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Abstract—Through the years, several CAD systems have been
developed to help radiologists in the hard task of detecting signs of
cancer in the numerous screening mammograms. A more recent
trend includes the development of pre-CAD systems aiming at
identifying normal mammograms instead of detecting suspicious
ones. Normal breasts are screened-out from the process, leaving
radiologists more time to focus on more difficult cases.

In this work, a new approach for the identification of
normal breasts is presented. Considering that even breasts with
malignant findings are mostly constituted by normal tissue, the
breast area is divided into blocks which are then compared
pairwise. If all blocks are very similar, the breast is labelled
as normal, and as suspicious otherwise. Features characterizing
the pairwise block similarity and characterizing the intra-block
pixel distribution are used to design a predictive method based on
machine learning techniques. The proposed solution was applied
on a real world screening setting composed by nearly 18000
mammograms. Results are similar to the more complex state
of the art approaches by correctly identifying more than 20% of
the normal mammograms. These results suggest the usefulness
of the relative comparison instead of the absolute classification.
When properly used, simple statistics can suffice to distinguish
the clearly normal breasts.

I. INTRODUCTION

Screening mammography is performed in the asymp-
tomatic population to detect early signs of breast cancer such
as masses, microcalcifications (MCs), bilateral asymmetry and
architectural distortions (AD). Diagnostic mammography is
performed on patients who have already demonstrated ab-
normal clinical findings [1]. Both screening and diagnostic
mammography are performed by radiologists who visually
inspect mammograms [1]. This is not an easy task: mammo-
grams generally have low contrast. Mammograms show normal
structures such as fat, fibroglandular tissue, breast ducts and
nipples, as well as possible abnormalities. Although fat appears
as black regions on mammograms, everything else appear as
levels of white, making it hard to distinguish between normal
and abnormal tissue [2]. Furthermore, due to the advised two
year interval screening routines for women between 45 and 69
years old (taking Portugal as an example), there is a large
number of mammograms to be analysed every day. As a
consequence, during manual screening radiologists may get
easily worn-out, missing vital clues while studying the scans.

Supporting these facts, studies have shown radiologists
have an error rate of 10% to 30% for detection of cancer in
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screening mammograms [1], [3]. As a result, a high proportion
of women without cancer (false positive (FP) cases) undergo
further unnecessary clinical evaluation or breast biopsy which
can lead to needless anxiety. Moreover, in false negative (FN)
cases, the best time interval for the treatment of cancer can
be missed, thus potentially endangering the patient. In either
case, the costs associated with errors of misclassification are
considerable, including emotional and economic burden, or
even loss of life. To overcome these limitations, double reading
of mammograms has been advocated. The idea is to have two
radiologists reading the same mammographic images. This has
been shown to increase sensitivity (equivalent to decrease the
number of FN. However, the workload and cost associated with
double reading remain high, and still susceptible to human
error.

The assumption made in this work is that, in screening,
a substantial proportion of normal cases can be automatically
detected, alleviating the human effort and giving the specialist
more time to carefully evaluate more ambiguous cases. Since,
in general, only 0.5% of mammograms present an anomaly [4],
[5], pre-CAD systems have a high potential in screening
programs. Although several Computer-Aided Detection and
Diagnosis (CAD) systems have been developed and studied,
little research has been done on the development of screening
systems (also known as Pre-CADs or Normal mammogram
detection or analysis).

II. STATE OF THE ART

Sun et al. [4] propose a two-stage system for normal
mammogram identification. After a pre-processing stage, four
types of features are extracted from overlapping blocks of size
512 x 512, namely curvilinear features, texture features, Gabor
features and Multi-resolution features. Each block is then
classified by a Constrained Binary Decision Tree. If the result
is not abnormal, the block is classified as normal. Otherwise,
a second linear classifier is used to further distinguish between
suspicious and normal blocks. As there is an overlap between
blocks, each pixel is classified five times. A majority voting is
used to make the final pixel decision. Finally, the full image is
considered as suspicious if one or more pixels are abnormal,
otherwise, the mammogram is classified as normal. Experi-
ments made on Digital Database for Screening Mammography
(DDSM) retrieved a True Positive rate (TPr) of 0.82 and a True
Negative rate (TNr) of 0.75.
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Fig. 1: Block diagram of the proposed methodology.

