding
cases that may not be the most recent, but are the most relevant
for the user.

IV. MATERIALS AND METHODS

A. Data

The experiments described in this paper use data from 6
different sources, totaling 24 time series from diverse real-
world domains. For the purposes of evaluation we assumed
that each time series is independent from others of the same
source (i.e. we did not use the temperature time series data in
the Bike Sharing source to predict the count of bike rentals).
All proposed resampling strategies, in combination with each
of the regression tools, are tested on these 24 time series
which are detailed in Table I. All of the time series were pre-
processed to overcome some well-known issues with this type
of data, as is non-available (NA) observations. To resolve issues
of this type, we resorted to the imputation of values using the
R function knnImputation of the package DMwR [17]. For
each of these time series data sets we applied the previously
described approach of the time delay coordinate embedding.
It requires an essential parameter: how many values to include
as recent values, i.e. the size of the embed, k. This is not a
trivial task as it requires to try different values of embed size
in order to decide on an acceptable value. In our experiments
we have used k = 10. Experiments with a few other values
have not shown significant differences in results. The outcome
of the application of this embedding approach produces the
data sets we use as learning data.

For each of these data sets we need to decide which are
the relevant ranges of the time series variable. To this purpose,
we use a relevance function. As previously mentioned, due to
the lack of expert knowledge concerning the used domains,
we resort to an automatic approach to define the relevance

function, detailed in Ribeiro [15]. This approach uses box
plot statistics to derive a relevance function that assigns higher
relevance scores to values that are unusually high or low, i.e.
extreme and rare values. We use this process to obtain the
relevance functions for all our time series. An example of the
application of this approach, where only high extreme values
exist, is depicted in Figure 4, and in Figure 1 a case with two
extremes is shown. Having defined the relevance functions we
still need to set a threshold on the relevance scores above which
a value is considered important, i.e., the relevance threshold
tR. The definition of this parameter is domain dependent. Still,
we have used a relevance threshold tR of 0.9, which generally
leads to a small percentage of the values to be considered
important. In Table I we added an indication concerning the
proportion of rare cases (both very high and low values).
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Fig. 4. Relevance function φ() with high extreme values and box plot of Y
distribution.

B. Regression Algorithms

In order to test our assumptions we selected a diverse set
of standard regression tools. Our goal is to verify that our
conclusions are not biased by the choice of a particular tool.

Table II shows the regression methods used in our ex-
periments. To ensure that our work is easily replicable we
used the implementations of these tools available in the free
and open source R environment. All tools were applied using
their default parameter values. In addition to these standard
regression tools, we also include the ARIMA model [13],
which is considered to be a standard time series forecasting ap-
proach. Since ARIMA models also require a significant tuning
effort in terms of parameters, we used the auto.arima function
available in the R package forecast [18], which implements an
automatic search method for the optimal parameter settings.



TABLE I. DESCRIPTION OF THE DATA SETS USED.

ID Time Series Data Source Granularity Characteristics % Rare

DS1 Temperature

Bike Sharing [16]

Daily

From 01/01/2011

to 31/12/2012

(731 values)

9.9%

DS2 Humidity 9.3%

DS3 Windspeed 7.8%

DS4 Count of Bike Rentals 13.3%

DS5 Temperature

Hourly

From 01/01/2011

to 31/12/2012

(7379 values)

3.5%

DS6 Humidity 4.8%

DS7 Windspeed 12.5%

DS8 Count of Bike Rentals 17.6%

DS9 Flow of Vatnsdalsa River Icelandic River [19] Daily

From 01/01/1972

to 31/12/1974

(1095 values)

21.1%

DS10 Minimum Temperature

Porto weather1 Daily

From 01/01/2010

to 28/12/2013

(1457 values)

4.8%

DS11 Maximum Temperature 13.3%

DS12 Maximum Steady Wind 11%

DS13 Maximum Wind Gust 11.1%

DS14 SP

Istanbul Stock Exchange [20] Daily

From 05/01/2009

to 22/02/2011

(536 values)

