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Abstract The ensembling of classifiers tends to improve predictive accuracy. To
obtain an ensemble with N classifiers, one typically needs to run N learning pro-
cesses. In this paper we introduce and explore Model Jittering Ensembling, where one
single model is perturbed in order to obtain variants that can be used as an ensemble.
We use as base classifiers sets of classification association rules. The two methods of
jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post
Bagging (PB). Both methods start by learning one rule set over a single run, and then
produce multiple rule sets without relearning. Empirical results on 36 data sets are
positive and show that both strategies tend to reduce error with respect to the single
model association rule classifier. A bias–variance analysis reveals that while both IRE
and PB are able to reduce the variance component of the error, IRE is particularly
effective in reducing the bias component. We show that Model Jittering Ensembling
can represent a very good speed-up w.r.t. multiple model learning ensembling. We also
compare Model Jittering with various state of the art classifiers in terms of predictive
accuracy and computational efficiency.
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1 Introduction

Association rules can be used for classification purposes with success. It has been
empirically proved that predictive performance can be improved by enabling a wider
search in the set of patterns supported by the data (Li et al. 2001; Liu et al. 1998;
Meretakis and Wüthrich 1999). Given a set of association rules, it is a challenge to
devise the best possible way to perform classification, mainly because an enormous
number of rules can be produced with reasonable computational resources.

This paper builds up on recent work of the authors, which exploited the use of
low-cost ensemble learning (with a single learning process) to further improve the
results of association rule classifiers (Jorge and Azevedo 2005; Azevedo and Jorge
2007b). Here we provide a unifying perspective of the previously presented approaches
and introduce the concept of Model Jittering Ensembling (MJE). We also present a
more extensive and deeper evaluation, showing experimental results for a higher num-
ber of data sets and comparing our approach with other existing rule based classifiers,
one decision tree based classifier, bagging and boosting. Additionally, we perform an
empirical and theoretical study on the computational effort of MJE approaches.

The high level idea of MJE for improving classification with association rules is to
generate a first set of rules and then to obtain replications of this set by either sampling
the rules in a manner similar to bagging (Breiman 1996) or by reordering it in a process
inspired in boosting (Freund and Schapire 1995; Schapire 1990). The replications are
then used as an ensemble.

The main feature of this ensemble approach is that the learning process that generates
the rules runs only once, whereas in boosting and bagging there are as many learning
processes as classifiers generated. In boosting, a sequence of models is generated from
iteratively reweighted sets of examples. The weights of the examples are changed, so
that misclassified examples get more attention in the next iteration. Bagging is the
generation of several models from bootstrap samples of the same original data set.
For both approaches, the final decision is obtained by combining the answers of the
classifiers in the ensemble. This is also the case in Model Jittering Ensembling.

Model Jittering Ensembling with association rule based classifiers is also a case of
learning global model from local patterns (Knobbe et al. 2008), with a further step.
First, local patterns (association rules) are discovered. These are then filtered and gath-
ered to obtain a primary global model. This base model, made from local patterns,
is particularly adequate for jittering, which is the further step. The ensemble of base
models we obtain is the final global model.

In this paper we present and formalize the general process of MJE, and provide
further and wider empirical evidence of the strengths and weaknesses of two instances
of this approach. We compare MJE with other approaches and see how this new
approach is situated in terms of predictive performance. Our direct competitors are
a state of the art tree learner, bagging and boosting applied to it, and state of the art
rule learners using association rules or not. Empirical results show that MJE improves
the performance of single association rule classifiers, and does well with respect to its
competitors.

A bias-variance study indicates that IRE improves the predictive accuracy of
classification with association rules mainly by reducing the bias component of the
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classification error. PB is also successful, although to a lesser extent than IRE, and
tends to reduce variance. A study of the speed-up of MJE w.r.t. single model association
rule classification reveals very high efficiency values for the two proposed approaches.

In summary, the aims of this work are twofold. First, we exploit for the first time
the path of ensembling by perturbing/jittering the models after learning. Second, we
apply, with advantage, this general strategy to the process of learning classifiers from
association rules.

We also revisit the research done on classification with association rules, particularly
on the task of combining rules to produce a decision, and on ensemble learning.

2 Classification with association rules

Association rule (AR) discovery (Agrawal et al. 1996), consists of taking a set of
transactions D = {T | T is a set of items i}, a minimal support threshold σ and a
minimal confidence threshold φ, and outputs all the rules of the form A→ B, where
A and B are sets of items in D and sup(A ∪ B) ≥ σ and sup(A ∪ B)/sup(A) ≥ φ.
sup(X) is the support or the relative frequency of an item set X observed in D.
sup(A ∪ B)/sup(A) is the confidence of A→ B, denoted as con f (A→ B).

AR discovery can be directly applied to tabular data sets, such as the typical UCI
data set, with one column for each attribute by regarding each example as a set of
items of the form < attribute = value >. Likewise, continuous attributes can be
dealt with if discretized in advance.

Despite the fact that an association rule algorithm finds ALL rules that satisfy σ

and φ, the discovery process can be relatively fast and discovery time grows linearly
with the number of examples (clearly shown in Agrawal et al. 1996 for the algorithm
AprioriHybrid). This provides a scalable heuristic-free process that makes possible to
avoid greedy methods such as decision trees.

The discovery of association rules can then be seen as a step preceding model
building, or a computationally feasible way of having a non-greedy search on the
space of rules. Association rules have been proposed for the first time as complete and
competitive classification models by Liu et al. (1998). A classification rule model built
from such an unrestrained set of rules can potentially be more accurate than another
using a greedy search approach, according to results reported by different authors
(Li et al. 2001; Liu et al. 1998; Meretakis and Wüthrich 1999).

In CBA (Liu et al. 1998), the produced classifier was a decision list, and each new
case was classified by the best rule that applied to it, i.e., the rule with highest confi-
dence. Later, Li et al. (2001) proposed CMAR and the use of multiple rules, instead
of just one, to classify each new case. The subset of rules that apply to the new case
are grouped by answered class, and each of these groups is assessed with a weighted
χ2 heuristic that tried to identify the strongest group. Jovanoski and Lavrac (2001)
have studied the effect of simple voting and other simple strategies to improve the
prediction ability of a set of association rules (AprioriC). Some other approaches
have been proposed, such as HARMONY by Wang and Karypis (2005), where high
confidence rules are generated and grouped w.r.t. their class labels. A class label is
assigned to a new case by adding the confidence values of the rules that apply. Earlier
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we have proposed the ensemble strategies based on multiple sets of association rules
which are under study in this paper (Azevedo and Jorge 2007b; Jorge and Azevedo
2005).

In a slightly different line of work, Meretakis and Wüthrich (1999) suggested a well
founded procedure to combine multiple rules by using the confidence of the rules to
determine the most likely class for each case, in a kind of naïve Bayes approach with
less independence assumptions. Experimental results also indicate the advantage of
using association rules for classification.

2.1 Obtaining classifiers from association rules

We can regard classification using association rules as a particular case of the general
problem of model combination. Either because we see each rule as a separate model or
because we consider subsets of the rules as separate models. We first build a set of rules
R. Then we select a subset M of rules that will be used in classification, and finally
we choose a prediction strategy π that obtains a decision for a given unknown case x .
To optimize predictive performance we can fine tune one or more of these three steps.

2.1.1 Strategy for the generation of rules

A standard approach is to employ a sort of coverage strategy (Liu et al. 1998). All
association rules are derived. Then, one chooses the best rule, removes the covered
cases and repeat the selection of rules until all cases are covered. In Li et al. (2001) this
standard coverage strategy is generalised to allow more redundancy between rules. A
case is only removed from the training data when it is covered by a pre-defined number
of rules. In HARMONY (Wang and Karypis (2005)) rules are generated in a way sim-
ilar to Liu et al. (1998) and Li et al. (2001), but without the need of setting an explicit
value for minimal confidence or other measure apart from support. In our work, we
build the set of rules separately using the CAREN system (Jorge and Azevedo 2005).
CAREN is specialized in generating association rules for classification and employs a
bitwise depth-first frequent pattern mining algorithm.

2.1.2 Choice of the rule subset

We can use the whole set of rules for prediction, and count on the predictive strategy to
dynamically select the most relevant ones. Selection of rules is based on some measure
of quality, or combination of measures. The structure of rules can also be used, for
example for discarding rules that are generalizations of others. Discarding rules that
are potentially irrelevant or harmful for prediction is called pruning (Li et al. 2001;
Liu et al. 1998; Wang and Karypis 2005).

2.1.3 Strategy for prediction

Most of the previous work on using association rules for classification has been done
on this topic. The simplest approach is to go for the rule with the highest quality (best
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rule), typically measured as confidence, sometimes combined with support (Liu et al.
1998). Other approaches combine the rules by some kind of committee method, such
as voting (Jovanoski and Lavrac 2001), or some form of weighted voting (Li et al.
2001; Wang and Karypis 2005).

2.1.4 Rule selection

Rule selection or pruning, can be done right after rule generation. However, most
of the rule selection techniques can be applied when the rules are being generated.
Pruning techniques rely on the elimination of rules that do not improve more general
versions. For example, rule {a, b, c} → g, may be pruned away if rule {a, c} → g
has similar or better predictive accuracy. CBA (Liu et al. 1998) uses pessimistic error
pruning. Another possibility is to simply use some measure of improvement (Bayardo
et al. 1999) on a chosen rule quality measure. In our experiments we use the statistical
measure of Fisher to evaluate the improvement of rules (Webb 2006). This statistical
test for deriving significant rules is described in more detail in the following section.

At modeling time we can still reduce the set of rules by choosing only the K -best
ones overall, or the K -best ones for each class (Jovanoski and Lavrac 2001), where
K is a user provided parameter. This technique may reduce the number of rules in the
model dramatically, but the choice of the best value for N is not clear. In HARMONY
(Wang and Karypis 2005), a few pruning techniques are used during rule generation,
since the rules are built for classification from the first moment. These techniques
are non-heuristic, thus maintaining the completeness of the process, while improving
computational efficiency.

2.2 Deriving significant rules

A very large number of association rules can be obtained from a given data set. Many of
those rules will not be significant, in the sense that they do not add anything (or much)
to other existing rules, and must be discarded for computational reasons. In classifica-
tion tasks, non-significant rules degrade computational efficiency and can negatively
affect predictive performance. In our work, we follow the proposal of Webb (2006) to
derive significant rules. A rule is significant if the confidence improvement towards
all its generalizations is statistically significant.

Definition 1 The rule x → y is significant if ∀z → y, z ⊂ x we have that the
difference con f (x → y) − con f (z → y) is statistically significant for a given sig-
nificance level (α).