In [5], a traditional two-class classifier is compared with
a one-class classifier. For the one class classifier, only the
normal features are used for training. The assumption behind
the use of the one class classifier approach is that the normal
mammograms have less variability when compared to the
abnormal mammograms which have a very wide variation of
lesion type and shape. Classification was made per block and
a majority voting approach was used to classify the full breast
by combining CranioCaudal (CC) and MedioLateral Oblique
(MLO) information. Results on the DDSM database show that
separating the mammograms according to density reduces the
False Negative rate (FNr) while keeping the False Positive
rate (FPr) as low as possible. Moreover, the one-class SVM
outperformed the two-class SVM. After settling the appropri-
ate classifier to use, the team studied the feature extraction
step. In [6], three different sets of textural features based
on Local Binary Patterns (LBP) were assessed. GrayLevel
Co-Ocurrence Matrix (GLCM) features were studied in [7].
Finally, in [8], LBP and GLCM features were compared. It was
observed using DDSM that GLCM is a good feature for fatty-
tissue, while LBP behaves better in dense-tissue mammograms.
Moreover, the sensitivity for each tissue type was improved
when compared to the sensitivity of using all mammograms
regardless of tissue type. Results of the recall rate varied from
97.34% to 99.75%.

The paper [9] presents a one-class classification pipeline
for the classification of mammogram images into normal and
abnormal. Because of the sparse distribution of abnormal
mammograms, the two-class classification problem is reduced
to a one-class outlier identification problem. Trace transform,
which is a generalization of the Radon transform, is applied
to extract the features. Using a private database, an accuracy
rate of 92.48% is obtained with a Gaussian Mixture Model
(GMM) classifier.

In the study [10], three combinations of wavelet and
Fourier features, including Db2, Db4, and Bior 6.8 are
tested. Classification into normal or suspicious using a pri-
vate database is made with three classifiers, including Back-
propagation Network, Linear Discriminant Analysis, and Naive
Bayes. Best results are attained using Bior and Fourier Fea-
tures and back-propagation Network: TP= 500, FP= 21,
FN= 21, TN= 128, Sensitivity= 95.9%, Specificity= 85.9%,
Accuracy= 93.7%.

III. PROPOSED METHODOLOGY

Typically the attempts to recognize normal cases in the
screening setting divide the breast region in blocks, each block
is individually classified as benign or suspicious. Only when all
the blocks are marked as normal is the case marked as such.
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In these approaches, it is necessary to learn a robust block
classifier that works under the typical variability observed in
this application. This is far from being an easy task, and
researchers resort to complex descriptors [9] and complex
decision models [10].

In here we follow a different approach. We argue that even
in a mammogram with malignant findings, most of the breast
tissue is normal. Therefore, we split the breast in different
blocks and compare them pairwise. If all the blocks are very
similar to each other, we assume to be in the presence of
a benign case; if a high dissimilarity between two blocks is
found we mark the case as suspicious. By comparing blocks
pairwise inside the same image, the variability observed due to
external causes will impact all blocks and tend to cancel out,
hopefully simplifying the decision task. The breast labeling as
benign or suspicious is based on the joint analysis of the MLO
and CC views, and all operations are applied only inside the
breast ROI. A block diagram of the main steps of the proposed
methodology is presented in Figure 1.

A. Pre-Processing

Pre-processing is the first step of every traditional image
processing pipeline. In the case of mammograms, typical
pre-processing techniques include: noise reduction, image en-
hancement, background exclusion, orientation homogeniza-
tion, pectoral muscle identification, among others [11], [12].

Concerning background exclusion and orientation homog-
enization, standard techniques were used. First, the image
laterality information stored in the DICOM header is used
to orientation homogenization: those images where the nipple
faces left are vertically mirrored. The breast area is selected
using Otsu’s threshold applied not directly to the image but to a
gamma over-compensated image to emphasize the differences
between background and breast area (Figure 2b). The breast
area is considered to be the largest blob in the resulting binary
image. An opening morphological operation is at last applied
to eliminate undesired connections between the breast ROI
and background non-homogeneous areas. Finally, the pectoral
muscle segmentation task is accomplished by an algorithm
based on the shortest path on a graph [12]. Figure 2c show
the resulting breast mask.

