
Algorithms for run-time placement and routing on Virtex II Pro FPGAs∗

Miguel L. Silva
DEEC, Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias,

4200-465 PORTO, Portugal
mlms@fe.up.pt

João Canas Ferreira
INESC Porto, Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias,

4200-465 PORTO, Portugal
jcf@fe.up.pt

Abstract

Run-time reconfiguration is a useful approach to the
implementation of highly-adaptive embedded systems. To
generate partial bitstreams at run-time for dynamic recon-
figuration of sections of a platform FPGA we combine par-
tial bitstreams of coarse-grained components specified by
an acyclic netlist. The placement an routing algorithm play
and essential role on the generation of partial bitstreams.
A greedy placement heuristic based on topological sort-
ing is used to determine the positions of individual com-
ponents, and a router based on non-backtracking search
over restricted areas determines the routes for the inter-
connections. The approach is validated with a set of 35
benchmarks (both synthetic and application-derived) hav-
ing between three and 41 components, the complete process
of bitstream generation takes between 7s and 101s (aver-
age 48.3s) when running on an embedded PowerPC 405
microprocessor clocked at 300MHz.

1. Introduction

This paper proposes a method to generate partial bit-

streams at run-time in order to partially reconfigure an

FPGA. The hardware infrastructure is assumed to include

a microprocessor for running the bitstream creation proce-

dure, and to load the newly created bitstream to a specific

FPGA area without disturbing the operation of other parts

of the system.

For the specific implementation described here, the pro-

gram runs on an embedded processor in the same FPGA

that is being reconfigured. Highly adaptive embedded sys-

tems may employ the creation of partial bitstreams at run-

time in situations where it is impractical to create all nec-

essary bitstreams at design time, either because there are

too many possibilities (e.g., shape-adaptive video process-

ing [1]), or because the required information is only avail-

able at run-time (e.g., self-adaptive systems [2]).

The proposed approach is based on placing medium-

sized components (like adders, comparators, and multi-

pliers) in a reserved area, and then routing the intercon-

nections among the components, and between the compo-

∗First author funded by FCT scholarship SFRH/BD/17029/2004.

Work supported by FCT project PTDC/EEA-ELC/69394/2006.

nents and the area’s I/O terminals. Since platform FPGAs

have a heterogeneous fabric (with, e.g., RAM blocks and

dedicated multipliers), information about the relative posi-

tion of resources in the component is required to determine

whether a specific location is compatible. For routing pur-

poses, components are treated as black boxes with I/O pins

at the periphery. The final partial bitstream is created by

merging the component bitstreams (after relocation) into

the bitstream for the empty reserved area, and then by fur-

ther modifying the result to include the connections deter-

mined in the routing phase.

Because placement and routing must be performed in a

resource-limited context, simple algorithms are employed

with the purpose of obtaining acceptable solutions in a rea-

sonable time. Placement is done by a greedy strategy based

on sorting the components in topological order. Routing

is performed by finding the shortest path from a source

terminal to the target terminal for successive nets; target

terminals belonging to the same net can share routing re-

sources. These procedures have been implemented in the

C programming language and included in a code library

for use by applications that wish to take advantage of this

approach to improve system adaptability without foregoing

hardware support for compute-intensive routines.

An implementation of the proposed approach was evalu-

ated for synthetic and application-derived benchmarks con-

taining between three and 41 components (average: 15

components). For this set of benchmarks, the whole pro-

cess of bitstream generation takes between 7s and 101s

(average 48.3s) on a PowerPC 405 microprocessor clocked

at 300MHz. Both the hardware organization and the pro-

cess for component creation process employed in the pro-

totype that was used to collect these results have been pre-

viously described in [3]. The hardware platform has a

Xilinx Virtex-II Pro device with two embedded PowerPC

cores [4], although only one is used for this work. The

system has a reserved dynamic area that can be configured

through partial bitstreams that are loaded using the internal

configuration access port (ICAP).

The rest of the paper is organized as follows. Section 2

describes the context for the research reported in the paper

and describes previous work. Section 3 presents the details

of the placement and routing tasks, including the simplified

resource model adopted in order to reduce execution time.

978-972-789-304-1 REC'2010 9

Results for an implementation running on the Virtex-II Pro

platform FPGA are reported in section 4 for a set of 35

benchmarks. Finally, section 5 presents the conclusions.