If con f (x → y) − con f (z ← y) > 0 we say that x → y is a productive rule.
Following Webb’s proposal, CAREN implements a test between a rule and its direct
generalizations. The direct generalizations of a rule x → y are∅ → y and (x−a)→ y
where a is a single item. Statistical significance is evaluated using a Fisher Exact Test.
Furthermore, Webb (2008) proposes a methodology to control type I errors based on
layered critical values. The idea is to apply a Bonferroni adjustment on each level (size
of rules antecedents). Thus each level will have its own adjusted α′. Although CAREN
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also implements this methodology, we have observed empirically it tends to degrade
predictive accuracy. Thus, in this paper, models were derived using an unadjusted
α = 0.05.

The process described by Webb is potentially incomplete due to two reasons: First,
it only considers direct generalizations of a rule. Second, applied on a depth-first
search association rules algorithm (like the one used in Webb 2006 and the one imple-
mented in CAREN) it also suffers from incompleteness. Being a depth-first approach,
the algorithm derives association rules along the search process. Consequently, when
deriving a new rule not all its generalizations are available which disables a complete
test. Thus, the pruning process (as implemented) is not guaranteed to be complete.
However, this approach is sound, i.e., it guarantees the enforcement of:

∀a→ cons ∈ Result Set, ∀x ⊂ a ∧ x → cons ∈ Result Set,

Fisher pvalue(x → cons, a→ cons) ≤ α (1)

where Result Set is the set of association rules returned at the end of the mining pro-
cess. Hence, completeness can only be ensured by a post-pruning process. The same
problem was identified in Webb et al. (2003) using Magnum Opus.

CAREN implements two versions of this pruning process. One is a test applied
along the search and the other is a post-pruning test. In this paper we use the latter
version.

2.3 Combining the decisions of rules

In this section we describe the two simplest strategies for using association rule sets
as classification models. In the discussion we assume we have a static set R of clas-
sification association rules, and a predefined set of classes G and that we want to
classify cases with description x , where the description of a case is a set of statements
involving independent attributes. The set of rules that apply to the case, or that fire
upon the case with description x will be F(x) defined as:

{(x ′ → class = g) ∈ R | x ′ ⊆ x, g ∈ G} (2)

2.3.1 Best rule

This strategy, from here on referred to as BestRule classifies using one single rule
BestRulex , is:

BestRulex = arg max
r∈F(x)

meas(r) (3)

The meas used is a function that assigns to each rule a value of its predictive power.
Confidence is the natural choice when it comes to prediction. It estimates the posterior
probability of C given A, and is defined as Eq. 4.
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con f idence(A→ C) = sup(A ∪ C)

sup(A)
(4)

Conviction is another interest measure (Brin et al. 1997) somewhat inspired in the
logical definition of implication and attempts to measure the degree of implication of
a rule. Conviction is infinite for logical implications (confidence 1), and is 1 if A and
C are independent, and it sometimes outperforms confidence in terms of prediction
(Jorge and Azevedo 2005; Azevedo and Jorge 2007a). It is defined as Eq. 5

conviction(A→ C) = 1− sup(C)

1− con f idence(A→ C)
(5)

Another measure sometimes used in classification is Laplace. It is a confidence
estimator that takes support into account, becoming more pessimistic as the support
of A decreases. It ranges within [0, 1[ and is defined as Eq. 6

Lapl(A→ C) = sup(A ∪ C)+ 1

sup(A)+ 2
(6)

The prediction given by the best rule is the best guess we can have with one sin-
gle rule. When the best rule is not unique we can break ties maximizing support
(Liu et al. 1998). A kind of BestRule strategy, combined with a coverage rule genera-
tion method, provided encouraging empirical results when compared with state of the
art classifiers on some data sets from UCI (Merz and Murphy 1996).

Our implementation of Best Rule prediction follows closely the rules ordering
described in CMAR (Li et al. 2001). Thus, R1 precedes R2, in terms of rule applica-
tion, is defined as:

R1 ≺ R2 i f meas(R1) > meas(R2)

or meas(R1) == meas(R2) ∧ sup(R1) > sup(R2)

or meas(R1) == meas(R2) ∧ sup(R1) == sup(R2) ∧ ant (R1) < ant (R2).

where meas is the used interest measure and ant is the length of the antecedent.

2.3.2 Voting

This strategy, from here on referred to as Voting, combines the rules F(x) that fire
upon a case x . The answer of each rule is a vote, and the final decision is obtained by
assigning a specific weight to each vote, according to its perceived quality. In the case
of association rules, this can be done using one of the above defined measures.

predictionwv = arg max
g∈G

∑

x ′∈antecedents(F(x))

vote(x ′, g). max meas(x ′ → g) (7)
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A voting variant, VtopK selects the T opF(x, K ) best K rules per class from within
the ones that fire (Jovanoski and Lavrac 2001) given an example x .

predvK = arg max
g∈G

∑

x ′∈antecedents(T opF(x,K ))

vote(x ′, g). max meas(x ′ → g) (8)

2.4 CAREN classification procedure

The association rule generator we are using is CAREN (Azevedo 2003). CAREN imple-
ments an association rule algorithm to derive rule based prediction models. For a given
class attribute and training data set, CAREN derives association rules where the class
values are the consequent. Rule pruning is performed using a Fisher exact test, as
described above. Like CMAR, CAREN is a rule based rather than an itemset based
algorithm. That is, frequent patterns (itemsets) derivation and rule generation occurs
in one single step, opposed to itemset based algorithms that make use of two separated
steps. This feature tends to yield new pruning opportunities. For example, for a conse-
quent c and an itemset P , where c is the most dominant class in the examples covering
P , if sup(c∪ P) < minsup then there is no need to search for a superset P ′ of P since
any rule of the form P ′ → c cannot pass minsup. For the same reasons, the statistical
based pruning procedures can also yield additional opportunities for pruning.

The set of rules derived constitute the prediction model. Unlike CMAR and
CBA, CAREN does not perform a database coverage procedure. Instead, it consid-
ers all derived rules. CAREN produces a prediction for a test case by selecting those
rules that cover it. Prediction can be performed by a BestRule or Voting strategy.
BestRule uses a decision list of rules. Rules are ordered by the ranking described
above (see Sect. 2.3.1), first introduced in CMAR. The rule at the top of the rank that
covers the case provides the prediction. Voting uses the values of the interest measures
of the rules as weights. The most voted class is the prediction.

3 Related work

Ensemble learning has concentrated a large number of proposals in the literature.
In Bauer and Kohavi (1999) a study on the performance of several voting methods
(including Bagging and Boosting) was presented. A careful analysis of the bias/vari-
ance error decomposition is described as means to explain the error reduction yielded
by the different voting methods variants.

Leo Breiman has proposed output smearing and output flipping as methods for
generating multiple versions of a data set (Breiman 2000). Both are methods for
perturbing outputs through randomization. Output Smearing refers to the adding of
Gaussian noise to the outputs. One obvious way of perturbing the output in classifi-
cation is to alter some of the class labels, but bearing in mind that it is important to
keep the class compositions relatively invariant. The extent of this change is measured
by a single real parameter, called the flip rate. This procedure is referred to as Output
Flipping. Breiman shows experimentally that both perform consistently better than
bagging.
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In Frank and Pfahringer (2006), the authors also propose a method to improve Bag-
ging. The idea is to modify the base learner so that different models can be generated
from the same data. This is typically done by turning the base learner into a random-
ized version of itself, e.g. by choosing randomly among the best splits at each node
of a decision tree The authors refer to this method as “input smearing” because they
randomly modify the attribute values of an instance, thus smearing it out in instance
space. Hence, they sample from a kernel density estimator of the underlying distribu-
tion to form new training sets, in addition to sampling from the data itself. This can
be viewed as “smearing out” the resampled training data to generate new data sets.
The authors show that the amount of “smear” can be controlled by a parameter. The
motivation for using input smearing is that it may be possible to increase the diversity
of the ensemble by modifying the input further than bagging does.

A novel version of model aggregation obtained from bagging is described in
Martínez-Muñoz and Suárez (2006). The main idea is to derive an ordering on the
models and to consider the top of the order. This is obtained by halting the bagging
process earlier. Only a small part of the models is selected (15 to 30% of the total). This
fraction of models are expected to perform best when aggregated. We have adopted a
similar strategy for our PostBagging implementation.

Gama (2003) proposes an iterative version of Naive Bayes. The aim is to boost
accuracy by iteratively updating the distribution tables yielded from Naive Bayes to
improve the probability class distribution associated with each training case. The end
product is a single model rather then an ensemble. Our iterative updating of each rule
predictive measure within each trial can be seen as a form of improving probability
class distribution.

Other authors view rule learning for classification tasks as a special kind of ensem-
ble learning. Each rule is a viewed as a weak learner and the ensemble is defined
by assigning a weight to each rule from a rule space, with the possibility of having
weights equal to zero (rule selection). Different proposals use different approaches
for finding the weights. SLIPPER (Cohen and Singer 1999) builds one rule at a time,
updating the distribution of the training examples using the principles of AdaBoost.
This is done for a fixed number of iterations T . The resulting weighted rule set is used
by summing the weights of the rules that apply to a given case. SLIPPER is reported
as having high predictive accuracy on binary classification data sets when compared
with RIPPER (Cohen 1995) and C4.5rules. The rule set tends to be small.

Lightweight Rule Induction (LRI) by Weiss and Indurkhya (2000) proceeds by
building one DNF rule at a time (instead of the usual conjunctive rule). After obtain-
ing each rule, the number of errors of rules built so far is updated which affects the
generation of further rules. This is similar in spirit to the adaptiveness of boosting.
However, rules are unweighted and each class gets the same number of rules. Given a
new case, its class is the most voted one. Experimental results show some advantage
over SLIPPER.

Friedman and Popescu (2005) proposed RuleFit, which starts by building a pool
of rules. This is obtained by bagging the data and getting a number of classification
trees. Each tree is converted into a set of rules. Then, a linear combination of the rules
is learned from the data by a regularized linear regression. Experiments indicate that
the rule ensemble thus obtained is better than some tree ensembles approaches.
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Rückert and Kramer (2006) generate a number of rules and then treat them as
attributes of an SVM-like problem. The rule weights are obtained by an optimization
procedure. This approach reports competitive results with SLIPPER.

More recently, Dembczyński et al. (2008) proposed MLRules which obtains a rule
ensemble by building rules which minimize negative loglikelihood. The process for
building each rule is influenced by previously generated rules, again in the spirit of
adaptive boosting. Their experimental results shows that MLRules is similar to LRI,
but superior to SLIPPER and RuleFit. Their approach is named MLRules and has
two variants: MLRulesG (which gives the best results) and MLRulesN . The difference
between the two is that one (G) uses a gradient method as a heuristic to minimize the
negative loglikelihood, while the other (N ) uses the Newton method.

