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Abstract
Search engines are evolving towards richer and stronger semantic approaches, focusing on entity-
oriented tasks where knowledge bases have become fundamental. In order to support semantic
search, search engines are increasingly reliant on robust information extraction systems. In fact,
most modern search engines are already highly dependent on a well-curated knowledge base.
Nevertheless, they still lack the ability to effectively and automatically take advantage of mul-
tiple heterogeneous data sources. Central tasks include harnessing the information locked within
textual content by linking mentioned entities to a knowledge base, or the integration of multiple
knowledge bases to answer natural language questions. Combining text and knowledge bases is
frequently used to improve search results, but it can also be used for the query-independent rank-
ing of entities like events. In this work, we present a complete information extraction pipeline for
the Portuguese language, covering all stages from data acquisition to knowledge base population.
We also describe a practical application of the automatically extracted information, to support
the ranking of upcoming events displayed in the landing page of an institutional search engine,
where space is limited to only three relevant events. We manually annotate a dataset of news,
covering event announcements from multiple faculties and organic units of the institution. We
then use it to train and evaluate the named entity recognition module of the pipeline. We rank
events by taking advantage of identified entities, as well as partOf relations, in order to compute
an entity popularity score, as well as an entity click score based on implicit feedback from clicks
from the institutional search engine. We then combine these two scores with the number of days
to the event, obtaining a final ranking for the three most relevant upcoming events.
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1 Introduction

Semantic search is not yet a reality. Nonetheless search engines are continuously striving to
become more semantic-aware [14, 2]. Most modern search engines already rely on a well-
curated knowledge base, having a basic understanding of telegraphic natural language queries.
It is query understanding [12] that supports the “decoration” of results with contextual
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widgets that directly provide answers to the users questions by either displaying lists of
entities (e.g., “sci-fi movies from 1985”) or information about a single entity (e.g., “back to
the future”), usually pointing to related queries (e.g., “Directed by Robert Zemeckis” or
“Time travel movies”) or even to queries leading to other relevant entities (e.g., “Michael J.
Fox” or “Christopher Lloyd”, which are part of the cast). Longterm solutions to support
this kind of entity-oriented search require increasingly better automatic approaches for the
extraction of entities and relations, as well as the improved integration of heterogeneous data
sources, such as textual content and multiple knowledge bases that potentially need to be
aligned and merged.

There are several challenges that need to be tackled in order to enable the creation of a
truly semantic search engine. In this work, however, we cover the basics, by providing an
overview of a complete information extraction pipeline, from data acquisition to knowledge
base population. We then present an actual application of the extracted information, where
we take advantage of identified entities and relations to improve a widget from an entity-
oriented institutional search engine. In particular, we focus on a query-independent ranking
problem, where the goal is to rank news that cover event announcements, in order to display
the three most relevant upcoming events of general interest to the local academic community.
This is illustrated in Figure 1, where we show the landing page for the ANT search engine1,
highlighting the upcoming events widget. Our approach to event relevance scoring is based on
three factors: (i) the overall popularity of the mentioned entities, (ii) the overall popularity
of the mentioned entities from clicked event news, and (iii) the number of days left until
the event starts. Despite lacking an innovative facet, we present a complete implementation
of an information extraction pipeline, for the Portuguese language, describing the whole
process from data acquisition to the final application, where we solve a ranking problem
from a real-world search engine with the knowledge base we automatically constructed.

2 Reference Work

In order to better grasp the full scope of the problem we tackle here, we require an under-
standing of the typical information extraction approaches, as well as available tools and
corpora. We also require a bit of context regarding the integration of information extraction
(IE) and information retrieval (IR), in particular with a focus on applications to semantic
search.