2. Related work

In the context of FPGA-based systems, run-time recon-

figuration (RTR) designates the capability to alter the hard-

ware design realized by the FPGA in the course of the

execution of an application. Basic RTR requires just fast

reconfigurability, typically provided by an SRAM-based

FPGA. More effective use of RTR can be made if the FPGA

supports partial active reconfiguration, i.e., when sections

of the reconfigurable fabric may be re-programmed with-

out affecting other sections. This feature enables the im-

plementation of compact, self-adapting systems.

One of the issues raised by RTR concerns the generation

of the required partial configurations. This is commonly

done at design time, when all eventually useful partial con-

figurations must be specified and created [5, 6]. Several

approaches to the relocation of partial bitstreams have been

proposed, including both software tools [7,8] and hardware

solutions [9,10]. Bitstream relocation is explicitly included

in recent design flows [11].

In all cases, the synthesis tools must be run for each par-

tial configuration, making the generation of partial config-

urations time-consuming. A solution to this problem based

on building new partial bitstreams by combining bitstreams

of smaller components is described in [3]. The creation

of the new bitstreams requires assigning positions of the

reconfigurable area to components (placement), relocating

and merging the individual component bitstreams, and in-

terconnecting the components (routing) by modification of

the merged bitstream. Because this approach does not rely

on the synthesis of logic descriptions, it is a good candidate

for implementation in an embedded system for the purpose

of creating new dynamically reconfigurable modules (par-

tial bitstreams) at run-time.

Efforts to speed-up placement and routing for FPGAs

were initially motivated by applications to logic emulation

and custom computing. Trade-offs between area and ex-

ecution time for placement are discussed in [12], where

the authors describe a placer that obtains a 52-fold reduc-

tion in execution time for a 33% increase in circuit area.

Trade-offs between execution time and critical path delay

for placement and routing of FPGA circuits are discussed

in [13] . By combining different algorithms for placement

and routing, the authors of that work obtained a wide range

of solutions, including a 3-fold speedup with a 27% degra-

dation of critical path delay. A router for just-in-time map-

ping of a device-independent configuration description to a

specific device architecture is described in [14] : that router

is able to produce good hardware circuits using 13 times

less memory and executing 10 times faster than VPR [15].

A channel router for the Wires-on-Demand RTR frame-

work is implemented in [16] . The router uses a simpli-

fied resource database that is several orders of magnitude

smaller than the one used by vendor tools. It uses sim-

ple algorithms to find local routes between blocks using

relatively few computational resources. Results obtained

with a 2.8MHz Pentium 4 computer indicate that, com-

pared to vendor tools, memory consumption during exe-

cution is three orders of magnitude smaller and execution

is four orders of magnitude faster, for an average increase

in delay of 15% (over a set of seven small benchmarks).

A simplified version of the bitstream assembly approach

of [3] is implemented in [17] for an embedded system with

a Virtex-II Pro device. The system used described and eval-

uated in the next sections is an evolution and extension of

that work.

3. Placement and routing

Placement and especially routing are generally very de-

manding tasks. In order to perform them at run-time in

embedded systems, we work with coarse-grained compo-

nents, and use a simplified model of the resources together

with simple, greedy place and route algorithms. The main

goal is to find a useful solution rapidly, not to exploit all the

available resources optimally.

3.1. Resource models

Placement and routing for island-style FPGAs like the

Virtex-II Pro is a resource and time consuming task, in part

due to the need to handle a large amount of fine-grained

resources. For an embedded system with limited compu-

tational resources a more coarse-grained approach is re-

quired.

In the approach presented here the basic functional el-

ement is a component that takes up a certain area of the

FPGA fabric (specified in CLBs). This rectangular-shaped

component must have all its terminals on the left or right

sides. Physically, the terminals are inputs or outputs of

LUTs defined at design time. Typically, components have

a functional core between a left column of input CLBs and

a right column of output CLBs, although this arrangement

is not strictly necessary. Terminals must be located on the

borders, because the components are considered as black

boxes during placement and routing: no overlap of compo-

nents is allowed and no routing over components is done.

The simplified placement procedure groups components

into vertical stripes. The position of a component inside a

stripe and the width of the stripe depend on the physical

resources used by the component. Routing is restricted to

connections between components in adjacent stripes. This

restriction guarantees that routing does not interfere with

the rest of the system, reduces the search space, and sim-

plifies the process significantly.