4 Model jittering ensembling

Model Jittering Ensembling is the production of multiple models by repeatedly
perturbing an original one. The nature of the perturbation can be varied and must
be adequate to the structure of the model. In our case, we try two approaches on clas-
sification models which are sets of association rules. In the first approach we sample
rules from an original rule set. In the second approach we reorder the rules, i.e., pro-
duce several decision lists. What we observe is that the combinations of sets of rule
samples and sets of decision lists obtained from the same rule set improve the results
of classification when compared to the use of the original rule set.

In general, ensembles can be produced by perturbing the input data (as it is the
case of bagging (Breiman 1996) and boosting Freund and Schapire (1996), as well
as output smearing Breiman (2000)), by perturbing or varying the input parameters
of the learning algorithm or by using different learning algorithms on the same data
(heterogeneous ensembles). What we are proposing here is ensemble production by
perturbing the output (the model) of the learning algorithm. When the input data is
perturbed, we mostly reduce the variance component of the error. When we change the
input parameters or combine complementary algorithms we may also affect the error’s
bias component. In the case of model jittering, we are able to reduce both variance
and bias.

A given model is jittered by applying to it an operator that produces a model of the
same type. If the model is a sequence of association rules a simple operator SampleK

can be defined by sampling K rules from the original model. This operator preserves
the ordering of the rules. Another operator ReorderD can reorder the rules by recal-
culating their measures on a set of examples D. In general, any model composed of
smaller parts can be easily jittered by sampling, reordering, clipping, combining parts
or changing numerical properties associated to its parts. The special case of an asso-
ciation rule sequence or set is particularly adequate for model jittering due to their
highly modular nature. The general algorithm of MJE is shown as Algorithm 1. The
generic JitteringOp operator takes the original model M and optionally a validation set
V (which can be the training set itself). The jittering operator may also have memory
and take into account previous perturbation models produced in the same sequence.
The operator may also have other specific additional arguments.
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Algorithm 1: Model jittering ensembling general algorithm
Input: M : model; V : validation data; K : the number of models in the ensemble
Output: E : set of models (ensemble)
E ← ∅1
for i in 1 to K do2

Mi ← JitteringOp(M[,V ,E])3
E ← E ∪ Mi4

In this paper we introduce two model jittering ensembling methods for sets of asso-
ciation rules: PostBagging and IterativeReordering. PostBagging is developed around
a sampling jittering operator and IterativeReordering is based on a reordering operator
that recomputes the interest measures of the rules. They will be described in detail in
the next two sections.

5 Postbagging

Bagging is the generation of several models from bootstrap samples of the same
original data set D (Breiman 1996). The prediction given by the set of resulting mod-
els for one example e is done by averaging the predictions of the different models.
Bagging has the effect of improving the results of an unstable classifier by reducing its
variance (Hastie et al. 2001). Domingos (1997) suggests that, in the case of decision
trees, bagging works because it increases the probability of choosing more complex
models.

In the case of classification from association, we obtain a large set of rules R that
contain many alternative possible models. In this section we describe the technique of
PostBagging (PB), first introduced in Jorge and Azevedo (2005), and set it as a case
of jittering ensembling. PB consists in sampling repeatedly the set of rules a posteri-
ori to obtain an ensemble of models similarly to bagging. The models in a particular
ensemble will be similar, but their differences will tend to reflect the variability of rule
sets obtained from the same source of data.

New cases are classified by obtaining the prediction of each of the models in the
ensemble (and this can be done with any strategy), and using simple voting to com-
bine those predictions. Experimental evaluation indicates that this technique can obtain
good results when compared to a BestRule or a voting approach, or even to decision
tree learners, such as c4.5 (Quinlan 1993).

We will now describe the PostBagging algorithm (Algorithm 2) in detail, as a partic-
ular case of the general MJE algorithm. First we obtain a set of association rules R from
a data set D using some association rule generator (referred to as AssocRuleGen).
Each association rule is in fact a triple < r, absup(r), measure(r) >, where r is the
rule itself, absup(r) is the rule’s absolute support, and measure(r) is the rule’s pre-
dictive measure. Then, we proceed to the model jittering by building a number of bags
from R using the PostBaggingOp operator (Algorithm 3). Each bag is a sample with
a pre-defined size of the rule set. Sampling is performed with replacement. Duplicate
rules are discarded. The number of bags (K ) is 30 by default, and the size T of each
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Algorithm 2: PostBagging
Input: D: training_set; K : the number of bags (default 30); T : size of each bag (default

min(| R |, max(50, 0.1× | R |)))
Output: E : the set of bags/models (ensemble)
R← AssocRuleGen(D)1
E ← ∅2
for i in 1 to K do3

Mi ← PostBaggingOp(R as M ,T )4
E ← E ∪ Mi5

Algorithm 3: PostBaggingOp jittering operator
Input: R: rule set; T : size of each bag
Output: Mi : rule set (bag)
Mi ← sample with replacement T rules from R1

bag is 10%, with an absolute minimum of 50 rules. These defaults have been set in
preliminary experiments and should not be regarded as necessarily ideal.

5.1 Selecting the top bags

To enhance the performance of the basic PostBagging method we apply the idea of
using only the composition of the best models. A similar idea of model aggregation
obtained from bagging is described in Martínez-Muñoz and Suárez (2006). The main
idea is to derive an ordering of the models and to consider the top ones. Only a small
part of the models is selected (15 to 30% of the total). This fraction of models are
expected to perform best when aggregated. Similarly, we rank the derived bags to
choose only the top N models (being N a user provided parameter). In our case, rank-
ing is obtained by computing accuracy of each bag in a validation set, which can be
the training set itself, using BestRule prediction with a specific interest measure. Thus,
after Algorithm 2, each bag is evaluated on training data. To classify new cases, only
this fraction of bags are considered. In this case, the final prediction is determined by
weighted voting, where the weight of each bag corresponds to its accuracy over the
validation set. When there is no bag selection, the voting is uniform.

The classification of a single example x using a set of bags {Mi } is done by apply-
ing a chosen prediction strategy π to each of the bags. The most voted class is then
output as the overall prediction (Algorithm 4). The weight of each model wi is its
accuracy or 1, as explained above. In this paper, this PostBagging strategy is referred
to as PB.BR.meas, where meas is a given interest measure.

6 Iterative reordering

The second jittering operator for association rule models we describe is
IterativeReordering (IRE). IterativeReordering of a set of Association Rules proceeds
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Algorithm 4: Ensemble classifier
Input: {Mi }: set of models; π : prediction strategy; x : unlabelled example; wi : set of weights
Output: c: class
for i in 1 to |{Mi }| do1

ci ← π(Mi , x)2
c← argc max

∑
i :ci=c wi3

by re-evaluating the interest and support of each rule according to its performance on
a specific data set. This new evaluation works by running the rules on the training set.
After that, the interest of each rule is redefined according to its accuracy on this set.
The support of a rule is also redefined but as a measure of the usage of the rule in
classification. The redefinition yields a new ordering on the original set of rules, which
becomes a new model. This process is applied iteratively, thus obtaining a set of rule
models that can be aggregated. In this section we formalize IterativeReordering as a
case of jittering ensembling. IRE was first introduced by Azevedo and Jorge (2007b).

The main idea of IRE is to obtain the models by iteratively reweighting and reor-
dering the rules of the original rule set (Algorithm 5). The initial rule set R is obtained
using the association rule generator (AssocRuleGen). As above, each rule is repre-
sented by a triple < r , absup(r), measure(r) >. The values of measure(r) can be
used to sort the rules for classification. This predictive measure can be confidence,
conviction or Laplace. Other measures could be used, but we have focused on the
most predictive ones (Azevedo and Jorge 2007a). The Iterative Reordering operator
IterativeReordOp is then called K times to generate K models from R.

The operator IterativeReordOp (Algorithm 6) returns R itself as model M1 with
original measure values for each rule (base case). The absolute support of each rule will
be referred to as usage(r, M0, V ). Model M2 is obtained by reweighting the rules over
a given set of examples, which we call the validation set. In our experiments we have
used the training set itself as validation set. Reweighting is performed by evaluating
each example x ∈ V on model M1 using the BestRule approach. Here we count how
many times each rule is used in M1 (usage(r, M1, V )) and how many times it gives the
right answer (hits(r, M1, V )). M2 will contain the rules which have been used and the
predictive measure of each rule measure(r, M2, V ) will be updated with the freshly
assessed values of usage(r, M1, V ) and hits(r, M1, V ). In subsequent iterations the
update will be done in a similar way.

Algorithm 5: Iterative reordering
Input: D: training set; K : max iterations
Output: E : the set of bags/models (ensemble)
R← AssocRuleGen(D)1
E ← ∅2
for i in 1 to K do3

Mi ← IterativeReordOp(R,D as V ,i ,E)4
E ← E ∪ Mi5
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Algorithm 6: IterativeReordOp: iterative reordering jittering operator
Input: R: set of rules; V : validation set; i : current iteration;
E : set {M1, . . . , Mi−1} of models from previous iterations
Output: Mi : model
if i == 1 then1

Mi ← R, with absup(r) as usage(r, M0, V ) and measure(r) as measure(r, M1, V )2
else3

if i == 2 then4
Pool ← M15

else6
Pool ← Mi−1 ∪ {tr i ple ∈ Mi−2 | rule(tr i ple) �∈ rules(Mi−1)} ∪ {tr i ple ∈7
M1 | rule(tr i ple) �∈ [rules(Mi−2) ∪ rules(Mi−1)]}

foreach x ∈ V do8
r ← BestRule(x ,Pool)9
increment usage(r, Mi−1, V )10
if consequent (r) == class(x) then11

increment hits(r, Mi−1, V )12

foreach r ∈ rules(R) do13
update measure(r, Mi , V ) from usage(r, Mi−1, V ) and hits(r, Mi−1, V ) (Eqs. 9 to 13)14

Mi ← {< r, usage(r, Mi−1, V ), measure(r, Mi , V ) > | usage(r, Mi−1, V ) > 0}15

In general, if confidence is the predictive measure in Mi−1 then in Mi , the confi-
dence of rule A→ C is:

con f (A→ C, Mi , V ) = hits(A→ C, Mi−1, V )

usage(A→ C, Mi−1, V )
(9)

where

hits(A→ C, M, V )=#{x ∈ V | (A→C)==Best Rule(M, x) : x�A∧ x�C}
(10)

usage(A→ C, M, V )=#{x ∈ V | (A→ C)==Best Rule(M, x) : x � A}
(11)

BestRule(M, x) represents the best rule in M that applies to x . Other interest mea-
sures can be defined referring to confidence (con f ) and support (sup). Conviction is
defined as:

conv(A→ C, Mi , V ) = 1− sup(C, V )

1− con f (A→ C, Mi−1, V )
(12)

where sup(C, V ) is the support of class C in validation set V . The measure of Laplace
becomes:

Lapl(A→ C, Mi , V ) = hits(A→ C, Mi−1, V )+ 1

usage(A→ C, Mi−1, V )+ 2
(13)
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This reweighting can lead to a different rule ordering in terms of the predictive
measure. After M2, each model in the sequence Mi is obtained from the previous ones
in a similar way, until we obtain K models. The main difference for i > 2 is that we
take rules from a Pool (line 7) which contains rules (triples) from Mi−1, triples from
Mi−2 with rules not occurring in Mi−1 and triples from M1 with rules not occurring in
either. This is done so that we have the possibility to consider all rules at each iteration.
Notice that each model Mi only has the rules which have been used by the BestRule
method over the respective Pool (usage(r, Mi−1, V ) > 0).