2.1 Information Extraction
Information extraction consists of uncovering information from unstructured data. While
it can be applied to different types of data, we only focus on textual content. Natural
language expressed as text is an extremely rich source of information and the most common
means of sharing knowledge among humans. Machines, however, rely on the identification
of structure within this kind of unstructured data in order to be able to find answers to
increasingly complex questions. Therein lies the goal of information extraction. Given a
text, a typical pipeline would consist of named entity recognition (e.g., “José Devezas” or
“InfoLab”) and classification (e.g., “Person” or “Organization”), followed by the extraction
of relations between identified entities, usually based on patterns centered around verbs
(e.g., “works at”). So, given a text with the sentence “José Devezas works at InfoLab.”, an

1 http://ant.fe.up.pt

http://ant.fe.up.pt


J. Devezas and S. Nunes 3

Figure 1 ANT – Entity-Oriented Search Engine for the University of Porto. Upcoming events
widget is highlighted, illustrating the target application of the entity-based ranking strategy.

information extraction pipeline would be able to build a machine-understandable statement
for the “[Person] works at [Organization]” relation, identifying “José Devezas” as a “Person”,
“InfoLab” as an “Organization” and “works at” as the relation between “José Devezas” and
“InfoLab”. This type of relations is usually stored in a triple store. A triple store contains
statements (or triples) in the format (subject, predicate, object), which, as a whole, form a
knowledge base. The knowledge base is a semantic network that links concepts and provides
a structured way of accessing information — individual statements represent information
that, when combined, can provide knowledge.

Information extraction can be classified as closed or open, regarding the domain of
application. When the domain is closed, we can easily take advantage of handcrafted rules or
gazetteers (dictionaries of entities) in order to link chunks of words to a particular entity, via
a regular expression or through string matching, respectively. Open information extraction is
used when the domain is unknown or too extensive to cover manually, as is the case of the web.
Banko et al. [1] focus on the extraction of relational tuples from the web, without any human
input, taking into account issues like automation, corpus heterogeneity and efficiency. They
present TextRunner, which uses a self-supervised learner to measure the trustworthiness
of candidate tuples, along with a single-pass extractor to identify each candidate tuple, using
a redundancy-based assessor module to decide on which trustworthy tuples to keep, with a
given probability. Their system is also able to be queried, in a distributed manner, supporting
complex relational queries that go beyond a traditional search engine.

The typical result of an information extraction pipeline is a knowledge base. Google is
currently supported on their own well-curated knowledge base, Knowledge Graph, which
evolved from Freebase. However, while perhaps less well-known, they are also working
on Knowledge Vault [8], an automated approach to build the automated equivalent of
Knowledge Graph. Knowledge Vault does information fusion based on supervised learning
and prior knowledge derived from existing knowledge bases, associating a probability with
each extracted statement. Their goal is to enable question answering and entity-oriented
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search systems, with fewer dependence on manual labor.
After building such a knowledge base, and in order to potentiate semantic search, one of

the main relevant techniques is entity linking [22]. First, there is the need to identify entities
in a text, for instance with resource to techniques like Conditional Random Fields [13],
which is the approach we use in our pipeline. Then, named entity disambiguation is usually
required to be able to identify the entity associated with a given word or sequence of words.
While we did not implement a disambiguation step within our pipeline, given the relevance
of this technique in general and for future work, we still present an interesting example.
Nebhi [18] proposed a named entity disambiguation strategy based on entity popularity and
syntactic features, trained using a Support-Vector Machine classifier. Entities extracted
from text were matched with entities in a knowledge base (in this case Freebase was used)
and the disambiguation module determined which candidate entity was more likely to be
associated with that particular textual representation. Entity popularity was used as fallback
(when everything else fails, it’s probably the most frequent), while syntactic features were
responsible for providing richer indicators than a bag-of-words approach, being able to capture
dependencies between words in a sentence and, in a way, providing additional context.

2.1.1 Tools
There are several tools for natural language processing, implementing named entity recogni-
tion, as well as relation extraction. The tool we decided to use was the Natural Language
ToolKit (NLTK) [3]. NLTK is a Python library that integrates well with other tools such as
MaltParser [19], a dependency parser written in Java, or Stanford NER2, a named entity
recognition Java command line tool and library, based on Conditional Random Fields (CRFs).
NLTK directly provides access to corpora in multiple languages, to train for instance a
Part-Of-Speech (POS) tagger. POS tagging can be used as a feature for named entity
recognition or relation extraction. In this work, we use Stanford NER without POS tags to
extract entities, but build regular expressions based on words and their POS tags to extract
relations.