All connections are unidirectional: terminals are either

inputs or outputs. The output terminals of one component

connect to one or more terminals of other components on

the next stripe. The terminals to be connected are typi-

cally located in adjacent CLB columns. If there are more

columns between them, these columns must be empty. In

order to limit the effort during routing, only one additional

empty column is currently allowed, to account for con-

straints imposed by the embedded block RAMs (BRAMs).

10 978-972-789-304-1 REC'2010

Due to the physical arrangement of the reconfigurable fab-

ric, two adjacent stripes may be separated by an unused

BRAM column in some cases. The unused BRAM column

is considered simply as another set of routing resources.

The Virtex-II Pro FPGA has a segmented interconnec-

tion architecture, where segments are connected by a reg-

ular array of switch matrices, which are connected be-

tween themselves and to the other resources (like CLBs

and BRAMs) [18]. A large number of routing resources,

grouped in vertical and horizontal channels, connect the

switch matrices. In order to simplify routing, only a subset

of the available segments is used:

• direct connections (vertical, horizontal and diagonal

connections to neighboring CLBs);

• double lines (connections to every first and second

CLB in all four directions);

• vertical hex lines (connections to every third or sixth

CLB above or below).

Long lines (i.e., bidirectional wires that distribute sig-

nals across the full device height and width) are excluded,

because they can interfere with circuitry outside of the dy-

namic area. Horizontal hex lines were excluded because

they connect to every third or sixth CLB to the left or the

right, and therefore reach beyond the area reserved for rout-

ing. It is unnecessary to consider other dedicated routing

resources (like carry chains, for instance), because they

have no bearing on the connections that are to be estab-

lished at run-time.

The resulting simplified model of the switch matrix as-

sociated with each CLB contains 116 pins, distributed as

follows:

• 16 direct connections to the 8 neighboring CLBs;

• 40 double lines: 10 in each of the four directions up,

down, left and right;

• 20 vertical hex lines: 10 upwards and 10 downwards;

• 8 connections to the outputs of the 4 slices in the as-

sociated CLB;

• 32 connections to the inputs of the 4 slices in the as-

sociated CLB.

A switch matrix pin is identified by its index in this list

of pins. It is also necessary to keep information on the

possible connections from a given pin to other pins of the

switch matrix. The information required in this case in-

cludes the following data for each target pin:

• identification (index) of the target pin;

• relative vertical distance of the endpoints of the con-

nection starting at the target pin (e.g., +1 and +2 in the

case of a double line connection in the up direction);

• relative horizontal distance of the endpoints of the

connection starting at the target pin (e.g., -1 and -2

in the case of a double line connection in the left di-

rection).

The algorithm of section 3.3 models the area reserved

for routing as a two-dimensional array of switch matrices,

and employs a data structure based on the simplified model

just described to keep track of resource usage.

Algorithm 1: Greedy level-oriented component place-

ment
Data: Netlist N of all components
Result: B: merged bitstream with all components

R: routing information

L ← LevelAssignment(N)
AddStripeInformation(L)
x ← 0, �← 0
initialize B to the default bitstream
initialize R
foreach S ∈ L do

y ← 0
foreach c ∈ S do // ordered scan of S

y1 ← y+YOffset(c)
if y1 +Height(c)≤ DeviceHeight then

x1 ← x+XOffset(c)
merge bitstream of component c into B at (x1,y1)
if
Width(c)+XOffset(c)< Width(S)∨x1 �= x∨y1 �= y
then

merge feed-through components in B
update R with final terminal positions for inserted
component
y ← y1 +Height(c)

else
fail

if max(Level(Successors(c)))> �+1 then
insert feed-through component in level �+1 of N

�← �+1
x ← x+Width(S)

3.2. Placement

The main input to the placement phase is a component

netlist specifying the components to be used and the uni-

directional connections between their terminals. No cycles

between the components are allowed, i.e., the netlist must

define a directed acyclic graph.

The general approach to placement is to find an arrange-

ment of components in columns, so that directly connected

components are adjacent to each other. The arrangement

in columns was chosen because it matches the reconfigura-

tion mechanism of Virtex-II-Pro FPGAs, where the small-

est unit of reconfiguration data (called a frame) applies to

an entire column of resources.