Example 1 Suppose we have the following set of rules in R, produced by
AssocRuleGen over a data set V :

<r1, 100, 0.8>

<r2, 90, 0.7>

<r3, 10, 1>

M1 will be equal to R (line 2). In subsequent iterations, we will have usage
(r1, M0, V ) = 100 and measure(r1, M1, V ) = 0.8. Similarly for the other rules. Now,
in the second iteration we build M2. The Pool will be equal to M1 (line 5). Then we
apply the rules in the Pool using BestRule and measure their usage (usage(ri , M1, V ))
and hits (hits(ri , M1, V )). For each rule we recompute its predictive measure (measure
(ri , M2, V )) from usage and hits (line 13). Suppose r3 has usage zero and M2 is:

<r1, usage(r1, M1, V ) = 90, measure(r1, M2, V ) = 0.75>

<r2, usage(r2, M1, V ) = 100, measure(r2, M2, V ) = 0.8>

M2 has only two rules, but their order is not the same as before. In the third iteration
we build M3. The Pool is made of M2 plus < r3, 10, 1 > (line 7). The rules in this
Pool are applied using BestRule and we obtain usage(ri , M2, V ) and hits(ri , M2, V ).
Then we calculate measure(ri , M3, V ). Suppose now only the first rule survives, with
recalculated usage, hits and measure. In the fourth iteration, the Pool will be made of
r1 as it appears in M3, r2 with values from M2, and r3 from M1. Assuming that M4
corresponds to the last iteration, the final ensemble will be the set {M1, M2, M3, M4}
(Algorithm 5).

Similarly to AdaBoost (Freund and Schapire 1995) model construction, the Iter-
ative Reordering process can stop earlier either if a very good or very bad model
accuracy is achieved. In our experiments the condition for an early stop has been
accuracy(Mi ) < 0.5 ∨ accuracy(Mi ) > 0.99.

The ensemble {Mi , i = 1 . . . K } is used to classify new cases (Algorithm 4). In
the case of IRE we adopted two weighting strategies. In the first one, the weight wi

is the global accuracy of the model Mi on the data. In the second, the weight wi the
local interest measure of the best rule that fired within the Mi model. In the remainder
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(mainly in the experimental section), the latter will be referred as IRE.loc.meas and
the former as I RE .glob.meas, where meas is the interest measure.

6.1 Discussion

The intended effect of IRE is that rule ordering is recomputed taking into account
global effects on accuracy, instead of local ones. In Iterative Reordering Ensembling,
a new model is generated by changing the order of the rules, where rules with more
errors go down. Thus, misclassified examples improve their chance of being well
classified. One important difference w.r.t. boosting is the fact that one single learning
step is used, whereas in boosting there are as many learning steps as models in the
ensemble.

In terms of implementation, notice that the minimal required information to rep-
resent rule models (also known as trials) is the usage and hits associated with each
rule. A matrix with 2 × K (for K trials) is enough to represent the ensemble. We do
not actually need to represent the rules multiple times.

7 Experimental validation

We have conducted experiments comparing the predictive performance of the jittering
ensembling approach with the single model best-rule strategy. We have tried differ-
ent prediction measures and state-of-the-art algorithms. We have used 36 UCI data
sets (Merz and Murphy 1996), which greatly extends our previous studies (Jorge and
Azevedo 2005; Azevedo and Jorge 2007b). The data sets are described in Table 1. As
a reference algorithm, we used the decision tree inducer J48, implemented in WEKA
(Witten and Frank 2005) as a version of C4.5 (Quinlan 1993). We have also mea-
sured the predictive performance of applying Bagging and AdaboostM1 to J48, also
from WEKA. Default parameters were used with these algorithms (ten iterations, bag
size = 100%). All the association rule classifiers were generated with CAREN1 (ver-
sion 2.5.2), our own association rule engine implementation. The jittering ensembling
approaches are also implemented in CAREN.

Additionally, we ran six other classifiers on the data sets in order to be able to
situate the current performance of the jittering approaches. We have considered two
classical rule based classifiers, RIPPER (Cohen 1995) and PART (Frank and Witten
1998) (WEKA implementations), one association rule based classifier CMAR (Li et
al. 2001) and three other classifiers based on rules ensembles, SLIPPER (Cohen and
Singer 1999) (kindly provided by William W. Cohen), RuleFit (Friedman and Popescu
2005) (available R implementation2) and MLRulesG (gradient) (Dembczyński et al.

1 http://www.di.uminho.pt/~pja/class/caren.html.
2 http://www-stat.stanford.edu/~jhf/R-RuleFit.html.
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Table 1 Data sets used for the empirical evaluation

Data set #Expls #Class #Attr #Num Nulls

Adult48 48842 2 14 6 Yes

Anneal 898 6 38 6 Yes

Australian 690 2 14 6 No

Breast 699 2 9 9 Yes

Chess-kr-k 28056 18 6 0 No

Chess-kr-kp 3196 2 36 0 No

Cleveland 302 5 13 6 Yes

crx 690 2 15 6 Yes

Flare 1066 2 10 0 No

German 1000 2 20 7 No

Glass 214 7 9 9 No

Heart 270 2 13 6 No

Hepatitis 155 2 19 6 Yes

Horse 368 2 22 7 Yes

House-vote 435 2 16 0 Yes

Hypo 3163 2 25 7 Yes

Iono 351 2 34 34 No

Iris 150 3 4 4 No

Led7 3200 10 7 0 No

Lympho 148 4 18 0 No

Mushroom 8123 2 22 0 Yes

Nursery 12960 5 8 0 No

Pageblocks 5473 5 10 10 No

Pendigits 10992 10 16 16 No

Pima 768 2 8 8 No

Sat 6435 6 36 36 No

Segment 2310 7 19 19 No

Shut 58000 7 9 9 No

Sonar 208 2 60 60 No

Soybean 307 19 35 35 No

Tic-tac-toe 958 2 9 0 No

Vehicle 846 4 18 18 No

Waveform 5000 3 21 21 No

Wine 178 3 13 13 No

Yeast 1484 10 8 8 No

Zoo 101 7 16 0 No

2008) (WEKA add-on provided by the authors). Since we were not able to obtain a
running version of CMAR we have used our own implementation following the descrip-
tion in Li et al. (2001). We should stress that we were not able to reproduce the results
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reported in that paper. Other authors have reported the same difficulty (Zimmermann
and Raedt 2004).

CMAR was implemented by making use of the CAREN association rules engine
and following the description in Li et al. (2001). Like CAREN, it also finds frequent
patterns and generates rules in one step. Rule pruning uses improvement (Bayardo
et al. 1999) between a rule and all its generalizations. In Li et al. (2001) this is referred
as confidence difference. The minimal difference threshold is provided by the user.
In our experiments we used 0.02 as confidence difference (as suggested by Li et al.
2001). A χ2 test between the antecedent and consequent of a rule is also performed to
discard rules that are not positively correlated. This step is executed as soon as a rule
is derived. The rule rank is the one described in Sect. 2.3.1. We have also implemented
the database coverage algorithm for rule selection with the delta coverage threshold.
As in Li et al. (2001), we used delta = 4. Finally, we implemented the voting schema
described in CMAR (multiple rules classification using weighted χ2 voting) to derive
predictions. For experiments with CMAR we used the same minsups and minconf as
with CAREN methods.

Error estimation for all the methods presented were obtained with stratified tenfold
cross-validation using WEKA generated folds. SLIPPER and RuleFit have only been
applied on two classes data sets (also referred as binary data sets) due to limitations
of the methods or of the implementation, in the case of SLIPPER (Dembczyński et al.
2008).

For the single model association rule classifiers, we used three variants, using the
strategy BestRule with three measures (confidence, conviction and Laplace). Recent
experiments with many other measures (CAREN Azevedo 2008 implements 13 dif-
ferent interest measures), as well as previous experiments (Azevedo and Jorge 2007a)
showed that these are the three most predictive ones. We have also used two voting strat-
egies (Voting and V topK with K = 5) combined with the three measures mentioned
above. Voting is a weighted voting strategy using Eq. 7. V topK criteria is defined as
Eq. 8. For the model jittering approaches, we ran PostBagging and IterativeReordering
with each of the three measures.

In the case of CAREN methods and our CMAR implementation, numerical attributes
were discretized for the training sets, and for each fold, using CAREN’s implemen-
tation of the supervised discretization method of Fayyad and Irani (1993). Test set
information is not used for discretizing the training data. The test set is evaluated
using the original raw format. Nulls in the training sets were replaced by most fre-
quent value within each class. Nulls in the test sets were ignored. All other methods
used the original raw data sets.

The minimal supports (minsup) used depend on the size of the training data |T |.
If |T | < 1000, then minsup is 0.01. If 1000 ≤ |T | < 2000 minsup is 0.005, if
2000 ≤ |T | < 10000 minsup is 0.001, if 10000 ≤ |T | < 20000 minsup is 0.005, if
|T | ≥ 20000 minsup 0.0001. The key idea is that we move to a lower level of minsup
when the absolute minimum support for a given training set reaches ten examples (i.e.
1000× 0.01 = 10, 2000× 0.005 = 10, etc.). For computational reasons CAREN was
not able to run in a reasonable amount of time on three of the data sets with these
values of minsup: the “sat” data set, where the minimal applicable minsup was 0.02,
“waveform” (0.01) and “kr–kp” (0.1). Also for computational reasons we have lim-
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ited the size of the rules for this last data set to a maximum of seven items, including
the consequent. Minimal confidence was 0.5. We have also used the Fisher filter to
eliminate spurious rules. For the model jittering approaches we have used the training
set as validation set.

For IRE we have used the two different model combination strategies described in
Sect. 6: local (IRE.loc), where each model votes with the decision of its best rule; and
global (IRE.glob), where each model votes with the decision of its best rule, weighted
with the accuracy of the model on the validation set. The parameters of the jittering
strategies were as follows. Each PostBagging process generated 300 models (bags),
where each model contains 30% of the original rules. From these models, only the
top 51 (the number is odd to avoid ties) were selected for the ensemble. This selection
step in a bagging process is important for predictive accuracy (Martínez-Muñoz and
Suárez 2006). In the case of IterativeReordering we used ten iterations (models).