In order to learn a CRF for the Portuguese language, able to support a custom set of
entity types, we first needed to annotate our own dataset. One of the easiest ways to annotate
a dataset is to use the Brat rapid annotation tool [23]. Brat is a web application, built in
Python, that requires little configuration and a corpus of plain text documents to annotate.
We will provide additional detail on the configuration and usage of Brat in Section 3.

Other relevant tools include LemPORT [21], a lemmatizer for the Portuguese language.
Lemmatization can be useful for instance to resolve multiple verbal forms of the same
verb into a single word, enabling better relation extraction. This is less efficient but more
effective than stemming, where the suffix of the word is trimmed with the goal of obtaining
common prefixes for similar words. Also regarding the Portuguese language, a well-known
tool is REMBRANDT [4], a framework for semantic information retrieval, trained with the
Second HAREM Portuguese corpus [16] and achieving first place in the competition, with
an F-measure of 0.625. Finally, while not specifically relevant for the Portuguese language,
we also cite GATE [6], a General Architecture for Text Engineering and, in particular
Mímir [5], a multiparadigm indexing and retrieval framework, which is capable of searching
over heterogeneous data sources, like text, annotations, ontologies and knowledge bases.
GATE Mímir shares many of the goals of the ANT search engine, combining information

2 http://nlp.stanford.edu/software/CRF-NER.shtml
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extraction and retrieval in a single framework.

2.1.2 Corpora
There are at least two Portuguese corpora, available through NLTK, with annotated POS
tags: Mac-Morpho [9] and Floresta [10]. These datasets are also called treebanks, which are
corpora annotated with syntactic or semantic sentence structure. In this particular work, we
only rely on Floresta treebank to train a POS tagger based on its (word, tag) tuples. The
POS tags can be useful for named entity recognition and for relation extraction, but we only
use this feature during relation extraction to build regular expressions.

While there are several tools for the English language, with pre-trained models for multiple
tasks, the Portuguese language has been less explored, despite having its own particular
challenges. These include dealing with European and Brazilian Portuguese, or even capturing
the changes from the latest Portuguese orthography reform (1990)3. More importantly, the
lack of resources for the Portuguese language is of great concern. One of the main, or perhaps
the only publicly available dataset with annotated entities and relations for the Portuguese
language is HAREM [16]. There are two versions of this dataset, but only the second version
includes annotations regarding semantic relations between entities. While there are other
datasets, their availability is a challenge, as they are held hostage as a valuable resource in
a competitive world of science. One way to provide a larger amount of annotated data is
simply to push for the semantic web and to motivate people to annotate their web sites using
RDFa or Microdata. When this happens, hopefully in a near future, it will definitely be a
valuable resource for the information extraction community, but until then, we can either
annotate our own dataset or use HAREM. In this work, we will describe a way to easily
annotate our own dataset, with a set of entity types of our choice, based on Brat.

2.2 Semantic Ranking and Search
Until now, we have been surveying information extraction techniques, with the final goal of
automatically building a knowledge base to support a semantic ranking task. Knowledge
bases can be used to empower search engines or to generically improve ranking, even in
query-independent tasks. Next, we provide a bit of context regarding some of the central
tasks of a semantic search engine that are representative of the integration of IE and IR. We
cover query understanding, semantic matching, semantic search on text and knowledge bases
and ontology-based ranking.

Query understanding involves conferring meaning to a keyword query. This is frequently
done by segmenting the query and associating entities, types, or attributes to keyword chunks,
through what is usually called semantic tagging [7]. Hu et al. [12] present a method for
understanding query intent based on an index of Wikipedia concepts, supported on the idea
of a graph of linked concepts. Given a query, the Wikipedia index is searched, returning the
best matches to Wikipedia pages representing specific concepts. Whenever there is no match,
the original query can be fed to a traditional ad hoc document retrieval search engine to build
new queries from related text — in particular, the authors used Live Search4, which has,
at the time of this writing, been replaced with Bing5. The title and the description of the
top-K results is used to emit additional queries to the Wikipedia index, giving more weight

3 http://www.portaldalinguaportuguesa.org/?action=acordo&version=1990
4 http://search.live.com
5 http://www.bing.com

http://www.portaldalinguaportuguesa.org/?action=acordo&version=1990
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to the title. The final result is a ranked list of Wikipedia concepts that better illustrates
query intent, covering not only concepts that are directly mentioned in the original query,
but also concepts related to those, that are theoretically close in the graph of linked concepts.
Their idea is not very different from the idea of community structure in a graph [20] — dense
subgraphs, where member nodes have more connections between themselves than to the
remainder of the network, usually represent similar or related concepts.