A high level description of the implemented greedy

placement approach is shown in Algorithm 1, and two ex-

amples of component placement inside a stripe are dis-

played in figure 1. Positions are specified in terms of CLB

rows and columns, with the origin at the top left corner of

the device.

The first step of the placement algorithm is to group the

components by levels (function LevelAssignment().

The first level contains the components whose inputs are

connected to the interface of the dynamic area. Second

level components have all their input terminals connected

to first-level components and so forth. If a component has

more than one source, the component will be assigned to

the level following the highest-numbered source. This is

equivalent to processing the components in topological or-

der.

The next step is to determine the set of contiguous CLB

columns (a stripe) required for all components of each level

(call to AddStripeInformation). The final place-

ment of a component will be restricted to the columns as-

signed to its level. The starting column assigned to a given

978-972-789-304-1 REC'2010 11

Figure 1. Placing components in stripes. (a) Typi-
cal placement for components that only have CLBs;
(b) Placement resulting from restrictions imposed by
the use of particular hardware resources, in this case
BRAMs.

level will be the one closest to the dynamic area interface

without overlapping columns of previous levels. The num-

ber of columns assigned to a stripe is the smallest required

to accommodate all components of the corresponding level

(see Figure 1a). This is determined by the width of the

components and by the compatibility of the component re-

sources with the destination area. In some cases it is neces-

sary to widen the stripe in order to cover an area compatible

with the resource requirements of a given component (see

Figure 1b).

Placement proceeds by processing each level in suc-

cession and placing the components from top to bottom

of the device. If possible, a new component is placed

just below the previous one (YOffset(c) = 0) and at

the right edge of the stripe (XOffset(c) = 0). How-

ever, the placement of components with non-homogeneous

resources (like BRAMs) may require offsetting the com-

ponent from the default location (YOffset(c) > 0 or

YOffset(c) > 0). As a result, components may not start

at the left edge of the stripe, nor end at the right edge. In

all cases, the empty spaces in the stripe are filled with feed-

through components, ensuring that all outputs are brought

to the right side of stripe.

Feed-through components simply connect their inputs

directly to their outputs. Components of this type are also

used to provide a path through a stripe when connecting

components that do not belong to the same level. The

placer generates all feed-through components as required,

without recourse to library components.

Placement fails if the sum of the heights of all com-

ponents of the same level, including feed-through com-

ponents added while processing previous levels, is greater

than the height of the device. At the end of the placement

procedure the information on the final positions of all com-

ponent terminals is collected for use in the routing stage.

The automatic placement strategy assumes that compo-

nents have input terminals on their left border and output

terminals on the right. As an alternative to automatic place-

ment, the run-time support library contains functions that

allow the explicit placement of components by the applica-

tion. In this case, both types of terminals may be present

Figure 2. Routing between stripes. (a) Placed compo-
nents with indication of connections to be established;
(b) detail of routing area (dashed box) showing one
possible route connecting C to E.

on either edge of the routing area. For both types of place-

ment, a list of connections and associated physical terminal

positions is created for use as input to the router.

The final result of a successful placement consists of

the default partial bitstream merged with the relocated bit-

streams of the components.

3.3. Routing

The routing procedure described in this section is used

to establish connections between terminals of components

in adjacent stripes. The procedure implements a breadth-

first search of the routing area, which is represented by an

array of switch matrices, one for each CLB in the area. For

adjacent stripes, two columns of switch matrices are nec-

essary: one belonging to the right border of the left stripe,

and the other belonging to the left border of the right stripe.

An extra column of switch matrices is included when there

is an unused BRAM column between the stripes.

Physically, component terminals are pins of the switch

matrix of the corresponding CLB. The component inputs

connect to the input pins of the CLB LUTs, while compo-

nent outputs connect to the slice outputs [18]. Other pins

in the switch matrix connect to corresponding pins in other

switch matrices. So the result of routing one net is simply

the set of switch matrix pins required to establish the de-

sired connectivity, which implicitly define the settings of

the switch matrices involved. The situation is illustrated in

Figure 2.

The actual area searched starts as the smallest rectangle

of switch matrices that encloses all pins used as terminals

of the net to be routed, and is reduced during the search.