Since SLIPPER and RuleFit only apply to binary datasets, we perform a first set
of experiments with all the data sets, but without those methods. Then, a second set
of experiments on the 17 binary data sets, using is all the methods, is performed.
Estimated error rates obtained are shown in Appendix (Tables 10 to 13). From the
error rates, we obtained the ranks of each method, for each experiment. We discuss
the results in the following sections.

7.1 Results with all the data sets

The ranks for the methods that can deal with any number of classes are shown in
Tables 2 and 3. With no restricting the number of classes, we observe that MLrulesG is
the top ranked method (Table 2). This is followed by Bagging(J48) and
AdaBoost(J48). I RE .glob.conv is the fourth overall and the top ranked association
rule classifier. To assess the statistical significance of the results we have performed
a Friedman test (Demšar 2006). The test rejects the null hypothesis that all methods
perform equally (p-value is 2.2e−16). The corresponding Nemenyi critical value, for
α = 0.05, is of 5.499 (for 22 models and 36 data sets). A post-hoc analysis using this
critical value accepts the hypothesis that all top methods from MLRulesG to RIPPER
are in the same group, since the difference of their ranks is below 5.499. Under this
perspective, the best IRE, which has a mean rank of 7.92 significantly outranks the
methods with mean rank above 13.419 (= 7.92 + 5.499). These are mostly CAREN
voting strategies and two PostBagging. The method CMAR is also significantly out-
ranked.

We also observe the following:

– All IRE methods, independently of the measure, are competitive with the state of
the art approaches. W.r.t. PB, only PB.BR.conv is in this group.

– IRE.glob.conv significantly outranks Vtop5.lapl, Voting.conf and Voting.lapl.
– W.r.t. the PB strategies, AdaBoost is only significantly better than PB.BR.lapl.

Bagging is also significantly better than PB.BR.conf.
– All IRE methods rank higher than the respective BestRule for the same measure.

Although we cannot observe a statistically significant evidence for this, this is a
very consistent trend.
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– PB methods rank higher than the respective BestRule for the measures confidence
and conviction, but not for Laplace. The advantage of PB is less clear than the one
of IRE.

– All jittering approaches beat the voting approaches (for the same measure), except
for PB.BR.lapl.

– All BestRule approaches outrank the corresponding voting strategies for the same
measure.

– The best IRE approach ranks higher than J48 but not higher than AdaBoost or
Bagging.

– The two best IRE approaches beat PART and RIPPER.
– While all BestRule approaches are worse than J48, PART and RIPPER, the two

best IRE approaches manage to “boost” BestRule results in order to outrank those
methods.

– All V top5 approaches beat the respective Voting approach.

As we can see from the above statements, despite the intuitive evidence of the supe-
riority of IRE w.r.t. BestRule, the standard procedure for multiple comparisons does
not allow to unveal this tendency. This is explained by the adjustments made on the
critical values in order to avoid spurious conclusions obtained by mere repetition of
tests. This is obviously the case when one wants to prove that method A is better than
any method B from a large set of methods. In our case, we want to test very specific
pre-defined hypotheses concerning the virtues of jittering ensembling. In particular
we want to assess if IRE with a given measure (out of the three mentioned) is able to
improve BestRule for the same measure. For this, we performed three independent Wil-
coxon signed rank tests (one sided, using R Statistical Package, R Development Core
Team 2004). All three rejected the null hypothesis that IRE.meas performs equally
well as BR.meas (α = 0.05). Equivalent tests for PostBagging w.r.t BestRule show a
statistically significant advantage of PB.BR.conv over BR.conv, but not for the other
two measures.

7.2 Results on the binary data sets

The experiment for the binary data sets only, includes two more methods: SLIPPER
and RuleFit (Tables 4 and 5). In this case SLIPPER is the top method beating MLRulesG

(the second best) on 12 out of 17 data sets. These experiments, with a different group
of data sets, do not confirm the results claimed in Dembczyński et al. (2008). The IRE
approaches are once more well positioned.

The Friedman test for these data sets only, also rejects the hypothesis that all meth-
ods perform equally well (p-value is 4.07e−12). The Nemenyi critical value for 24
methods and 17 data sets is 8.821 (α = 0.05). This implies that the methods from
SLIPPER to B R.conv (sorted by mean rank) are in the same group. For this subgroup
of data sets we observe once more that the three IRE methods are better than any of
the BestRule methods. W.r.t. to PB, advantage over BestRule is only observed in the
case of conviction.

This experiment with the binary data sets confirmed most of the previous observa-
tions:
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Table 4 Ranks of the methods for 8 of the 17 binary data sets

Mean Adul48 Aust Brea Flar Germ Hear Hepa Hous

SLIPPER 4.29 12.0 6.0 1.0 2.0 1.0 1.0 1.0 1.0

MLRules 5.15 1.0 1.0 4.0 11.0 2.0 9.0 8.5 4.5

Bagging 7.68 2.0 3.0 7.0 10.0 5.5 17.5 8.5 2.5

J4.8 9.91 3.0 4.0 19.0 1.0 21.5 22.0 7.0 2.5

IRE.loc.conf 9.91 11.0 16.5 3.0 14.5 18.0 7.5 5.0 7.0

IRE.loc.lapl 10.12 8.0 9.0 2.0 14.5 15.0 11.0 18.0 10.0

IRE.glob.conv 10.29 10.0 14.0 6.0 23.0 7.5 11.0 12.0 13.0

RIPPER 10.53 16.0 2.0 15.0 7.0 14.0 21.0 20.0 6.0

PART 11.24 6.0 15.0 23.0 18.0 9.0 24.0 4.0 8.0

ADABoost 11.68 17.0 12.0 9.0 19.0 21.5 23.0 2.0 4.5

PB.BR.conv 12.47 14.0 9.0 10.5 21.5 12.0 16.0 6.0 9.0

RuleFit 12.65 9.0 5.0 8.0 20.0 3.0 2.0 24.0 22.0

BR.conv 12.85 4.0 20.0 13.5 21.5 7.5 20.0 14.0 18.0

Vtop5.conv 14.00 5.0 21.0 12.0 6.0 5.5 14.0 10.0 19.0

BR.conf 14.32 13.0 19.0 16.0 14.5 16.5 19.0 17.0 15.0

Voting.conv 14.35 7.0 23.0 10.5 5.0 13.0 11.0 3.0 21.0

CMAR 14.74 24.0 7.0 5.0 24.0 4.0 5.5 23.0 20.0

BR.lapl 14.79 15.0 13.0 24.0 14.5 19.0 17.5 19.0 14.0

PB.BR.conf 14.97 20.0 11.0 13.5 14.5 23.0 14.0 22.0 11.0

Vtop5.conf 15.24 22.0 16.5 17.5 3.0 16.5 7.5 15.5 16.5

PB.BR.lapl 16.15 21.0 9.0 22.0 14.5 24.0 14.0 21.0 12.0

Vtop5.lapl 17.15 23.0 18.0 17.5 4.0 20.0 5.5 15.5 16.5

Voting.conf 17.71 18.0 23.0 20.5 8.0 10.5 3.5 12.0 23.5

Voting.lapl 17.82 19.0 23.0 20.5 9.0 10.5 3.5 12.0 23.5

First column shows mean rank of the algorithm in the column. The lines are sorted by mean rank

– All IRE methods, independently of the measure, are competitive with the state of
the art approaches. W.r.t. PB, only PB.BR.conv is in this group.

– All IRE methods rank higher than the respective BestRule for the same measure.
– PB methods rank higher than the respective BestRule for the measure confidence,

but not for Laplace and conviction.
– All jittering approaches beat the voting approaches with no exceptions in this case.
– All BestRule approaches outrank the corresponding voting strategies for the same

measure.
– The two best IRE approaches beat PART and RIPPER.
– While all BestRule approaches are worse than PART and RIPPER, the two best IRE

approaches manage to “boost” BestRule results in order to outrank those methods.
– All V top5 approaches beat the respective Voting approach.
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Table 5 Ranks of the methods for the other nine binary data sets

Mean Pima Hypo Hors crx tic. Sona Iono Mush kr–kp

SLIPPER 4.29 1.0 3.0 1.0 1.0 16.0 1.0 1.0 21.0 3.0

MLRules 5.15 9.0 5.0 2.0 3.0 14.0 2.5 2.0 8.0 1.0

Bagging 7.68 18.0 2.0 3.0 2.0 15.0 5.0 16.0 8.0 5.5

J4.8 9.91 20.0 1.0 4.5 4.5 20.0 6.0 19.0 8.0 5.5

IRE.loc.conf 9.91 6.0 13.0 17.0 13.0 2.5 12.5 3.0 8.0 11.0

IRE.loc.lapl 10.12 8.0 19.0 7.0 6.0 2.5 11.0 6.0 16.0 9.0

IRE.glob.conv 10.29 10.0 10.0 8.0 14.0 1.0 12.5 7.0 8.0 8.0

RIPPER 10.53 2.0 6.0 4.5 4.5 7.0 19.0 20.0 8.0 7.0

PART 11.24 13.0 4.0 6.0 7.0 13.0 15.0 8.0 8.0 10.0

ADABoost 11.68 24.0 7.0 16.0 16.0 8.0 2.5 5.0 8.0 4.0

PB.BR.conv 12.47 3.0 8.0 18.0 11.5 12.0 21.0 13.5 8.0 19.0

RuleFit 12.65 7.0 24.0 24.0 24.0 9.0 4.0 4.0 24.0 2.0

BR.conv 12.85 4.0 9.0 9.0 19.0 4.0 23.5 10.5 8.0 13.0

Vtop5.conv 14.00 16.0 11.0 19.0 20.0 10.5 14.0 21.5 18.5 15.0

BR.conf 14.32 12.0 12.0 11.0 18.0 5.5 23.5 10.5 8.0 13.0

Voting.conv 14.35 17.0 16.0 20.0 21.0 10.5 10.0 21.5 18.5 16.0

CMAR 14.74 5.0 23.0 21.0 8.0 18.0 18.0 15.0 8.0 22.0

BR.lapl 14.79 15.0 22.0 11.0 10.0 5.5 22.0 9.0 8.0 13.0

PB.BR.conf 14.97 11.0 14.0 13.0 11.5 17.0 20.0 13.5 8.0 17.5

Vtop5.conf 15.24 22.5 15.0 14.0 17.0 23.0 7.0 17.0 8.0 20.5

PB.BR.lapl 16.15 14.0 21.0 11.0 9.0 19.0 16.5 12.0 17.0 17.5

Vtop5.lapl 17.15 22.5 20.0 15.0 15.0 24.0 16.5 18.0 20.0 20.5

Voting.conf 17.71 21.0 17.0 22.5 22.5 22.0 8.5 23.0 22.0 23.5

Voting.lapl 17.82 19.0 18.0 22.5 22.5 21.0 8.5 24.0 23.0 23.5

First column shows mean rank of the algorithm in the column. The lines are sorted by mean rank

Notable exceptions are:

– IRE.glob.conv significantly outranks all Vtop5 and Voting strategies.
– W.r.t. the PB strategies, AdaBoost and Bagging are not shown to be significantly

better than any PB strategy.
– The best IRE approach ranks lower than J48 but higher than AdaBoost.