Although enhancement techniques usually figure in the pre-
processing modules, the use of Full Field Digital Mammo-
grams (FFDM) usually circumvents the need to use them.
However, digital mammograms may present an overexposed
area in the peripheral part of the breast characterized by
lower intensities and contrast. This happens because the breast
is pressed during the mammography exam resulting in non-
uniform thickness across the breast, which is particularly
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Fig. 2: Orientation homogenization, background exclusion, and pectoral muscle suppression examples for a right MLO view.

thinner in the peripheral area [13]. In here, the correction of
peripheral area intensities is accomplished by adaptive gamma
intensity correction, with gamma values weighted by the pixels
distances to the skin line. To do so, the Euclidean distance map
is obtained by computing the distance d of each pixel to the
skin line (Figure 2d). The gamma correction factor for each
pixel intensity is then obtained as a sigmoid function of its
distance to the skin line: v = m, where k1 and ko
are constants controlling the strongest gamma correction and
the decrease rate of the correction with the distance to the skin
line. Therefore, pixels in the peripheral areas will be assigned
lower gamma values, meaning that they will be more strongly
corrected to brighter values. Figure 2e shows the mammogram
from Figure 2 after the correction of the over-exposition.

B. Feature Extraction

To assess the benignancy of a mammogram, the breast
ROI is divided in overlapping blocks, both horizontally and
vertically (see Figure 3). For each view, the distance between
each pair of blocks histograms is calculated as a measure
of similarity between them. Given h; and h;, the cumulative
histograms of two distinct blocks ¢ and j, normalized to have
unitary area, the distance D(i,j) between them is calculated
as follows:

nbins

D(i,j) = Y |hi(n) = hi(n)], M

where nbins corresponds to the number of bins in the histogram
(255 in our work). We also record for each horizontal block
the median and the 95" and 5t" percentiles. The difference
between the 95" and 5! percentiles (pgs — ps) is a measure
of the spread of the intensities, which is expected to be higher
on non-homogeneous blocks such as the ones containing
malignant findings.

C. Predictive Modeling

In the design of a predictive model we considered both
a fully data driven approach and a design driven by expert
knowledge.

1) Data Driven (DD) Methodology: In a fully data driven
methodology we inputted all the 15 + 15 + 6 + 6 features
(CC pairwise blocks distance + MLO pairwise blocks distance
+ block medians + block intensity spread) to a machine
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(a) CC view (b) CC view
horizontal vertical blocks
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Fig. 3: Feature extraction methodology: breast area is divided
in vertical and horizontal overlapping blocks.

learning algorithm armed with a feature selection technique.
We evaluated a generative approach (a Gaussian model - GM,
both in the heteroscedastic and the homoscedastic versions),
a probabilistic discriminant model (logistic regression - LR)
and a non-probabilistic model (SVM), both the two-class
and the one-class classifier versions). For feature selection
we considered the mRMR (minimum redundancy maximum
relevance) method [14].

Since the benign breast identification is both an example
of cost-sensitive learning [15] (the two possible types of errors
have quite different costs) and class imbalance (one class
occurs much more often than the other), the straightforward
option of deciding for the class with the highest a posteriori
probability does not lead to an acceptable performance.

The identification of normal breasts is intended to function
as a “first look”, automatically screening out normal mammo-
grams without further human analysis. Therefore, it is of major
importance to keep the number of FN near to zero even if it
compromises a higher percentage of normal breasts correctly
marked as such. In the case of a FN, an early breast cancer
can be missed jeopardizing the best interval time to treat it
with success, which is exactly the opposite of the purpose
of screening routines. As such, the design should be driven
to an operating point where the error in the suspicious cases
is low enough. Therefore, for all the three design options,
we start by estimating the a posteriori probability for the
classes. For the generative model, the a posteriori probability
is computed using Bayes formula; the LR outputs directly the
posteriori probability; for the SVM, the output is transformed



using a log-sigmoid to provide estimations for the a posteriori
probabilities. Then the threshold decision can be chosen to set
the operating point in a suitable value.

Quite often, the performance of the models is analyzed with
ROC curves (obtained by just varying the threshold decision),
and measures extracted from it (like the area under the curve
- AUC). However, the analysis of the complete curve is of no
interest for us; only the operating points close to one of the
endings of the curve are interesting.

Finally, the performance of the classification task is evalu-
ated both in terms of breast and case classifications. A case is
classified as normal if both breasts are normal or suspicious if
otherwise. Once more, TNr and FNr are used as performance
metrics, where negative stands for normal and positive for
suspicious breasts or cases.