Since the search area is restricted, the number of possi-

ble connections to be examined is limited. Restricting the

search area in this way reduces the chances of successfully

routing a given netlist, but reduce the search effort signifi-

12 978-972-789-304-1 REC'2010

Algorithm 2: Greedy breadth-first routing algorithm

Data: List R of nets to route
Partial bitstream B with components
Search area A

Result: Partial bitstream B with merged routes

usedPins ← create switch matrix array for search area A1
foreach n ∈ R do2

currentPins ←{GetNetSource(n)}3
destinationPins ← GetNetSinks(n)4
distLimit ← max(Width(A),Height(A))5
solutionPaths[n]← /06
newCurrentPins ← /07
f ← SelectOne(destinationPins)8
while |Reached|< |destinationPins| do9

if currentPins = /0 then fail10
allPins ← set of pins connected to any element of currentPins11
foreach p ∈ allPins do12

if p ∈ Visited then continue13
Visited← Visited∩{p}14
d ← Distance(p, f)15
if p /∈ usedPins∧InSearchArea(p)∧d ≤ distLimit16
then

if p ∈ destinationPins then17
newPath ← RetracePathTo(p)18
MergePaths(solutionPaths[n], newPath)19
Reached← Reached∩{p}20
if p = f then21

f ←22
SelectOne(destinationPins\Reached)
Visited← /023
newCurrentPins ←24
{GetNetSource(n)}
distLimit ←25
max(Width(A), Height(A))
break26

else27
// it is not an endpoint
newCurrentPins ← newCurrentPins∩{p}28
distLimit ← min(distLimit, d)29

currentPins ← newCurrentPins30

add all pins from paths in SolutionPaths[n] to usedPins31
clear all flags, Visited← /0, Reached← /032

configure bitstream with all elements of solutionPaths[]33

cantly. The restricted routing algorithm remains capable of

routing significant classes of circuits, as shown empirically

in section 4.

The high-level description of the routing algorithm for

one region is shown in Algorithm 2. The algorithm per-

forms a breadth-first search for a shortest-path forest be-

tween the source of a net (one component’s output termi-

nal) and its sinks (one or more input terminals). Nets are

processed in sequence, without reconsidering the routing

of previous nets (outer loop in line 2).

During the search, variable currentPins contains the

pins that belong to the border of the expanding search, i.e.,

those pins that could be reached from the source in the

number of steps corresponding to the number of iterations

of the inner loop starting (line 9). Initially, only the source

of the net belongs to this set (line 3); during execution, the

successors of each visited pin are added (lines 28)

The loop at line 9 is repeated until every sink is reached.

The distance of a pin p to the current target sink f is used to

limit the search at line 16. The function Distance(p,f)
(used in line 15) is equal to the largest of the vertical and

horizontal distances between p and f : Distance(p,f)=
max(|xp − x f |, |yp − y f |). Only pins within a distance dis-
tLimit are eligible for consideration. The value of dis-

tLimit is initialized to the largest dimension of the search

area (generally, its height) and reduced as the search pro-

gresses (line 29). The variable is reset to the initial value

after reaching each sink.

The variable newCurrentPins holds the set of pins to

be used as starting points in the next iteration of the search.

This set includes all pins directly connected to the pins in

currentPins that have not yet been visited in the course of

this search. Every pin added to newCurrentPins includes

a reference to its predecessor on the search path. As the

search is extended to neighboring pins, these are flagged as

“visited”, to avoid repeated processing and ensure that only

shortest paths are considered.

Every time an element of destinationPins is reached, a

path is created by retracing through the chain of predeces-

sor pins (function RetracePath()). On reaching the

current sink target, the search for any remaining endpoints

of the same net is setup (line 21): newCurrentPins again

contains only the source pin, Visited is now a empty set,

and a new target sink is selected from the remaining ones.

Once all sinks have been found (line 31), pins used in the

solution are added to usedPins, state information for the

current search is reset and the next net is processed. The

final step updates the bitstream with the configuration in-

formation for the new routes.

The algorithm presented here does not ensure that a

global optimum for all routes is obtained, since each net

is treated in isolation, without considering the impact on

the following nets. In addition, the dynamic restriction of

the search area (for performance reasons) may cause some

solutions to be ignored. The current implementation does

not try to adjust the order in which nets are processed and

does not control the congestion of the routing area during

the search. The impact of these limitations is mitigated by

the fact that the router’s choices are considerably restricted

by the previous placement, and by the design decision to

keep any routing-related modifications confined to a rela-

tively small inter-component area. As shown by the bench-

mark circuits of section 4, a large variety of circuits can be

successfully routed by this approach.