7.3 Summary of results

The above results show that some jittering ensembling techniques are able to improve
the predictive accuracy of single model approaches with the sames measure and even
compete with state of the art approaches. It is not expectable that model jittering
approaches have the same level of predictive performance as data jittering approaches,
such as bagging and boosting, since the latter invest K times more learning effort, being
K the number of iterations. Nevertheless, we proved our point that model jittering en-
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sembling improves single model approaches in BestRule association rule classification.
It is also interesting to notice the advantage of BestRule approaches with respect to
weighted Voting (rule ensembles), either unrestricted or considering top five rules per
class. Similar results, although with fewer data sets, can be found in Azevedo and
Jorge (2007a). It is also interesting to note the combined effect of IRE with conviction
as compared to BestRule with confidence.

Despite the weak results of Voting, the success of the methods MLRules and
SLIPPER (with advantage for the latter on binary data sets) indicate that ensembles
of rules can be a powerful predictive tool. RuleFit had less successful results.

In the following sections we will look into the error decomposition and try to deter-
mine the specific effect of each of the jittering ensembling techniques on the error
components. We will also look at the behavior of these methods for the hard cases in
a data set. Finally we will perform a study on the computational properties of IRE and
PB.

7.4 Bias–variance analysis

To understand why IRE and PB improves the results of a BestRule classifier we have
performed a bias–variance analysis as described by Kohavi and Wolpert (1996). For
each data set we proceed as follows. We divide the examples in two sets D and E .
This last set is used for evaluation and is a stratified sample, without replacement, with
half the size of the original data set. From the set D we generate 50 simple random
samples, without replacement, with half the size of D. Each one of these samples is
used as training, and the results of the obtained models on E are used to estimate the
contribution of the bias and of the variance to the global error. Numerical attributes of
D are discretized as already described before generating the 50 samples. For each data
set we decompose the error into bias and variance for BestRule, IterativeReordering
and PostBagging. The parameters used were the same as in the experiments reported
above.

Figure 1 shows the results of the bias–variance analysis for 30 of the 36 data sets and
for 3 strategies: BestRule, IRE.loc and PB.BR. For all the strategies we have used the
confidence interest measure. Each pie chart shows the proportion of data sets where
bias or variance was reduced by one strategy with respect to another.

The two pie charts on the column “IRE<BR” show that the strategy
IterativeReordering reduces both bias and variance with respect to the BestRule ap-
proach, but mostly bias. The middle column shows that, with respect to BestRule,
PostBagging reduces mostly variance, whereas bias reduction is almost in a tie situa-
tion (16 out of 30 data sets). This is confirmed by the two pie charts on the right, with
IterativeReordering more successful than PostBagging in the bias component, but less
successful in the variance component.

We can thus hypothesize that the error reduction caused by IRE is mainly due to
the reduction of the bias component, whereas the success of PostBagging is due only
to the reduction in variance. Since the variance component will converge to zero with
the size of the data sets, one can expect that IRE will be advantageous for large data
sets. Indeed, in our experiments, we observe that IRE wins over PostBagging for the
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Fig. 1 Each pie chart on line “bias” and column “S1 <S2” displays the proportion of data sets where strat-
egy S1 reduced the bias component of the error with respect to the strategy S2. Similarly for line “variance”

two largest data sets (“sat” and “adult48”) (Tables 10 and 13). We should also note
that dealing with large data sets is not particularly complicated since the time taken
for the generation of association rules grows linearly with the number of examples
(Agrawal et al. 1996). However, computational time for association rule generation is
very sensitive to data set density and minimal support.

7.5 Success border performance

In another set of experiments, we have observed how the answers of the models in the
ensemble compare with the answers given by the single model. In Fig. 2 we can see
the result for the yeast data set. The x axis represents the test examples and the y axis
the percentage of correct answers given by the two strategies for each case. In the case
of the BestRule, this percentage is either 0 (failure) or 1 (success). In the case of the
ensemble approach we have the percentage of models in the ensemble that gave the
correct answer. The examples in the x axis are sorted by the success of the BestRule
and than by the percentage of successes of the ensemble.

With this analysis we can see that there is a good number of “easy cases” and of
“hard cases”. These are the ones at the right and left end of the plot, respectively. The
cases in the middle are in a grey area. These are the ones that can be more easily
recovered by IRE. To be successful, the IRE approach must recover more examples
(improve the answer of the BestRule) than the ones it loses (degrades the answer of
the BestRule). In the case of yeast, we can see that many cases are recovered (crosses
above the 0.5 horizontal line, and to the left of the vertical solid line), although some
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Fig. 2 Left Percentage of correct answers per test case for the yeast data set (crosses) shown against the
correct answers given by the BestRule approach (solid crisp line). Right Similar analysis for the heart data
set

others are lost (below the horizontal line and to the right of the vertical one). In the case
of the heart data set (Fig. 2), similar observations can be made. Notice the small num-
ber of test examples that perform worse in the ensemble method than in the BestRule
prediction. Such figures provide a fairly good idea of the lower limit of the jittering
strategy, since only the cases on the grey area are expectable to be recovered. The
figures clearly show that most of the cases, for both datasets, have a unanimous voting
from all the models in the ensemble.

7.6 Computational effort

One important motivation for developing model jittering ensembling is to assess how
much we can improve single models by looking at them from different perspectives
after performing one single learning step. Another motivation is to reduce the learning
effort of traditional ensemble approaches. This is particularly important if the effort
of learning a single model is relatively high, as it is the case of association rule based
classification. If a model is very fast to learn, then traditional ensembling should be
the way to go.

In general, we can consider that the effort of learning a model (for a fixed number of
examples) is L times the effort of applying the model (evaluation). If we assume that
evaluation time is equal to 1, then learning K models for an ensemble takes K × L ,
without loss of generality. The time for generating replicate models in PB and in IRE
is dominated by the time of evaluation of the examples in the validation set. If the
evaluation time is 1 then the time taken by PB or IRE to generate K models is K .
Therefore, the estimated speed-up of model jittering, a process where you learn once
and evaluate K times, with respect to traditional ensemble learning, is

SpeedU pM J =
L × K

L + K
(14)
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Table 6 Time analysis: data set and rule set characterization

Data set |R| N |RP B | |RI RE |
Aust 184 621 90 40

Segm 2955 2079 1478 213

Led7 217 2880 108 44

Mush 3683 7311 1841 33

Shut 415 52200 207 146

Vehicle1–3 420 255 210 39

Vehicle1–6 2488 510 1244 121

Vehicle1–10 3934 846 1967 180

Table 7 Time analysis: learning, generation and evaluation real times (s)

Data set LearnR Gen P B GenI RE EvP B EvI RE EvB R

Aust 10.029 0.520 0.520 0.230 0.230 0.244

Segm 15.480 4.030 1.800 0.692 0.457 0.338

Led7 3.147 1.866 1.533 0.522 0.470 0.302

Mush 24.988 35.739 6.861 4.310 2.288 1.013

Shut 24.970 19.269 31.825 3.976 3.050 2.835

Vehicle1–3 2.404 0.456 0.345 0.175 0.230 0.191

Vehicle1–6 36.028 2.363 0.621 0.383 0.284 0.260

Vehicle1–10 64.220 4.263 1.068 0.755 0.446 0.347

It is expected that this generic law also depends on the size of the data set (N ), and
on the number of rules generated and selected for the ensemble models. Nevertheless,
we will in the following experimentally test it.

In Table 6 we describe the data sets we have used to analyze the speed-ups of MJE.
There we can see for each of the data sets (of varying sizes N ) the number of rules
generated (R), and the average number of rules of the models generated by PB and
IRE. These experiments were performed using the whole data sets, for K = 10. In PB
we have first generated 100 models with 50% of the rules and then selected the top 10
models. The data sets are already known, except for the “vehicle{i– j}”. These were
obtained by concatenating folds i to j of a tenfold partition of “vehicle”.

Table 7 presents the time, in seconds, for generating the whole rule set LearnR , and
for generating (Gen) and evaluating (Ev) the jittered models. These are real times and
include the reading of the examples from a file. Ev times exclude the time for loading
the model. Gen times include the evaluation of the examples in the validation set.

In Table 8 we have the observed learning factors L for PB, IRE and plain BestRule
approach, i.e., the quotient between learning time and the respective evaluation time
for the same examples. The learning factors for PB and IRE are very high w.r.t. the
factor of BestRule L B R . This is because evaluation in PB and IRE is optimized and is
not proportional to the number of models K . What happens is that all the models have
rules from the same pool. Previously to evaluating one example on the K models,
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Table 8 Time analysis: learning factors and speed-ups

Data set L P B L I RE L B R SUP B SUI RE SUEst

Aust 436 436 41 9.5 9.5 8.0

Segm 224 339 46 7.9 9.0 8.2

Led7 60 67 10 6.3 6.7 5.1

Mush 58 109 25 4.1 7.8 7.1

Shut 63 82 9 5.6 4.4 4.7

Vehicle1–3 137 105 13 8.4 8.7 5.6

Vehicle1–6 941 1269 139 9.4 9.8 9.3

Vehicle1–10 851 1440 185 9.4 9.8 9.5

we identify which rules apply and then only some marginal computations have to be
made. Therefore, the actual learning factor we will consider in the following is L B R .

The observed speed-ups for the methods PB and IRE, SUmeth , are obtained by
dividing K × LearnR by LearnR + Genmeth . The estimated speed-ups SUEst are
obtained with Eq. 14. As we can observe, there is a reasonable agreement between the
expected value and the assessed ones, which is in favour of our analysis. Notice that
our speed-up estimator does not consider any of the features of the data set. It is also
worth noticing that the efficiency of PB and IRE w.r.t. BestRule, measured as SU/K
is also very high, becoming 90% or higher for the data sets “Australian”, “segment”,
“vehicle1-6” and “vehicle1-10”. In the case of the “vehicle” data sets we also observe
an increase of efficiency for the larger samples.