A bit different from query understanding, semantic matching [14] is concerned with
solving mismatch issues between query and documents (e.g., searching for “ny times” should
also match documents containing “New York Times”). While semantic matching is different
from semantic search, some semantic matching solutions can still take advantage of techniques
like named entity recognition, or knowledge bases like ConceptNet [11], for query expansion.
Nevertheless, semantic search on text and knowledge bases [2] is the main stage for the
combination of information extraction and information retrieval. In particular, the two areas
meet when doing keyword search or question answering on combined data (text + knowledge
bases). While semantic search can exist solely over knowledge bases, it can seldom exist
solely over text, even though some semantics can be captured from text with techniques like
word embeddings (e.g., word2vec [15]). Thus, information extraction plays a central role
in search engines of the future, already supporting well-known search engines like Google,
through knowledge bases like Knowledge Graph6.

Finally, there is also work by Vallet et al. [24] showcasing the potential of ontology-based
ranking, where a corpus is already linked to instances in a knowledge base. They associate a
weight to each annotation, inspired by TF-IDF, but applied to knowledge base instances as
opposed to terms, over a text document. The approach is to convert the user query into an
RDQL query (a SPARQL predecessor), which is used to retrieve tuples from the knowledge
base. Documents annotated with the instances from the obtained tuples are then retrieved as
well and presented to the user sorted by a ranking function that measures semantic similarity.
Semantic similarity is computed based on the cosine similarity between a query vector ~q and
a document vector ~d. The document vector ~d is defined by the analogous TF-IDF weights
of the instances in the documents, while the query vector ~q is defined by weights assigned
to the variables in the RDQL query, which can be either selected by the user, or obtained
through personalization or frequency analysis.

2.2.1 Our Approach in Context
Despite different from semantic search, in the sense that there is no issued query, the problem
of semantic ranking we present here is closely related to the approaches we covered so far. We
rank academic events based on the news articles that announce them. In particular, we use
an information extraction pipeline for named entity recognition, as well as relation extraction,
over institutional news. We then build a knowledge base, containing event information, but
also partOf relations between pairs of organizations and locations. This enables us to rank
events based on historical information on entity popularity and news article clicks, while
also propagating popularity through partOf relations. It means that our ranking function
captures the following information: if events about “Information Retrieval” are popular and
events at “Faculdade de Engenharia da Universidade do Porto” are also popular, then an
event at “Departamento de Engenharia Informática” about “Information Retrieval” will have
a high probability of being relevant to the community and should have a higher rank. While

6 https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
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Table 1 Entity types used to annotate the SIGARRA News Corpus, along with examples
aligned with Figure 2. Listed entity types were used to populate the [entities] section of the
annotations.conf file in Brat.

Entity Type Example
Person Liliana de Jesus Duarte da Mota
Organization Faculdade de Direito da Universidade do Porto
Event Provas de Mestrado em Direito - Licenciada Liliana de Jesus Duarte da Mota
EventType Provas de Mestrado
Topic Direito
Location sala 228
Date 16 de dezembro de 2016
Time 11h00

Figure 2 Example of an annotated fragment of text, for a SIGARRA news, in the Brat rapid
annotation tool.

the link to “Information Retrieval” was directly established, “Departamento de Engenharia
Informática” indirectly received a high popularity weight because it is partOf “Faculdade de
Engenharia da Universidade do Porto”.