16.3%

DS15 DAX 11.4%

DS16 FTSE 9.7%

DS17 NIKKEI 11.6%

DS18 BOVESPA 10.1%

DS19 EU 8.2%

DS20 Emerging Markets 6.8%

DS21 Total Demand Australian electricity

load [21]
Half-Hourly

From 01/01/1999

to 01/09/2012

(239602 values)

1.8%

DS22 Recommended Retail Price 10.2%

DS23 Pedrouços Water Consumption of

Oporto2 Half-Hourly
From 06/02/2013

to 11/01/2016

(51208 values)

0.08%

DS24 Rotunda AEP 3.4%

1 Source: Freemeteo http://freemeteo.com.pt/
2 Source: Águas do Douro e Paiva http://addp.pt/

TABLE II. REGRESSION ALGORITHMS AND RESPECTIVE R PACKAGES

ID Method R package

LM Multiple linear regression stats [22]

SVM Support vector machines e1071 [23]

MARS Multivariate adaptive regression splines earth [24]

RF Random forests randomForest [25]

C. Evaluation Metrics

It is known that when the interest of the user is predictive
performance at a small proportion of cases (i.e. rare cases), the
use of standard performance metrics will lead to biased conclu-
sions [15]. In effect, standard metrics focus on the “average”
behaviour of the prediction models and for the tasks addressed
in this paper, the user goal is a small proportion of cases.
Although most of the previous studies on this type of issues
are focused on classification tasks, Torgo and Ribeiro [26],
[15] have shown that the same problems arise on regression
tasks when using standard metrics, such as Mean Squared
Error. Moreover, these authors have shown that discretizing
the target numeric variable into a nominal variable followed
by the application of classification algorithms is also prone to
problems and leads to sub-optimal results.

In this context, we will base our evaluation on the utility-
based regression framework proposed in the work by Torgo and
Ribeiro [26], [15] which assumes the existence of a relevance
function φ, as previously described. Using this approach and
the user-provided relevance threshold, the authors defined a
series of metrics that focus the evaluation of models on the
cases that the user is interested. In our experiments we used
the value 0.9 as relevance threshold.

The evaluation process of the prediction models will mainly
rely on one utility-based regression metric: F-Score. This is a
composite measure that integrates the values of precision and
recall according to their adaptation for regression described in
the above mentioned utility-based evaluation framework.

V. EXPERIMENTAL EVALUATION

This section presents the results of our experimental eval-
uation on three sets of experiments concerning forecasting
tasks with imbalanced time series data sets. Each of these
experiments were designed with the objective of testing the
assumptions set forth in Section II. In the first set we eval-
uate the predictive accuracy of standard regression tools in
combination with the proposed resampling strategies. In the
second set of experiments, the evaluation is focused on the
task of inferring the possibility of the biased resampling
strategies over-performing the non-biased strategies. Finally, in
the third set, we evaluate the assumption of enabling a better
predictive performance of models using standard regression
tools with resampling strategies over ARIMA models, which
are considered a standard time series forecasting approach. The
ARIMA models and all of the proposed resampling strategies
combined with each of the standard regression tools were
tested on 24 real-world time series data sets, obtained from
six different data sources described in Table I. As previously
stated, we will base our evaluation process in the evaluation
metric F1-Score as described by the referred utility-based
regression framework, detailed in Section IV-C. Concerning
the testing of our assumptions, we resort to paired comparisons
using Wilcoxon signed rank tests in order to infer the statistical



significance (with p−value < 0.05) of the paired differences
in the outcome of the approaches.

Concerning evaluation algorithms, caution is required in
the decision on how to obtain reliable estimates of the evalua-
tion metrics. Since time series data are temporally ordered, we
must ensure that the original order of the cases is maintained
as to guarantee that prediction models are trained with past
data and tested with future data, thus avoiding over-fitting
and over-estimated scores. As such, we rely on Monte Carlo
estimates as the chosen experimental methodology for our
evaluation. This methodology selects a set of random points in
the data. For each of these points a past window is selected as
training data (Tr) and a subsequent window as test data (Ts).
This methodology guarantees that each method used in our
forecasting task is evaluated using the same training and test
sets, thus ensuring a fair pairwise comparison of the estimates
obtained. In our evaluation 50 repetitions of the Monte Carlo
estimation process are carried out for each data set with 50%
of the cases used as training set and the subsequent 25% used
as test set. Exceptionally, due to their size, in the case of the
data sets DS21 and DS22 we used 10% of the cases as training
set and the following 5% as test set, and 20% of the cases as
training set and the following 10% as test set for data sets DS23
and DS24. This process is carried out using the infrastructure
provided by the R package performanceEstimation [27].