4. Experimental results

The performance of the algorithms of section 3.3 was

evaluated by applying them to a set of benchmark circuits.

The evaluation was done on a XUP Virtex-II Pro Develop-

ment System, which uses a Xilinx XC2VP30-7 FPGA [4]

and 512 MB of external DDR memory (PC-3200). The ex-

ternal memory contains the program code and data, includ-

ing the library of components. Only one of the two em-

bedded PowerPC 405 processor cores is used for this work.

The CPU operates at 300MHz, and the 64-bit processor

local bus connected to the memory controller employs a

100MHz bus clock.

This section presents the results obtained by applying

the placement and routing algorithms to three sets of bench-

marks. For both sets, component dimensions and terminal

positions have realistic values derived from actual designs.

The first set of benchmarks comprises four classes of

978-972-789-304-1 REC'2010 13

Figure 3. Example of circuit graphs for each class of
the first set of benchmarks.

synthetic circuits, whose general structure is depicted in

Figure 3:

Pipeline (a) One or more pipelines;

Tree SM (b) Tree-like graphs with a single input compo-

nent and multiple output components;

Tree MS (c) Tree-like graphs with multiple input compo-

nents and a single output component;

Random DAG (d) Random directed acyclic graphs.

The structure of the first three classes is well matched

to the behavior of the placement algorithm, while the last

class is more general.

Table 1 describes the basic characteristics of the indi-

vidual examples: the number of input and output ports, the

number of components working with each of the three dif-

ferent data sizes (8, 16 and 32 bits), the number of levels of

the structure, and the maximum fan-out (number of sinks

of a net).

The other two sets of benchmarks are an adaptation of

benchmarks used by [19]:

Random binary expressions This set consists of 6 ran-

dom binary expressions, which produce a binary tree

structure, whose leaf nodes are the input constants and

the root node is the result of the expression. All inter-

nal nodes are binary operations. The structural details

of each benchmark are summarized in Table 2.

Honeywell/MediaBench The last set is based on nine data

flow graphs adapted by [19] from the Honeywell [20]

and MediaBench benchmarks [21]. All nodes are as-

sumed to process 8-bit data items. Table 3 shows the

structural details of all circuits from this set.

For the complete set of benchmarks, the average number

of components is 15 and the average number of connections

is 164.

Table 1. Basic structural characteristics of all example
circuits from the first set of synthetic benchmarks.

Table 2. Basic structural characteristics of the sec-
ond set of benchmarks representing binary random
expressions. The names of the benchmarks are the
ones used in [19].

The program used to run the benchmarks was written

in C and compiled with the GNU Compiler version 3.4.1

included in EDK 8.2. The resulting programs has 105 KB

of instructions and 1597 KB of static data.

Table 4 summarizes the results of running the place

and route algorithms on the benchmark circuits. For each

benchmark, Table 4 presents the total time required for bit-

stream generation, the number of levels of the correspond-

ing graph, the smallest rectangular area occupied by the

resulting circuit, the number of feed-through CLBs added

during routing, the number of CLBs taken up by all com-

ponents, including those used for feed-through routing.

The last column shows the relative area occupied by feed-

Table 3. Basic structural characteristics of the cir-
cuits from the Honeywell and MediaBench bench-
marks (adapted from [19]).

14 978-972-789-304-1 REC'2010

Table 4. Results of the execution of the placement
and routing algorithms on the 300MHz PowerPC 405
embedded in the XC2VP30-7 FPGA.

through components.

The running time is completely determined by the rout-

ing stage. The most time-consuming placement took only

154ms for the Honeywell-fft03 benchmark. The number

of levels L is equal to the number of stripes. Therefore,

the routing procedure (Algorithm 2) is called L+ 1 times

for each benchmark, for connections between strips and

connections for the input and outputs. For Virtex-II-pro

FPGAs the size of the partial bitstream, and therefore the

time taking for partial reconfiguration, is proportional to

the number of columns occupied by the circuit (first num-

ber in the fourth column). The typical dynamic area of our

test system is 22 columns by 32 rows. Most of the bench-

marks fit this reserved area; the four that do not, still fit

comfortably our target FPGA, which has 46 columns by 80

rows.

Routing may involve adding feed-through components

to the circuit in order to connect components that are not

on successive levels. With the exception of two bench-

marks (the two largest random DAGs), the additional com-

ponents do not represent more than 10% of the total number

of CLBs used by all components.