Since our system does not do entity disambiguation, whenever the same department
naming is used across different universities, popularity will be propagated through all partOf
links. In order to improve this, entity disambiguation is, in fact, one solution, but we
can also assign an uncertainty weight proportional to the number of target nodes in the
partOf relation, similar to IDF — the more target nodes are reached, the less reliable is the
information. For our particular domain, however, we predict this to be of low impact — in
fact, considering this type of relations without disambiguation might be a way of avoiding
popular venues to control the ranks, giving a chance of similar events, happening at different
venues, receiving a higher rank.

3 Data Acquisition, Model Training and Evaluation

The ANT search engine periodically collects and processes data from SIGARRA, the inform-
ation system at the University of Porto. Data is retrieved using a combination of XPath
and CSS selectors and stored in a relational database. While most of the data, like student
or staff profiles, is structured, there is also some unstructured data from SIGARRA news.
In this work, we are particularly interested in extracting information about events, locked
inside SIGARRA news as natural language text. SIGARRA news announcing events can be
identified based on whether there is an associated event start or end date in the database.
We only retrieve and process news articles with at least one event date associated and skip
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Table 2 Evaluation of the named entity recognition module, based on the test set for the
SIGARRA News Corpus.

Avg. Precision Avg. Recall Macro F1
0.633220 0.371867 0.468563

articles in languages other than Portuguese. Steps from data acquisition to model training
and evaluation are as follows:

1. Query the relational database for a subset of news articles that announce events and
store them as a CSV file (one article per row).
We retrieved the news articles for the 1,000 closest upcoming events, starting from December
23, 2016, and containing contributions from all faculties and organic units of the University of
Porto.

2. For each row in the CSV, prepare a txt file containing title, subtitle and content, as well
as an empty ann file.
SIGARRA news articles communicate a lot of relevant information in the title and subtitle. In
particular, we used the title to build Event entities and the subtitle to extract information like
the location or the date of the event. The content was provided as an HTML fragment that we
converted into text using bs4.BeautifulSoup, after removing script and style tags.

3. Put individual files within a subdirectory in the data/ directory of the Brat rapid
annotation tool and create an annotations.conf file with the list of entity types to
annotate (shown in Table 1, along with examples).

4. Run ./standalone.py in Brat’s root directory and manually annotate the corpus, as
shown in Figure 2 (we annotated 25 out of the 1,000 retrieved documents).

5. Split the annotated corpus into two separate directories, one for training (70%; 18 news
articles) and another one for testing (30%; 7 news articles).
While we admit the size of the annotated corpus is not ideal, surprisingly 18 annotated documents
were enough to build a working system. Additionally, the annotated corpus can be extended over
time, in order to retrain and re-evaluate the system.

6. Convert training documents into a single col file (tab-separated format supported by
Stanford NER), and testing documents into individual col files to enable per-document
evaluation.

7. Train a Conditional Random Field (CRF) using Stanford NER command line interface
and obtain a model for named entity recognition (NER).

8. Evaluate the NER module. Extract entities from the original, non-annotated documents
of the test set, using StanfordNERTagger from NLTK along with the learned CRF model.
Compare extracted entities with annotated entities based on the col files, computing
metrics like precision, recall and F-score.
There are several evaluation methods for NER [17]. In this particular case, we used the CoNLL
evaluation scheme, where only exact matches are considered as true positives. We calculate the
precision and recall for each document and then the overall averages for the test set. We also
compute the macro-averaged F1-score.

To summarize, Figure 3 presents a complete overview of the named entity recognition
module, from data acquisition to evaluation. As we can see, starting from the ANT search
engine, we access the relational database, in order to obtain a corpus, initially stored as a CSV
file. We then convert each document into a text file, with an associated empty annotations
file. The corpus is then annotated using Brat rapid annotation tool and split into a training
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ANT Search Engine
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Database

Title
Subtitle
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per document
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NER
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Precision, Recall, 
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Figure 3 Data acquisition, named entity recognition and evaluation. Data is obtained from the
ANT search engine database and pre-processed to enable CRF training and testing.

set and a test set. The training set is used to train a CRF7, obtaining a NER model. The
NER model is then used by the StanfordNERTagger from NLTK to evaluate the effectiveness
of the named entity recognition module based on the test set. Evaluation results are shown
in Table 2 — we obtained an average precision of 63%, which is acceptable given the reduced
size of the annotated corpus, as well an average recall of 37% and a macro-averaged F1-score
of 47%.