In order to clarify the nomenclature associated with the
standard regression tools used in this evaluation process, the
experiments include results given by multiple linear regression
(LM), support vector machine (SVM), multivariate adaptive
regression splines (MARS) and random forest (RF) models.
As for the resampling strategies, we use random undersampling
(U B), SmoteR (SM B), undersampling (U T) and SmoteR
(SM T) with temporal bias, and undersampling (U TPhi) and
SmoteR (SM TPhi) with temporal and relevance bias. The
overall results given the F1-Score evaluation metric proposed
by Ribeiro [15], obtained by Monte Carlo estimates, concern-
ing all 24 time series data sets are presented in Table III.
Results in bold show the best approach within each group
of resampling strategies. The non-resampled approaches are
denoted in bold when their result is as good or better then
one of the best results obtained by approaches employing
resampling strategies (also denoted in bold), with respect to
a given standard regression tool. The ARIMA models are
denoted in bold when their result is as good or better than
one of the best results obtained by approaches employing
resampling strategies overall, for a given data set.

From the obtained results, we observe that the application
of resampling strategies shows great potential in terms of
boosting the performance of forecasting tasks using imbal-
anced time series data. This is observed within each of the
standard regression tools used (vertical analysis), but also
regarding the data sets used (horizontal analysis), where it
is clear that the approaches employing resampling strategies
obtain the best results according to the averaged F1-Score
evaluation metric.

A. Assumption 1

The first assumption brought forth in our work proposes
that the use of resampling strategies significantly improves the

predictive accuracy of imbalanced time series forecasting tasks
in comparison to the use of standard regression tools. Although
results presented in Table III point to the confirmation of this
assumption, it still remains unclear the degree of statistical
significance concerning the difference in evaluation between
the use or non-use of resampling strategies combined with
standard regression tools.

Table IV presents the paired comparisons of the application
of random undersampling (U B) and SmoteR (SM B), and
the standard regression tools without any applied resampling
strategy. The information in the columns represents the number
of wins and losses for each approach against the baseline. In
this case, the baseline represents the regression tools without
the application of resampling strategies.

It is shown that the use of resampling strategies adds
a significant boost in terms of forecasting relevant cases in
imbalanced time series data, when compared to its non-use,
in all standard regression tools employed in the experiment.
Therefore, these experiments provide strong empirical evi-
dence to confirm our first assumption.

B. Assumption 2

The second assumption states that the use of a temporal
and/or relevance bias in resampling strategies significantly
improves the predictive accuracy of time series forecasting
tasks in comparison to the baseline versions of each respective
strategy. In order to prove this assumption, results in Table V
present the paired comparisons of the application of the resam-
pling strategies U T, U TPhi, SM T and SM TPhi, against
the respective resampling strategies U B and SM B, for each
standard regression tool. For this experiment set, the baseline is
defined as being the application of random undersampling and
SmoteR in their initial adaptation to imbalanced time series.

Results show an overall advantage of the use of temporal
and/or relevance bias in the case selection process of the
resampling strategies used in our experiments. In the case of
U T and SM T, we observe similar results when combined
with the SVM models in comparison with the baseline, with
an advantage to the latter. Nonetheless, the application of
the temporal and relevance bias approach in the resampling
strategies shows a clearly superior performance independently
of the regression tool employed, thus showing strong empirical
evidence to confirm our second assumption.