2) Expert Driven (ED) Methodology : Brighter areas may
be malignant findings or be associated with areas of the breast
with denser tissue, which have also been related to increased
probability of breast cancer [16]. As such, we considered using
information only from the view containing the block with the
highest median value. The blocks histograms’ distances of
this view are computed and inputted to the machine learning
classifier. Two options were considered: using the maximum
distance or the variance between all distances of the selected
view. The effect of the number of blocks was also considered.
In either case, the learning method received a second feature
corresponding to pgs — ps, the difference between the 95" and
5" percentiles of the block with the highest median value.
Since only two features are used in this methodology, no
feature selection mechanism is needed. For the design and
evaluation of the classifiers we followed the same protocol
as in the data driven methodology.

IV. EXPERIMENTAL VALIDATION
A. Dataset

The mammograms used in this work were acquired by
several Liga Portuguesa Contra o Cancro’ units during the
screening routines carried on at the district of Evora, Portugal.
Images from screening cases between 2008 and 2013 were
used. A total of 4 485 cases were collected, all having 2
images (CC and MLO views) of each breast. This sums to
a total of 8 970 breast scans and 17 940 mammograms. All
the mammograms are FFDM and were saved in the DICOM
format.

This LPCC dataset includes normal mammograms and
mammograms with malignant findings such as masses, MCs
and AD. The frequency of normal and suspicious cases is in ac-
cordance with their usual distribution on the screening setting:
only 27 cases (0.6%) of the cases are cancer, corresponding
to 28 breasts with suspicious findings.

B. Results

When analyzing per breast, the best results for each lear-
ning method, for the DD methodology, are plotted in Figure 4.
As can be observed, the performance of the GM and the
LR methods is very similar: both can identify 16% of the
normal breasts without misclassifying any suspicious breast.
The SVM seems to be the most promising though, achieving
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Fig. 4: Results for the GM, the LR and the SVM under the
data driven methodology.

an automation rate of 21% without any FN (results obtained for
the binary SVM with a polynomial kernel of second degree).
However, accepting a small FNr does not increase significantly
the TNr of all models.

Proceeding similarly for the ED methodology we obtained
the results in Figure 5. The best results were obtained when
using the maximum distance instead of the variance between
all distances of the selected view. For both block division
strategies, namely using only horizontal blocks (Figure 5a) or
both horizontal and vertical blocks (Figure 5b), SVM seems
again to be the best option, providing better operating points.
Using horizontal blocks only, it enables to automate 15% of the
normal breasts, without misclassifying any suspicious breast;
an automation rate of 23% is obtained when accepting a FNr
3.5%. When using vertical and horizontal blocks, the results
appear to be better. Although the automation rate is nearly
the same without misclassifying any suspicious breast, 15%,
when accepting a FNr of 3.5%, the automation rate increases
to 30%. Once again, these results were obtained for the binary
SVM with a polynomial kernel of second degree. The division
in vertical blocks only provided poor results (data not shown).

Comparing the DD and ED methodologies, the ED models
seem to have better results. Although the performance of the
GM and LR is better for the DD methodology (even matching
the operating point of the SVM ED methodology when no FN
is accepted), the SVM results were generally better in both
methodologies. Therefore, comparing the SVM results for both
methodologies, the DD methodology has a better performance
for a FNr=0% (21% against the 15% achieved with the ED
one). On the contrary, when a FNr of 3.5% is accepted, the
ED methodology has a promising result of 30% of automation
rate, while the increase in the TNr for the DD methodology is
not significant.

It is now instructive to analyze the suspicious breasts that
are misclassified when one starts increasing the automation
rate. Figure 6 shows the suspicious breast that is misclassified
as normal when trying to increase the automation rate of
the ED models. This breast contains MCs, tiny deposits of
calcium that appear as small bright spots on mammograms.
In fact, it was expected that cases of MCs could fail to be
correctly automatized due to their small influence in histogram
related features such as ours. Furthermore, while a mass is
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Fig. 5: Results for the GM, the LR and the SVM under the
expert driven methodology.

by definition a space-occupying lesion seen in at least two
different projections, MCs may appear only in one view. As
a consequence, regardless of the selection of a particular
view to decide upon the benignancy of the breast, masses
are expected to impact both views, while MCs could be
discarded in selecting a particular view as we do. Therefore,
our methodology must be combined with an approach to detect
these high spatial frequencies corresponding to MCs to safely
increase the automation rate.