4 Information Extraction

When running the information extraction pipeline, we simply query the relational database,
iteratively processing each individual news article, until a set of triples with the identified
entities and relations in the document is constructed and loaded into the triple store. The
pipeline we defined is mostly based on NLTK and includes the following steps, that are
applied to each text sequentially:

detect_language() Our pipeline was trained using a Portuguese corpus. In order to ensure
we only process Portuguese documents, we use the Python wrapper for the well-known
langdetect Java library8. Whenever a text is not identified as ‘pt’, it is simply skipped.
The associated event might still be featured in ANT’s event widget, but only when it’s
extremely close to the date and no other, more relevant events, are held simultaneously.

segment_sentences() The first step in processing a SIGARRA news article is to split the
text into individual sentences. We used the pre-trained Portuguese model for the Punkt
sentence tokenizer provided by NLTK. Challenges associated with this task are frequently
associated with distinguishing actual sentence ends from periods that do not end a
sentence (e.g., ‘Mr.’ or ‘Dr.’). While this is a task that is essentially solved and already
achieves a high precision in the state of the art, given the quality of our text, many times
sentences were incorrectly identified. However, we did not find this to be particularly
impactful in the end result, as we did not rely too much on syntactic or dependency
parsing or even on POS tags, which we only used for relation extraction.

tokenize_sentences() Given a list of strings, obtained from the previous step and correspond-
ing to a sentence each, we split each string into individual words, as well as punctuation.
For this, we used WordPunctTokenizer from NLTK, instead of the default tokenizer

7 We used a default configuration for Stanford NER, based on the example in the FAQ: http://nlp.
stanford.edu/software/crf-faq.shtml#a.

8 https://github.com/Mimino666/langdetect

http://nlp.stanford.edu/software/crf-faq.shtml#a
http://nlp.stanford.edu/software/crf-faq.shtml#a
https://github.com/Mimino666/langdetect


10 Information Extraction for Event Ranking

implemented in nltk.tokenize.word_tokenize, which was TreebankWordTokenizer.
While this tokenizer reliably identified words, without splitting for instance compound
words by dashes, it did not implement the span_tokenize() method, which was funda-
mental to simplify the conversion process from the Brat standoff format ann files into
the Stanford NER tab-separated format col files. During tokenization, we also replaced
any slash characters by a dash, since slashes are removed by StanfordNERTagger and,
as we will explain next, we will need to match tagged sentences, word by word, in order
to build a tree combining POS tags and named entity tags.

pos_tag_sentences() Given a list of lists of words and punctuation, from the previous step,
we assigned a POS tag to each word, obtaining a list of lists of (word, pos_tag) tuples.
Since there is no pre-trained model for POS tagging Portuguese sentences in NLTK,
we used the provided Floresta treebank corpus to learn our own model. For training,
we used a nltk.BigramTagger, falling back to a nltk.UnigramTagger and then to a
nltk.DefaultTagger which always identifies a word as a noun (the most common), in
case all else fails. An evaluation of a similar POS tagger based on Floresta treebank
was already available9, showing an accuracy of 89%, 87% and 18%, respectively for each
tagger.

ne_tag_sentences() Given a list of lists of words and punctuation (without POS tags), we
assigned a named entity to each word, obtaining a list of lists of (word, ne_tag) tuples.
In order to do this, we used the model we had trained for Stanford NER, feeding it to
the StanfordNERTagger (see step 8 in Section 3 for more details).

build_sentence_trees() Given the lists generated by pos_tag_sentences() and ne_tag_-
sentences(), we generate a list of nltk.tree.Tree (one per sentence). In order to do
this, we use the nltk.chunk.util.conlltags2tree() function, which takes a sentence
argument as a list of (word, pos_tag, ne_tag) tuples. In order to build such tuples, we
assume that an exact equivalence can be established between the two lists, otherwise the
system will fail, raising an exception, which results in the skipping of the news article
being processed. The resulting tree has three levels, a root level (the sentence), a mid-level
(the entity types) and a bottom-level (leaves corresponding to chunks of words belonging
to a named entity, as aggregated by the mid-level nodes).