C. Assumption 3

The third assumption proposed in our work is that the use
of resampling strategies significantly improves the predictive
accuracy of time series forecasting tasks in comparison to the
use of ARIMA models. As previously referred, the ARIMA
models are commonly pointed as a standard approach to
time series forecasting. In this context, we want to check if
our proposals based on resampling are able to significantly
improve the predictive performance of these models. We stress
again that in this evaluation we employed a version of the
ARIMA models which automatically searches for the optimal
number of past values to build the embed, while the standard
regression tools are used with their default parameter settings
and only enhanced through our resampling strategies.



TABLE III. EVALUATION RESULTS OF BASELINE REGRESSION ALGORITHMS AND THE APPLICATION OF THE RESAMPLING STRATEGIES OVER 24 DATA

SETS, GIVEN BY THE AVERAGE OF THE UTILITY-BASED REGRESSION METRIC F1-SCORE.

Model DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12

lm 0.027 0.027 0.154 0.219 0.000 0.000 0.027 0.244 0.100 0.161 0.033 0.147

U B 0.208 0.434 0.307 0.383 0.161 0.069 0.204 0.352 0.099 0.418 0.141 0.382

U T 0.210 0.424 0.308 0.380 0.163 0.070 0.205 0.343 0.116 0.416 0.152 0.391

U TPhi 0.207 0.439 0.318 0.389 0.170 0.082 0.225 0.434 0.113 0.467 0.159 0.402

SM B 0.231 0.443 0.330 0.412 0.203 0.146 0.276 0.389 0.118 0.416 0.191 0.437

SM T 0.241 0.416 0.340 0.419 0.200 0.170 0.306 0.388 0.166 0.417 0.183 0.439

SM TPhi 0.266 0.423 0.336 0.421 0.206 0.177 0.319 0.436 0.167 0.461 0.186 0.452

svm 0.107 0.000 0.063 0.082 0.021 0.000 0.027 0.496 0.083 0.196 0.053 0.051

U B 0.162 0.256 0.179 0.230 0.221 0.181 0.238 0.526 0.278 0.394 0.168 0.261

U T 0.175 0.254 0.170 0.246 0.218 0.187 0.244 0.524 0.277 0.393 0.165 0.252

U TPhi 0.179 0.243 0.198 0.260 0.217 0.234 0.294 0.512 0.268 0.464 0.186 0.260

SM B 0.171 0.283 0.221 0.274 0.235 0.269 0.313 0.539 0.292 0.279 0.225 0.315

SM T 0.214 0.294 0.211 0.294 0.225 0.259 0.324 0.535 0.226 0.290 0.230 0.305

SM TPhi 0.229 0.297 0.211 0.292 0.223 0.279 0.349 0.527 0.216 0.375 0.253 0.318

mars 0.044 0.089 0.192 0.213 0.005 0.000 0.044 0.406 0.116 0.172 0.067 0.162

U B 0.204 0.299 0.236 0.341 0.191 0.097 0.228 0.457 0.142 0.393 0.111 0.349

U T 0.228 0.294 0.239 0.367 0.193 0.096 0.232 0.458 0.138 0.396 0.120 0.341

U TPhi 0.243 0.291 0.282 0.355 0.200 0.115 0.250 0.461 0.150 0.466 0.140 0.352

SM B 0.251 0.369 0.325 0.400 0.236 0.184 0.296 0.479 0.144 0.387 0.211 0.410

SM T 0.293 0.361 0.315 0.402 0.219 0.193 0.323 0.494 0.175 0.372 0.224 0.397

SM TPhi 0.307 0.393 0.349 0.405 0.223 0.201 0.333 0.507 0.173 0.430 0.229 0.396

rf 0.010 0.010 0.000 0.198 0.032 0.000 0.060 0.476 0.150 0.112 0.043 0.041

U B 0.142 0.122 0.079 0.260 0.201 0.119 0.222 0.520 0.150 0.381 0.102 0.164

U T 0.133 0.124 0.080 0.270 0.207 0.118 0.225 0.517 0.143 0.378 0.094 0.159