Most benchmarks took less than 90s; the exceptions

are the two of the largest trees (of both types), the largest

random DAG and the largest Honeywell benchmark. The

global average running time is 48.3s. These running times

make the current version unsuitable for applications that

require a very fast turnaround time, like just-in-time com-

pilation.

For the hardware setup used in this evaluation, a one-

time reduction in running time might be obtained by us-

ing both CPU cores: since the routing area between stripes

can be processed independently, routing may be easily per-

formed concurrently by both processors. Another possibil-

ity, applicable to situations in which partial configurations

are reused during the same application run, is to maintain a

configuration cache.

There are, in addition, many application scenarios that

may accommodate delays in the range under discussion.

They include applications that must adapt to relatively

slow-changing environments (like exterior lighting condi-

tions or temperature) or that may operate temporarily with

reduced quality. Another scenario involves adaptive sys-

tems that use learning (for instance, of new filter settings)

to improve their performance: the time required for gen-

erating configurations may be only a part of the time nec-

essary to learn the new settings and to take the decision to

switch configurations.

Another application involves self-diagnosis of malfunc-

tioning systems. In this case, normal operation has not yet

begun (or has been interrupted). Depending on the results

of some initial self-tests, the system may proceed to a di-

agnosis phase, during which new test hardware is gener-

ated which depends on the results of the previous tests.

In this case, run-time generation would avoid the need to

pre-generate and store a potentially very large number of

specific diagnostic circuits (most of which would never be

used).

The current system is also useful in adapting compo-

nents to a design-specific dynamic area interface. Often,

it is desirable to re-use some (large) component in sev-

eral systems having different configurations of the dynamic

area (in particular, the position of the connections between

the dynamic and static areas may change). The component

might even be a third-party intellectual property block, de-

signed without any knowledge of the physical details of the

dynamic area. With the current system, the physical inter-

face adaptation might be performed at run-time by routing

the appropriate connections between the reserved area in-

terface and the component.

5. Conclusion

This paper presents the first implementation and evalua-

tion of an embedded system that is able to generate partial

bitstreams at run-time for use in the dynamic reconfigu-

ration of sections of a Virtex-II Pro platform FPGA. The

goal is to obtain useful solutions in a short time. The sys-

tem uses a greedy placement heuristic based on topologi-

cal sorting to determine the positions of individual coarse-

grained components whose interconnections are specified

by an acyclic netlist. A router based on non-backtracking

search over restricted areas determines the routes for the

interconnections. The partial bitstream is constructed by

merging together a default bitstream of the reconfigurable

area, the relocated partial bitstreams of the components,

and the configuration of the switch matrices used for rout-

ing. The computational effort is kept bounded by a com-

bination of factors: circuit description by acyclic netlists

of coarse-grained components, simplified resource models,

978-972-789-304-1 REC'2010 15

direct placement procedure, and the restricting of routing

to limited areas.

The results for a set of 35 benchmarks (both synthetic

and application-derived) show that time required for bit-

stream generation on a 300MHz PowerPC embedded pro-

cessor depends strongly on the complexity of the circuits,

averaging 48.3s (minimum: 6.97s, maximum: 100.73s)

for an average circuit size of 15 components (minimum: 3,

maximum: 41) and 164 connections (minimum: 32, maxi-

mum: 328).

The working implementation described here shows that

run-time generation of configurations is a feasible tech-

nique for use on highly adaptive embedded systems, where

it may be used to provide precisely-tailored hardware sup-

port to tasks whose computational needs exceed the com-

putational power of the CPU. The evaluation of the suit-

ability of this approach for specific cases requires that all

system aspects be considered. Although the time required

for routing makes the approach unsuitable for applications

requiring very fast generation of bitstreams, several classes

of applications may be able to accommodate the delays in-

volved and profit from the increased flexibility provided by

this approach.

Acknowledgments

The authors would like to thank C. Ababei for providing

some of the benchmarks used in section 4.

References

[1] J. Gause, P.Y.K. Cheung, and W. Luk. Reconfigurable com-

puting for shape-adaptive video processing. IEE Proceed-
ings - Computers and Digital Techniques, 151(5):313–320,

2004.