extract_entities() In order to extract entities, we simply iterate over the trees constructed
in the previous step, aggregating tokens per entity type. This is one of the outputs of our
system, which is mainly used for evaluation purposes, regarding the effectiveness of the
named entity recognition module. Results are saved as a human-readable ent text file
(one per document), containing lists of entities, grouped by type, with the frequency of
the entity in the document. We also save the same information as a col file, in order
to compare predicted entities with the ground truth established in the test set. Results
have already been shown in Table 2 and commented at the end of Section 3.

extract_relations() Relation extraction consists of identifying links between pairs of entities.
In order to do this, we defined a set of rules, using regular expressions to identify relations
between two types of entities, based on nltk.sem.extract_rels(). We then defined
an associated list of rules to map the extracted relations into one or more triples in the
knowledge base, possibly in reverse order. For example, the rule (‘Location’, ‘(da|do)/n’,
‘Location’) was used to identify partOf relations between two locations. Each Location
entity was then mapped to a dul:Place class, from the DOLCE+DnS Ultralite ontology
(DUL), and the partOf relation was mapped to the dul:isPartOf property from the

9 http://www.nltk.org/howto/portuguese_en.html

http://www.nltk.org/howto/portuguese_en.html
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same ontology. Event information was modeled using the Linked Open Descriptions of
Events ontology (LODE), which focuses on defining a lode:Event class and a set of
properties like lode:atPlace, that links to dul:Place, or lode:involvedAgent, that
links to dul:Organization or dul:Person. The Time ontology was also used to describe
date and time, using lode:atTime to link to a time:TemporalEntity and, in particular,
a time:Instant with the property time:inXSDDateTime linking to a xsd:dateTime
literal.

build_default_relations() Since many of the extracted entities were not featured in any
relation, and in order to expand our knowledge base to better support the ranking task, we
decided to generate some default triples that linked identified entities to the corresponding
lode:Event. With this step, we compromised the quality of the information, in the sense
that we considered for instance all dates as part of the lode:atTime relation and we
know that some dates were in fact deadlines associated with events. The same is true
for locations, as different places were sometimes referenced in news articles, besides the
venue of the event. This is something that we intend to improve over time, either by
using different properties like dul:associatedWith, or by improving automatic relation
extraction.

load_relations_into_virtuoso() Finally, we generate an N-Triples (nt) file with the relations
identified for each document, including relations of type isA, which annotate each entity
with its class. This nt file is then loaded into OpenLink Virtuoso, through a POST
request to the /sparql-graph-crud-auth endpoint10, storing this information in a
separate ant:EventsKnowledgeBase graph, using the same naming convention for events
and their associated news article, already part of an existing ANT ontology11.

5 Event Ranking

Loading the extracted information, in the form of triples, into the search engine’s knowledge
base, completed the process of annotating existing SIGARRA news articles. This included
links to the extracted entities, as well as the capturing of interesting relations, like partOf,
that were previously locked inside the news body as natural language. Combining this
information can confer a degree of knowledge to our search engine and, in particular, it can
be applied to the task of event ranking.

Prior to the approach we present here, ANT simply displayed the three closest upcoming
events, without any particular ranking strategy. Equipped with a knowledge base we can do
much more. In particular, we propose two scores based on entities associated with events:
the entity popularity score, scorepop(e, Ee), and the entity click score, scoreclk(e, Ee). The
entity popularity score is based on the popularity of individual entities, as defined by the
frequency an entity appears in distinct news articles over the whole corpus. The entity click
score is similar to the popularity score, but is limited to the entities that are linked to clicked
event news — this click status is transfered to the knowledge base daily, when the IE pipeline
is ran, and is stored using the ant:wasClicked property, linking to a xsd:boolean literal.