U TPhi 0.148 0.131 0.088 0.267 0.203 0.142 0.245 0.499 0.145 0.472 0.096 0.164

SM B 0.151 0.181 0.096 0.309 0.129 0.095 0.206 0.521 0.156 0.234 0.119 0.203

SM T 0.169 0.213 0.083 0.323 0.115 0.087 0.220 0.521 0.163 0.225 0.133 0.206

SM TPhi 0.180 0.224 0.084 0.329 0.138 0.125 0.257 0.508 0.170 0.418 0.136 0.233

ARIMA 0.015 0.000 0.158 0.231 0.000 0.000 0.037 0.184 0.147 0.179 0.039 0.137

DS13 DS14 DS15 DS16 DS17 DS18 DS19 DS20 DS21 DS22 DS23 DS24

lm 0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.218 0.394 0.123 0.417

U B 0.419 0.059 0.026 0.152 0.057 0.035 0.158 0.012 0.219 0.508 0.168 0.453

U T 0.426 0.085 0.049 0.187 0.053 0.030 0.154 0.032 0.219 0.509 0.170 0.455

U TPhi 0.445 0.068 0.051 0.161 0.079 0.031 0.148 0.024 0.218 0.505 0.174 0.458

SM B 0.466 0.145 0.062 0.204 0.183 0.067 0.197 0.020 0.219 0.519 0.164 0.456

SM T 0.462 0.157 0.119 0.170 0.135 0.107 0.215 0.063 0.219 0.351 0.163 0.462

SM TPhi 0.476 0.164 0.112 0.183 0.150 0.117 0.218 0.053 0.218 0.344 0.168 0.472

svm 0.109 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.216 0.484 0.176 0.427

U B 0.316 0.109 0.006 0.099 0.059 0.024 0.061 0.002 0.218 0.405 0.270 0.470

U T 0.302 0.080 0.002 0.103 0.060 0.016 0.051 0.004 0.218 0.406 0.256 0.472

U TPhi 0.344 0.107 0.031 0.093 0.127 0.033 0.084 0.014 0.217 0.412 0.282 0.453

SM B 0.371 0.205 0.033 0.144 0.142 0.073 0.080 0.007 0.217 0.410 0.180 0.469

SM T 0.348 0.161 0.064 0.113 0.160 0.080 0.062 0.006 0.217 0.305 0.165 0.477

SM TPhi 0.372 0.191 0.074 0.153 0.187 0.078 0.080 0.012 0.217 0.324 0.198 0.453

mars 0.132 0.018 0.000 0.008 0.000 0.000 0.004 0.020 0.218 0.362 0.155 0.423

U B 0.372 0.117 0.022 0.080 0.067 0.034 0.026 0.000 0.218 0.350 0.224 0.474

U T 0.386 0.166 0.029 0.080 0.070 0.045 0.014 0.010 0.218 0.354 0.221 0.475

U TPhi 0.391 0.126 0.038 0.084 0.085 0.034 0.041 0.015 0.218 0.368 0.221 0.454

SM B 0.423 0.242 0.098 0.226 0.205 0.144 0.136 0.007 0.218 0.345 0.178 0.473

SM T 0.414 0.232 0.094 0.196 0.193 0.145 0.179 0.059 0.218 0.303 0.164 0.482

SM TPhi 0.429 0.240 0.113 0.195 0.217 0.179 0.199 0.063 0.217 0.322 0.197 0.464

rf 0.098 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.215 0.398 0.179 0.429

U B 0.193 0.036 0.004 0.058 0.002 0.037 0.023 0.003 0.225 0.428 0.161 0.476

U T 0.205 0.048 0.000 0.063 0.008 0.028 0.028 0.000 0.225 0.428 0.170 0.480

U TPhi 0.208 0.039 0.003 0.058 0.007 0.033 0.057 0.000 0.218 0.409 0.223 0.452

SM B 0.230 0.084 0.006 0.097 0.060 0.071 0.050 0.000 0.217 0.423 0.239 0.464

SM T 0.240 0.075 0.004 0.049 0.061 0.074 0.035 0.016 0.218 0.388 0.228 0.479

SM TPhi 0.261 0.084 0.014 0.045 0.089 0.100 0.028 0.016 0.217 0.377 0.242 0.462

ARIMA 0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.218 0.387 0.148 0.427

TABLE IV. PAIRED COMPARISONS RESULTS OF EACH REGRESSION

ALGORITHM BASELINE WITH THE APPLICATION OF RESAMPLING

STRATEGIES, IN THE FORMAT NUMBER OF WINS (STATISTICALLY

SIGNIFICANT WINS) / NUMBER OF LOSSES (STATISTICALLY SIGNIFICANT

LOSSES).