[2] K. Paulsson, M. Hiibner, J. Becker, J.-M. Philippe, and

C. Gamrat. On-line routing of reconfigurable functions

for future self-adaptive systems - investigations within the

ÆTHER project. In International Conference on Field Pro-
grammable Logic and Applications (FPL 2007), pages 415–

422, 2007.

[3] Miguel L. Silva and João C. Ferreira. Generation

of hardware modules for run-time reconfigurable hybrid

CPU/FPGA systems. IET Computers & Digital Techniques,

1(5):461–471, 2007.

[4] Xilinx. Virtex-II Platform FPGA User Guide, November

2007. version 2.2.

[5] Ian Robertson and James Irvine. A design flow for partially

reconfigurable hardware. ACM Transactions on Embedded
Computing Systems, 3(2):257–283, 2004.

[6] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridg-

ford. Invited paper: Enhanced architectures, design method-

ologies and CAD tools for dynamic reconfiguration of Xil-

inx FPGAs. In Proc. International Conference on Field Pro-
grammable Logic and Applications (FPL 2006), pages 1–6,

2006.

[7] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Par-

lour. Dynamic hardware plugins in an FPGA with partial

run-time reconfiguration. In Proc. 39th Design Automation
Conference, pages 343–348, 2002.

[8] Y.E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly. Virtex

II FPGA bitstream manipulation: Application to reconfigu-

ration control systems. In Proc. International Conference on
Field Programmable Logic and Applications (FPL 2006),
pages 1–4, 2006.

[9] Heiko Kalte and Mario Porrmann. REPLICA2Pro: Task re-

location by bitstream manipulation in Virtex-II/Pro FPGAs.

In Proceedings of the 3rd Conference on Computing Fron-
tiers, pages 403–412. ACM, 2006.

[10] F. Ferrandi, M. Morandi, M. Novati, M. D. Santambro-

gio, and D. Sciuto. Dynamic reconfiguration: Core reloca-

tion via partial bitstreams filtering with minimal overhead.

In Proc. International Symposium on System-on-Chip (Soc
2006), pages 1–4, 2006.

[11] H. Tan and R. F. DeMara. A multilayer framework sup-

porting autonomous run-time partial reconfiguration. IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 16(5):504–516, 2008.

[12] Yaska Sankar and Jonathan Rose. Trading quality for com-

pile time: ultra-fast placement for FPGAs. In Proceedings
of the 1999 ACM/SIGDA Seventh International Symposium
on Field Programmable Gate Arrays, pages 157–166. ACM,

1999.

[13] Chandra Mulpuri and Scott Hauck. Runtime and quality

tradeoffs in FPGA placement and routing. In Proceed-
ings of the 2001 ACM/SIGDA 9th International Symposium
on Field-Programmable Gate Arrays, pages 29–36. ACM,

2001.

[14] Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. Dy-

namic FPGA routing for just-in-time FPGA compilation. In

Proc. 41st Design Automation Conference, pages 954–959,

2004.

[15] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Ar-
chitecture and CAD for Deep-Submicron FPGAs. Kluwer

Academic Publishers, 1999.

[16] Jorge Suris, Cameron Patterson, and Peter Athanas. An ef-

ficient run-time router for connecting modules in FPGAS.

In Proc. International Conference on Field Programmable
Logic and Applications (FPL 2008), pages 125–130, 2008.

[17] Miguel L. Silva and João C. Ferreira. Generation of par-

tial FPGA configurations at run-time. In Proc. International
Conference on Field Programmable Logic and Applications
(FPL 2008), pages 367–372, 2008.

[18] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet, November 2007. version 4.7.

[19] Cristinel Ababei and Kia Bazargan. Non-contiguous linear

placement for reconfigurable fabrics. International Journal
of Embedded Systems, 2(1/2):86–94, 2006.

[20] S. Kumar, L. Pires, S. Ponnuswamy, C. Nanavati, J. Go-

lusky, M. Vojta, S. Wadi, D. Pandalai, and H. Spaanen-

berg. A benchmark suite for evaluating configurable com-

puting systems—status, reflections, and future directions. In

Proceedings of the 2000 ACM/SIGDA Eighth International
Symposium on Field Programmable Gate Arrays, pages

126–134. ACM, 2000.

[21] Chunho Lee, Miodrag Potkonjak, and William H.

Mangione-smith. Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems. In In
International Symposium on Microarchitecture, pages 330–

335, 1997.

16 978-972-789-304-1 REC'2010