Another important evaluator of our pre-CAD methodolo-
gy is the performance regarding BIRADS 1 breasts. While
BIRADS 2 breasts are benign but contain non-cancerous
findings, BIRADS 1 breasts look all the same (they are sym-
metrical) with no masses, distorted structures, or suspicious
calcifications found. Therefore, it is important to unravel why
our methodology is failing to classify part of the BIRADS
1 breasts as benign. There are three main explanations for
that: (i) when selected, the CC view may contain muscle,
which introduces dissimilarities that are not associated with
masses or other lesions (Figure 7a); (ii) the breast parenchymal
tissue is unevenly distributed through the breast, which causes
dissimilarities among breast blocks to be significant although
no lesion is present (Figure 7b); and (iii) when selected, the
MLO view has a defective suppression of the pectoral muscle,
which has the same effect of (i) (Figure 7c).

The analysis so far has been done per breast. However, in
the clinical set, the presence of early signs of breast cancer in a
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(a) CC view (b) MLO view

Fig. 6: Example of a breast containing microcalcifications
misclassified as normal.

(c) Pectoral muscle
is sub-segmented in
MLO view

(a) CC view contains (b) Breast density is
muscle unenvely distributed

Fig. 7: Examples of a BIRADS 1 breasts misclassified as
suspicious.

patient is judged by case (the case classification is the higher
BIRADS classification between the two breasts). Therefore,
the performance of the ED SVM model in terms of case
classification is also an important result. Focusing on the same
two operating points discussed before, 8% of the cases are
correctly identified as normal without any FN; accepting a
FNr of 3.8% (one suspicious case is misclassified), the case
automation rate increases to 19%. Comparing the case and
breast automation rates, the lower case automation rates were
expected, particularly in the case of FNr=0%. Even so, the
TNr of 19% obtained with the misclassification of only one
suspicious case is a satisfactory result.

In a final experiment, we added to our database the
malignant cases of the INBreast database [17]. This allowed
us to increase the number of malignant cases, and to assess
in more detail the robustness of the proposed methodology.
Figure 8 shows the results of the SVM ED model for the LPCC
database and the LPCC plus the 50 malignant cases of the
INBreast database. As can be seen, the overall results are better
for the LPCC database. Nevertheless, for TNr higher than 15%
and lower than 20%, the FNr is similar for both databases:
3.51% and 3.84% for LPCC and LPCC+INBreast databases,
respectively. This suggests that the proposed methodology may
be extended to different databases, while keeping acceptable
TNr and FNr. However, it is worth noticing that the INBreast
database has a high incidence of cases with MCs (more
than half of the malignant cases contain MCs findings alone)
which, as previously discussed, is still a limitation of the
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Fig. 8: Results of the best predictive model (expert driven
binary-SVM with vertical and horizontal blocks) after adding
the malignant cases of INbreast database.

proposed methodology. In addition, the INBreast database
contains mammograms other then screening ones. Although
normal identification should in theory work as well in all types
of mammograms, follow-ups and diagnosis mammograms can
contain specially hard cases. In some cases, multiple masses
are found in the same mammogram, or a unique mass occupies
most of the breast area. Therefore, comparing blocks of the
breast area may result in small dissimilarities, resulting in
the breast misclassification as normal. Other cases include
particularly difficult subtle signs of bilateral asymmetries and
AD to which our methodology is not well appropriated.

V. CONCLUSION

In the proposed methodology, the identification of normal
breasts is formulated as problem of similarity between blocks
of the breast area. Information from both mammographic views
is used: the view selected to classify the breast is the one
containing the brighter block. This decision is based on the
idea that malignant findings are usually associated with the
increase of local intensity as well as denser areas, which
although difficult to classify, are the ones with higher prob-
ability of developing breast cancer. Contrarily to traditional
approaches, which classify blocks individually and combine
their classifications to label the breast, we use the similarity
between blocks to decide upon the normality of the breast.
In this way, variability caused by external influences tend to
impact all blocks and cancel out in the comparison.

The proposed methodology was tested in a real world
screening setting comprised by nearly 18 000 images and with
a true incidence of suspicious breasts. The obtained results are
analogous to the more complex state of the art approaches,
suggesting that simple descriptors might be used instead.
Since the diagnosis of suspicious cases closer to the decision
threshold are dominated by the presence of MCs and AD,
we will, in future work, address these signs of breast cancer.
Additionally, we aim to use information form the collateral
breast to help deciding the dubious cases.
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