LM SVM MARS RF

U B 22 (21) / 2 (1) 24 (21) / 0 (0) 23 (19) / 1 (0) 23 (19) / 1 (0)

SM B 23 (23) / 1 (1) 23 (21) / 1 (0) 23 (21) / 1 (1) 22 (21) / 2 (0)

The results from the paired comparisons of all the ap-
proaches employing resampling strategies and the ARIMA
models (considered the baseline) are presented in Table VI.

Results show that independently of the regression tool used,
the application of resampling strategies provides a highly sig-
nificant improvement over the results obtained by the ARIMA

TABLE V. PAIRED COMPARISONS RESULTS OF EACH REGRESSION

ALGORITHM WITH BASELINE RESAMPLING STRATEGIES AND THE

APPLICATION OF BIASED RESAMPLING STRATEGIES, IN THE FORMAT

NUMBER OF WINS (STATISTICALLY SIGNIFICANT WINS) / NUMBER OF

LOSSES (STATISTICALLY SIGNIFICANT LOSSES).

LM.U B SVM.U B MARS.U B RF.U B

U T 16 (7) / 8 (1) 11 (1) / 13 (1) 19 (3) / 5 (0) 14 (1) / 10 (2)

U TPhi 19 (10) / 5 (2) 15 (9) / 9 (6) 19 (8) / 5 (1) 17 (5) / 7 (3)

LM.SM B SVM.SM B MARS.SM B RF.SM B

SM T 14 (7) / 10 (2) 11 (5) / 13 (8) 13 (8) / 11 (4) 15 (8) / 9 (5)

SM TPhi 18 (12) / 6 (3) 12 (8) / 12 (6) 16 (11) / 8 (2) 17 (13) / 7 (4)

models. This goes to show the validity of our third and final
assumption. Additionally, we also observe that results show
a consistent advantage for the temporal and relevance bias



TABLE VI. PAIRED COMPARISONS RESULTS OF ARIMA AND THE

APPLICATION OF RESAMPLING STRATEGIES IN EACH REGRESSION

ALGORITHM, IN THE FORMAT NUMBER OF WINS (STATISTICALLY

SIGNIFICANT WINS) / NUMBER OF LOSSES (STATISTICALLY SIGNIFICANT

LOSSES).

Algorithm Strategy ARIMA

LM

U B 22 (21) / 2 (2)

U T 23 (23) / 1 (1)

U TPhi 22 (22) / 2 (2)

SM B 22 (22) / 2 (2)

SM T 23 (22) / 1 (1)

SM TPhi 23 (22) / 1 (1)

SVM

U B 23 (18) / 1 (0)

U T 24 (18) / 0 (0)

U TPhi 23 (21) / 1 (0)

SM B 24 (20) / 0 (0)

SM T 22 (20) / 2 (0)

SM TPhi 22 (22) / 2 (1)

MARS

U B 21 (19) / 3 (1)

U T 21 (19) / 3 (1)

U TPhi 21 (20) / 3 (0)

SM B 21 (20) / 2 (2)

SM T 22 (20) / 2 (2)

SM TPhi 22 (21) / 2 (2)

RF

U B 22 (18) / 2 (2)

U T 20 (18) / 4 (1)

U TPhi 20 (18) / 4 (1)

SM B 20 (19) / 4 (2)

SM T 21 (19) / 3 (1)

SM TPhi 21 (19) / 3 (2)

approach in combination with the SmoteR resampling strategy,
in all regression tools.

VI. RELATED WORK

Despite an extensive research process, we did not find any
previous work that proposes the use of resampling strategies
for forecasting tasks with imbalanced time series data. How-
ever, we found different approaches related to the scope of
our endeavour, in the problems of rare event forecasting and
anomaly detection, which we describe below.