The two scores are computed using a SPARQL query and then stored in the relational
database, each in their own column of the news articles table. Events are then retrieved by
combining the number of days remaining to the event start date and the entity popularity

10 https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtGraphProtocolCURLExamples
11Example of URI for lode:Event / ant:NewsArticle: http://infolab.fe.up.pt/ontologies/ant#

Sigarra_News_Article_53369_From_Faculdade_de_Engenharia_da_Universidade_do_Porto.

https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtGraphProtocolCURLExamples
http://infolab.fe.up.pt/ontologies/ant#Sigarra_News_Article_53369_From_Faculdade_de_Engenharia_da_Universidade_do_Porto
http://infolab.fe.up.pt/ontologies/ant#Sigarra_News_Article_53369_From_Faculdade_de_Engenharia_da_Universidade_do_Porto
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Listing 1 SPARQL query to compute scoreclk(e, Ee) based on lode:.
1 SELECT ?event ?code ? school (SUM (? count) AS ?score)
2 WHERE {
3 {
4 SELECT ?agent (COUNT (? agent) AS ?count)
5 FROM ant: EventsKnowledgeBase
6 WHERE {
7 ?event a lode:Event .
8 ?event ant: wasClicked "true "^^ xsd: boolean .
9 ?event lode: involvedAgent ?agent .

10 }
11 GROUP BY ?agent
12 }
13 ?event a lode:Event .
14 ?event lode: involvedAgent ? involved_agent .
15 ?agent dul: partOf * ? involved_agent .
16 OPTIONAL {
17 ?event ant: hasCode ?code .
18 ?event ant: hasFaculty ? school .
19 }
20 }
21 GROUP BY ?event ?code ? school

and click scores. Listing 1 shows the SPARQL query used to calculate scoreclk(e, Ee) for all
lode:Event instances in the system. The scorepop(e, Ee) is calculated using a similar query,
where we remove the statement in line 8, discarding the constraint for clicked events. As we
can see, each entity score is calculated, per event, based on the total number of links to the
entities that are associated with the event. We illustrate this by using lode:involvedAgent
property for classes dul:Person and dul:Organization.

After computing and storing the two entity scores for each event, we calculate the final
score, for event ranking, as shown in Equation 1. Given event e and entities Ee, associated
with event e, the final score is calculated based on a weighted average of three factors: days
to event, ∆Te, entity popularity score, scorepop(e, Ee), and entity click score, scoreclk(e, Ee).

score(e, Ee) = w1×
1

∆Te + 1 +w2×
scorepop(e, Ee)

maxe{scorepop(e, Ee)}+w3×
scoreclk(e, Ee)

maxe{scoreclk(e, Ee)} (1)

We have deployed this ranking strategy in the ANT search engine, manually tuning the
weights in order to prioritize the number of days to the event, since close events are more
relevant, then considering the implicit feedback based on the entity click score and only
then the entity popularity score. The version we deployed only relies on entities of type
Person and Organization and uses w1 = 0.5, w2 = 0.2 and w3 = 0.3. We will, in the future,
measure the impact of this change in ranking strategy through implicit feedback from news
event clicks, in particular looking for an increase in the number of clicks, and we will also
experiment with the automatic tuning of the weights.

6 Conclusions

We presented a complete implementation of an information extraction pipeline, from data ac-
quisition to knowledge base population. During this process, we covered different approaches,
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either based on machine learning or handcrafted rules. We took advantage of corpora that
was directly integrated into the NLTK library, but also of our own manually annotated
documents. We also built regular expressions for relation extraction, and ontology mapping
rules for building triples to load into a knowledge base. We then described a practical
application of the extracted information, to the area of information retrieval, where we
tackled the problem of query-independent ranking for a corpus of news articles announcing
events. In particular, we proposed a temporal ranking approach combined with automatically
compiled knowledge about the events being ranked. Through this, we showcased how partOf
relations can be harnessed to influence the ranking of documents beyond directly mentioned
entities, by taking advantage of related entities, mentioned in different documents.

The future of search engine intelligence highly depends on the unified efforts of information
extraction and information retrieval. While we already have high quality machine learning
techniques to support search by modeling “thought through numbers”, we still lack the
ability to effectively model “thought through language” in order to build search engines that
can better assist users, not only by better understanding them, but also by helping them sort
through a large amount of information locked within textual documents in natural language.
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