7.6.1 Complexity

Learning (generating the association rules) from N examples is at least O(N ) (assum-
ing fixed parameters) (Agrawal et al. 1996). Learning K models is necessarily O(K N ).
The PostBagging process can be divided in the sampling phase, where the rules are
sampled, and the validation phase, where the models are evaluated and the top per-
forming ones are selected. The overall complexity of PostBagging, in the sampling
phase, grows at most linearly with the number of models K , and also (when actually
sampling) with the number of rules of the initial rule set |R| and the size of the gen-
erated models |M |. So, the sampling phase has order O(K |R| |M |). In the validation
phase each one of the K models must be evaluated on each of the N examples. The cost
of evaluating one example is approximately O(log(|M |), since the rules are stored in
an efficient hash-like structure (Azevedo 2005). So the overall effort for validation in
PostBagging is O(K N log(|M |)).

For IterativeReordering we have O(K N log(|M |)) for validation, since the effort
will be dominated by the evaluation of examples. Therefore the speed-up should be
similar to what we have in post-bagging assuming that the size of the models is equiv-
alent. In practice this depends on parameters and other factors such as the number of
rules of the models obtained by jittering.
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Table 9 Time analysis: comparison of IRE with other methods

Adult48 Shuttle Wave Mushrooms

Time Error Time Error Time Error Time Error

AdaBoost 65.48 0.1616 11.38 0.0014 3.77 0.1818 0.03 0.0000

Bagging 35.80 0.1384 11.67 0.0035 2.72 0.1764 0.13 0.0000

IRE.cv 14.68 0.1487 10.07 0.0010 3.30 0.1778 4.23 0.0000

J48 3.78 0.1390 1.47 0.0031 0.32 0.2402 0.02 0.0000

MLRules 24h+ 0.1426 21.12 0.0017 8.72 0.1616 15.47 0.0000

SLIPPER 26.17 0.1497 2.03 0.0059

Time is in minutes (decimal), with the exception of MLRules in column 1, which is in hours

7.6.2 Comparison with other methods

We have also compared the time taken by the best IRE with the most competitive
methods in our study (Table 9) on two large data sets (“adult48” and “shuttle” with
about 50K rows) and two of medium size (“mushroom” with about 8K and “wave”
with about 5K). These are real times, assessed as averages over tenfold cross valida-
tion. IRE is faster than AdaBoost on J48 in the two large ones and one of the medium
ones. These better times are obtained without sacrificing the error. The “mushroom”
data set is a relatively difficult case for IRE, in terms of computational efficiency. The
comparison with Bagging on J48 is not as favourable to IRE. Our approach is faster
twice, but in the case of “adult48” at the cost of error. MLRules is relatively slow,
but has a good predictive performance for these data sets. SLIPPER is also relatively
slow (results are shown only for the two of these data sets which are binary), without
profiting in terms of predictive accuracy. J48 is relatively fast at the cost of some
accuracy.

8 Discussion

We have seen that the two techniques proposed for jittering models of association rules
improve the predictive accuracy of the respective single models. Jittering a model pro-
duces similar copies of the model which will behave mostly as the original one, but
will differ on harder cases, where some improvement may occur (see Sect. 7.5). Both
IterativeReordering and PostBagging tend to reduce the variance component of the
error. This is expectable due to the ensembling effect of both strategies. In the case of
IterativeReordering, model jittering is even more effective in reducing the bias com-
ponent of the error. This is more surprising, but is similar to what happens in boosting
and in contrast to the case of bagging, where the reduction of the error is mainly due
to the reduction in variance (Bauer and Kohavi 1999).

The intuitive explanation for the reduction of the bias component is that the single
model BestRule approach is tied to a particular rule ordering, and it is hard to find an
ordering that maximizes the number of examples correctly classified. This constraint
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seems to be softened by combining similar versions of the rule set with different order-
ings. This is basically what Iterative Reordering delivers. IRE is able to avoid some
limitations of the hypothesis language and gain more descriptive power.

How generalizable is model jittering ensembling to other machine learning
techniques such as decision trees or nearest neighbor? Clearly this remains an open
question. Association rule models are easily jittered due to the high modularity and
granularity of the rule sets. There is also a high level of redundancy, despite the filters
used (such as Fisher’s), which is convenient if the jittering strategy involves deleting
part of the model (it is the case of PostBagging, and to some extent also of IRE). In
other words, MJE couples quite well with the “LeGo” framework of learning global
models from local patterns (Knobbe et al. 2008), since such global models are easy
to jitter. One could also devise jittering operators for other model families with some
structure, such as decision trees. One possibility would be to generate ensembles of
randomly pruned trees. In the case of nearest neighbor classifiers, jittering the model
is almost equivalent to jittering the data.

Other proposals using randomization in model construction are described in the
literature, such as “Millions of random rules” (Pfahringer et al. 2004) and “Random
Forests” (Breiman 2000). Model Jittering, however, can also be performed without
randomization, as it is the case of the IRE approach.

In terms of efficiency, our experiments try to answer the question of how interest-
ing is it to build ensembles with one learning process only. Model Jittering is able to
speed up efficiently a single model association rule learner and obtain learning times
comparable (for some data sets) to competing methods and ensemble approaches such
as ADABoost and Bagging. Taking into consideration that we are also able to obtain
good predictive accuracies, we can claim that Model Jittering Ensembling is at least
an interesting research path to follow, and a potentially useful tool right now.

One interesting question is how would IRE and PB behave if we had a smaller
validation set, instead of using the training set as we did. The methods would be much
faster, but the errors could increase. On the other hand, using a separate validation set
for assessing bags and reordering rules could have a positive effect on the reduction
of potential overfitting.

Methods based on ensembles of rules, such as SLIPPER, and MLRules, have very
good predictive results, better than IRE, although not significantly. These methods
also have the advantage of producing a single rule set which is potentially more read-
able than ensembles of rule sets. RuleFit is another method based on rules ensembles.
However, the experimental results we have obtained with it are not better than the ones
of IRE. Interestingly, SLIPPER and MLRules are relatively slow, at least on some data
sets. We had disappointing results with our implementation of CMAR and were unable
to confirm the virtues of its strategy.

9 Conclusions

Classification using association rules can be improved through ensembling. We have
introduced Model Jittering Ensembling for association rule classifiers. In particular,
the strategies of PostBagging and IterativeReordering are two instances of this general

123



124 P. J. Azevedo, A. M. Jorge

proposal which produces ensembles running one single learning process. PostBagging
(PB) generates multiple models by repeatedly sampling the rule set. In our case, we
also make a selection of the best PostBagging generated models. IterativeReorder-
ingEnsembling (IRE), is a procedure that generates multiple models with one single
learning step. First, a rule set is obtained from the data. Then, replications of this initial
set are obtained by iteratively recalculating the predictive measures of the rules in the
set. As far as we know, our proposal is the only ensembling approach that produces
multiple models by perturbing an original one. We have formalized the Model Jitter-
ing general algorithm (for association rules) and the two presented Model Jittering
operators.

Experimental results with 36 data sets suggest that Model Jittering Ensembling
improves BestRule prediction and is competitive when compared to state of the art
methods such as J48, PART , RIPPER and RuleFit. IRE is not significantly worse than
Bagging or Boosting J48. The comparison of PostBagging with the other methods is
not as favourable but still indicates that PB is not significantly worse than its main
competitors with the measure conviction. Bias–variance decomposition indicates that
most of the improvement achieved by IRE is explained by a reduction of the bias com-
ponent. This is possibly explained by the ability of the ensembling technique avoiding
being tied to one particular ordering of the rules. PostBagging mainly reduces the
variance component of the error.

Rule ensemble methods SLIPPER and MLRules obtained very good accuracies (the
latter was only applied on two-class data sets). As a side result we observed a tendency
of SLIPPER to outrank MLRules.

One potential advantage of Model Jittering Ensembling is that it obtains multiple
models by perturbing an original one. After producing the original model (set of
rules), producing the jittered models is relatively inexpensive (depending on the jit-
tering operator). Despite that low variety, their combination results in an effective
improvement with respect to the single model. We have shown that Model Jittering
obtains good speed-ups and has, on some hard datasets, times comparable to its com-
petitors. In this respect, the current implementation of IRE is much faster than the
one of MLRules. However, methods such as MLRules and SLIPPER have the impor-
tant advantage of generating smaller (more readable) models than Model Jittering
Ensembling.

Our approach shows some difficulties on some of the dense datasets. These dif-
ficulties are in the generation of association rules itself, and not in the ensembling
strategies. The choice of parameters of IRE and PB is still not entirely justified, either
empirically or theoretically. This issue certainly deserves a deeper study.

It would be also valuable to investigate more thoroughly the relationship between
IRE and ADABoost, and how much rule reweighting is a proxy for example reweigh-
ting.

Many paths can be explored using this simple idea of Model Jittering. Applying
Model Jittering Ensembling to association rules can be further exploited. Generaliz-
ing the model jittering approach to other models such as decision trees or Bayesian
Networks is also an open issue.
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Appendix

Tables 10 and 11 show the estimated error rates, using tenfold cross validation of each
method on each of the binary data sets. Tables 12 and 13 show the estimated error
rates, using tenfold cross validation of each method which applies to non-binary data
sets on each data set.

Table 10 Average error rates obtained with the algorithms on 9 of the 17 binary data sets

Adul48 Aust Brea Flar Germ Hear Hepa Hous Pima

J4.8 0.1390 0.1391 0.0544 0.1764 0.2930 0.2333 0.1613 0.0368 0.2617

Bagging 0.1384 0.1362 0.0415 0.1867 0.2600 0.1889 0.1677 0.0368 0.2591

ADABoost 0.1616 0.1522 0.0429 0.1914 0.2930 0.2407 0.1419 0.0391 0.2760

PART 0.1420 0.1594 0.0615 0.1895 0.2770 0.2444 0.1548 0.0529 0.2552

RIPPER 0.1553 0.1348 0.0472 0.1848 0.2810 0.2259 0.2000 0.0460 0.2230

CMAR 0.1744 0.1464 0.0358 0.2074 0.2580 0.1667 0.2387 0.0877 0.2330

MLRules 0.1349 0.1341 0.0329 0.1886 0.2410 0.1737 0.1677 0.0391 0.2461

SLIPPER 0.1497 0.1434 0.0314 0.1801 0.2160 0.1036 0.0816 0.0322 0.1745

RuleFit 0.1458 0.1406 0.0421 0.1998 0.2424 0.1538 0.3386 0.1240 0.2375

BR.conf 0.1501 0.1696 0.0515 0.1886 0.2840 0.1963 0.1929 0.0646 0.2539

BR.conv 0.1400 0.1725 0.0458 0.2036 0.2720 0.2037 0.1862 0.0714 0.2317

BR.lapl 0.1528 0.1565 0.0643 0.1886 0.2870 0.1889 0.1996 0.0645 0.2565

Voting.conf 0.1637 0.1797 0.0558 0.1848 0.2780 0.1593 0.1742 0.1403 0.2618

Voting.conv 0.1440 0.1797 0.0429 0.1830 0.2800 0.1741 0.1546 0.1013 0.2579

Voting.lapl 0.1638 0.1797 0.0558 0.1858 0.2780 0.1593 0.1742 0.1403 0.2605

Vtop5.conf 0.1711 0.1652 0.0529 0.1820 0.2840 0.1704 0.1871 0.0690 0.2631

Vtop5.conv 0.1406 0.1768 0.0443 0.1839 0.2600 0.1815 0.1679 0.0783 0.2566

Vtop5.lapl 0.1718 0.1667 0.0529 0.1829 0.2880 0.1667 0.1871 0.0690 0.2631

PB.BR.conf 0.1642 0.1493 0.0458 0.1886 0.2940 0.1815 0.2121 0.0576 0.2526

PB.BR.conv 0.1503 0.1478 0.0429 0.2036 0.2790 0.1852 0.1612 0.0530 0.2304

PB.BR.lapl 0.1646 0.1478 0.0572 0.1886 0.2970 0.1815 0.2062 0.0577 0.2552

IRE.loc.conf 0.1480 0.1652 0.0329 0.1886 0.2850 0.1704 0.1600 0.0508 0.2356

IRE.glob.conv 0.1473 0.1580 0.0372 0.2046 0.2720 0.1741 0.1742 0.0599 0.2486

IRE.loc.lapl 0.1443 0.1478 0.0315 0.1886 0.2830 0.1741 0.1988 0.0531 0.2435

BR BestRule, IRE IterativeReordering, PB PostBagging, conf confidence, conv conviction, lapl Laplace
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Table 11 Average error rates obtained with the algorithms on the other 8 of the 17 binary data sets