A genetic-base machine learning system, timeweaver, was
proposed by Weiss and Hirsh [28], designed to address rare
event prediction problems with categorical features, by identi-
fying predictive temporal and sequential patterns. The genetic
algorithm used is responsible for updating a set of prediction
patterns, where each individual should perform well at clas-
sifying a subset of the target events and which collectively
should cover most of those events.

Vilalta and Ma [29] proposed an algorithm to address
prediction of rare events in imbalanced time-series. The au-
thors proposed to resolve the class-imbalance by transforming
the event prediction problem into a search for all frequent
event sets (patterns) preceding target events, focused solely
on the minority class. These patterns are then combined into
a rule-based model for prediction. Both the work of Weiss
and Hirsh [28] and of Vilalta and Ma [29] assume that events
are characterized by categorical features and display uneven
inter-arrival times. However, this is not assumed in classical
time-series analysis.

Temporal sequence associations are used by Chen et
al. [30] for predicting rare events. The authors propose a
heuristic for searching interesting patterns associated with
rare events in large temporal event sequences. The authors
combine association and sequential pattern discovery with a
epidemiology-based measure of risk in order to assess the
relevance of the discovered patterns.

In anomaly detection [31] problems, applications for sev-
eral domains have been proposed using diverse techniques. In
the Medical and Public Health Domain, Lin et al. [32] use near-
est neighbor based techniques to detect these rare cases. These
same techniques are used by Basu and Mackenshimer [33] and
parametric statistical modelling is used by Keogh et al. [34]
in the domain of mechanical units fault detection. Finally,
Scott [35] and Ihler et al. [36] propose Poisson-based analysis
techniques for the respective domains of intrusion detection in
telephone networks and Web Click data.

VII. CONCLUSIONS

In this work we study the application of resampling strate-
gies with imbalanced time series data. Our overall objective is
to enhance the predictive accuracy on rare and relevant cases
as this is the objective in several application domains. This fact
increases the interest in finding ways to significantly improve
the predictive accuracy of prediction models in these tasks.

In this context, we have proposed the extension of ex-
isting resampling methods to time series forecasting tasks.
Resampling methods can be used to change the distribution
of the available learning sets with the goal of biasing learning
algorithms to the cases that are more relevant to the users. Our
proposals build upon prior work on resampling methods for
numeric prediction tasks. Besides the extension of known re-
sampling strategies, we propose new resampling strategies with
the goal of adapting them to the specific characteristics of time
series data. Specifically, we have proposed sampling strategies
that introduce a temporal bias that we claim to be useful when
facing non-stationary time series that are frequently subjected
to concept drift. We also propose a relevance bias that makes
more relevant cases have a higher probability of being selected
for the final training sets.

An extensive set of experiments was carried out to ascertain
the advantages of applying resampling strategies to such prob-
lems. Results from the experimental evaluation show that we
were able to significantly improve the predictive accuracy of
the models, focusing on rare and relevant cases of imbalanced
time series data. Results show that 1) the application of
resampling strategies in combination with standard regression
tools significantly improves the ability to predict rare and
relevant cases in comparison to not applying these strategies;
2) the use of a temporal and/or relevance bias improves the
results in relation to the non-biased resampling approaches;
and 3) the combination of resampling approaches with standard
regression tools provide a significant advantage in comparison
to the time series focused ARIMA models.

Concerning future work, we plan to further evaluate these
proposals concerning the effect of parameters values such as
the relevance threshold or the k number of nearest neighbours
in SmoteR, and study ways of automatically adapting these
parameters to the distribution. We also plan to generalize



the concept of bias in resampling strategies as to study the
possibility of its use not only in time series problems, but also
in classification and regression tasks using various types of
dependency-oriented data, such as discrete sequences, spatial
and spatiotemporal data.

For the sake of reproducible science, all code and data
necessary to replicate the results shown in this paper are
available in the Web page http://tinyurl.com/hbtquqw. All code
is written in the free and open source R software environment.
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