Hypo Hors crx tic- Sona Iono Mush kr–kp

J4.8 0.0070 0.1467 0.1420 0.1639 0.2115 0.1083 0.0000 0.0563

Bagging 0.0073 0.1440 0.1333 0.0835 0.1971 0.1026 0.0000 0.0563

ADABoost 0.0104 0.1957 0.1710 0.0282 0.1923 0.0741 0.0000 0.0501

PART 0.0085 0.1495 0.1478 0.0689 0.2452 0.0855 0.0000 0.0939

RIPPER 0.0092 0.1467 0.1420 0.0219 0.2644 0.1254 0.0000 0.0720

CMAR 0.0389 0.2364 0.1493 0.1190 0.2560 0.0969 0.0000 0.1868

MLRules 0.0089 0.1386 0.1348 0.0710 0.1923 0.0655 0.0000 0.0100

SLIPPER 0.0082 0.1248 0.1246 0.1075 0.1102 0.0342 0.0059 0.0322

RuleFit 0.1005 0.3801 0.2676 0.0318 0.1929 0.0734 0.1330 0.0229

BR.conf 0.0171 0.1822 0.1783 0.0188 0.2845 0.0912 0.0000 0.0957

BR.conv 0.0139 0.1797 0.1870 0.0178 0.2845 0.0912 0.0000 0.0957

BR.lapl 0.0348 0.1822 0.1522 0.0188 0.2798 0.0855 0.0000 0.0957

Voting.conf 0.0209 0.2583 0.2043 0.1847 0.2274 0.2279 0.0180 0.4255

Voting.conv 0.0193 0.2123 0.2000 0.0345 0.2312 0.1711 0.0009 0.1058

Voting.lapl 0.0212 0.2583 0.2043 0.1837 0.2274 0.2307 0.0183 0.4255

Vtop5.conf 0.0183 0.1904 0.1739 0.2035 0.2267 0.1053 0.0000 0.1514

Vtop5.conv 0.0158 0.2014 0.1884 0.0345 0.2407 0.1711 0.0009 0.0970

Vtop5.lapl 0.0319 0.1931 0.1696 0.2077 0.2557 0.1083 0.0010 0.1514

PB.BR.conf 0.0183 0.1849 0.1580 0.1117 0.2652 0.0968 0.0000 0.1083

PB.BR.conv 0.0133 0.2013 0.1580 0.0512 0.2702 0.0968 0.0000 0.1101

PB.BR.lapl 0.0345 0.1822 0.1507 0.1211 0.2557 0.0940 0.0006 0.1083

IRE.loc.conf 0.0174 0.1957 0.1594 0.0094 0.2367 0.0714 0.0000 0.0942

IRE.glob.conv 0.0142 0.1796 0.1623 0.0094 0.2367 0.0743 0.0000 0.0857

IRE.loc.lapl 0.0231 0.1740 0.1449 0.0094 0.2362 0.0742 0.0004 0.0923

Table 12 Average error rates obtained with the algorithms on 9 of the 19 non binary data sets

Clev Lymp Segm Shut Vehi Wave Yeas Glas Wine

J4.8 0.4719 0.2365 0.0325 0.0031 0.2742 0.2402 0.4414 0.3411 0.0562

Bagging 0.4389 0.2365 0.0255 0.0034 0.2340 0.1764 0.3922 0.2430 0.0281

ADABoost 0.4554 0.2500 0.0160 0.0014 0.2400 0.1818 0.4239 0.2523 0.0281

PART 0.5215 0.1824 0.0372 0.0022 0.2849 0.2142 0.4454 0.3037 0.0899

RIPPER 0.4686 0.2230 0.0463 0.0036 0.3144 0.2018 0.4191 0.3318 0.0787

CMAR 0.4324 0.1967 0.1121 0.0415 0.3700 0.1840 0.4522 0.3561 0.0735

MLRules 0.4224 0.1757 0.0299 0.0026 0.2447 0.1510 0.4043 0.2804 0.0393

BR.conf 0.4655 0.1557 0.0840 0.0019 0.4043 0.1868 0.4448 0.3093 0.0791

BR.conv 0.4256 0.1424 0.0840 0.0018 0.4043 0.1882 0.4414 0.3279 0.0791

BR.lapl 0.4622 0.1557 0.1069 0.0046 0.4125 0.1864 0.4455 0.3136 0.0791

Voting.conf 0.4291 0.2300 0.0823 0.0124 0.3569 0.1756 0.4515 0.3374 0.2369
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Table 12 continued

Clev Lymp Segm Shut Vehi Wave Yeas Glas Wine

Voting.conv 0.4190 0.2562 0.2143 0.0034 0.3581 0.1628 0.4461 0.3465 0.1239

Voting.lapl 0.4291 0.2367 0.0831 0.0126 0.3581 0.1758 0.4515 0.3422 0.2425

Vtop5.conf 0.4260 0.1352 0.0597 0.0031 0.3747 0.1722 0.4515 0.3513 0.0399

Vtop5.conv 0.4190 0.2429 0.2156 0.0034 0.3996 0.1778 0.4461 0.3461 0.1239

Vtop5.lapl 0.4260 0.1557 0.0861 0.0037 0.3889 0.1730 0.4515 0.3606 0.0624

PB.BR.conf 0.4259 0.1490 0.0649 0.0021 0.3782 0.1740 0.4468 0.3186 0.0402

PB.BR.conv 0.4156 0.1152 0.0649 0.0021 0.3759 0.1742 0.4367 0.3139 0.0402

PB.BR.lapl 0.4291 0.1486 0.0900 0.0038 0.3912 0.1744 0.4475 0.3323 0.0458

IRE.loc.conf 0.4622 0.1495 0.0485 0.0014 0.3262 0.1782 0.4428 0.2864 0.0399

IRE.glob.conv 0.4520 0.1495 0.0494 0.0010 0.3332 0.1778 0.4394 0.2909 0.0399

IRE.loc.lapl 0.4520 0.1429 0.0532 0.0019 0.3404 0.1792 0.4508 0.2948 0.0454

Table 13 Average error rates obtained with the algorithms on 10 of the 19 non-binary data sets

Zoo Led7 Iris Soyb Sat Anne kr.k Nurse Page Pend

J4.8 0.0693 0.2666 0.0400 0.1498 0.1414 0.0791 0.4341 0.0295 0.0312 0.0345

Bagg 0.0693 0.2622 0.0467 0.1140 0.0995 0.0601 0.4026 0.0269 0.0274 0.0220

Boost 0.0495 0.2666 0.0667 0.0879 0.0929 0.0445 0.3874 0.0051 0.0298 0.0099

PART 0.0693 0.2644 0.0600 0.1270 0.1304 0.0546 0.4561 0.0079 0.0300 0.0318

RIPP 0.1287 0.3075 0.0600 0.1107 0.1301 0.0457 0.6063 0.0302 0.0276 0.0380

CMR 0.0773 0.2816 0.0667 0.2184 0.2345 0.0791 0.4278 0.0706 0.0577 0.1155

MLR 0.0594 0.2672 0.0467 0.1564 0.1167 0.0167 0.6445 0.0263 0.0280 0.0428

BRcf 0.0991 0.2800 0.0533 0.2735 0.1823 0.0902 0.4232 0.0366 0.0470 0.1034

BRcv 0.0991 0.2803 0.0533 0.2735 0.1804 0.0557 0.4165 0.0364 0.0393 0.1034

BRlp 0.1973 0.2794 0.0533 0.3159 0.1820 0.1047 0.4183 0.0403 0.0733 0.1156

V.cf 0.0782 0.2875 0.0733 0.3743 0.3189 0.1459 0.4386 0.3723 0.0459 0.1109

V.cv 0.1373 0.2841 0.0600 0.3161 0.2188 0.0780 0.3932 0.0291 0.0400 0.2572

V.lp 0.0882 0.2875 0.0733 0.3808 0.3190 0.1493 0.4408 0.3724 0.0464 0.1124

V5.cf 0.0391 0.2753 0.0733 0.2444 0.1970 0.1549 0.4386 0.3559 0.0521 0.0630

V5.cv 0.1373 0.2734 0.0600 0.3162 0.1845 0.0691 0.3931 0.0309 0.0404 0.2572

V5.lp 0.1182 0.2753 0.0733 0.2930 0.1963 0.1593 0.4408 0.3577 0.0623 0.0876

Bg.cf 0.0582 0.2744 0.0533 0.2474 0.1812 0.1404 0.4783 0.0551 0.0512 0.0809

Bg.cv 0.0582 0.2753 0.0533 0.2474 0.1776 0.1115 0.4664 0.0528 0.0424 0.0809

Bg.lp 0.1082 0.2747 0.0533 0.2961 0.1813 0.1493 0.4783 0.0564 0.0696 0.1039

IR.cf 0.0591 0.2625 0.0600 0.1299 0.1546 0.0902 0.4384 0.2737 0.0453 0.0515

IR.cv 0.0591 0.2644 0.0600 0.1267 0.1538 0.0557 0.4253 0.0264 0.0397 0.0513

IR.lp 0.0891 0.2631 0.0600 0.1432 0.1565 0.1058 0.4280 0.2541 0.0608 0.0529

Methods names are abbreviated
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