
Avoiding Anomalies in Data Stream Learning

João Gama1,2, Petr Kosina1, and Ezilda Almeida1

1 LIAAD-INESC TEC, University of Porto
{ezildacv, petr.kosina}@gmail.com,

2 Faculty of Economics, University Porto
jgama@fep.up.pt

Abstract. The presence of anomalies in data compromises data quality and can
reduce the effectiveness of learning algorithms. Standard data mining methodolo-
gies refer to data cleaning as a pre-processing before the learning task. The prob-
lem of data cleaning is exacerbated when learning in the computational model of
data streams. In this paper we present a streaming algorithm for learning classifi-
cation rules able to detect contextual anomalies in the data. Contextual anomalies
are surprising attribute values in the context defined by the conditional part of
the rule. For each example we compute the degree of anomaliness based on the
probability of the attribute-values given the conditional part of the rule covering
the example. The examples with high degree of anomaliness are signaled to the
user and not used to train the classifier. The experimental evaluation in real-world
data sets shows the ability to discover anomalous examples in the data. The main
advantage of the proposed method is the ability to inform the context and explain
why the anomaly occurs.

Keywords: Data Streams, Rule Learning, Anomaly Detection

1 Motivation

The amount of digital data currently handled is huge. Our ability to collect huge amounts
of detailed information is increasing exponentially. Nevertheless, data anomalies such
as inconsistencies, missing values, outliers, etc. are more frequent than desired. The ex-
istence of these data problems, commonly called dirty data, degrades the quality of the
information with direct impact on the efficiency of data analysis techniques [1]. These
problems can lead to incorrect decisions or strategies that often are costly to organiza-
tions. Improving data quality by detecting and eliminating errors and inconsistencies in
the data is a relevant data mining problem.

Standard data mining methodologies define pre-processing as a key step before the
learning phase. Pre-processing is essential to analyze the multivariate data sets before
data mining. In this step, the data set is cleaned, by removing observations containing
noise and those with missing data. The identification of observations that are not coher-
ent with the rest of the data, can be used in two different perspectives. One perspective
consists of removing these observations from the analysis. The other perspective con-
siders these observations as interesting and therefore is very important to detect. De-
pending on the application, the user can be especially interested in the anomalous cases
more than in the ’normal’ observations. They may represent malicious cases such as

intrusions, frauds or diseases. One way or another, the detection of anomalies is very
important.

Most of the works in pre-processing data, anomaly and outlier detection are off-line.
Current tasks usually consist of many observations being processed and the number is
still increasing. It is increasing to the extent that the relatively recent approach called
stream mining considers the data possibly infinite. Finding anomalies in such a setting
is especially a difficult task not only because of the potentially unbounded size, but
also because one of the typical characteristics of data stream is that the distribution
generating the data can change over time.

This work presents a method for on-line anomaly detection, a crucial task in real-
world applications. The method is embedded in a streaming classification rule learner,
although it can be integrated with any VFDT like algorithm. The anomalies detected are
characterized by a context that refers the region of the instance where the anomaly was
detected, and behavioral attributes, those with anomalous values. This is a key advan-
tage of the proposed system: it explains where and why a given example is anomalous.

The paper is organized as follows. The next section presents the related work in
outlier and anomaly detection. Section 3 describes the method used to detect contex-
tual anomalies that has been implemented inside a classification rule learner for data
streams. Section 4 describes the anomalies detected in several well-known datasets.
The last Section presents the conclusions and futures work.

2 Related Work

Anomaly detection refers to detecting observations that do not conform to an estab-
lished normal behavior. Anomalies are also referred to as outliers, change, deviation,
surprise, aberrant, peculiarity, intrusion, etc [2]. [9] points out the importance of data
cleaning in developing real world applications. Data cleaning deals with missing val-
ues, noisy data, inconsistent data, etc. In this work, we focus in a particular form of
inconsistent data: anomalies or outliers.

Statistical approaches were the earliest algorithms used for outlier detection. The
most common approaches are univariate. Probably one of the simplest statistical outlier
detection techniques use informal box plots [18] to pushup outliers in both univariate
and multivariate data sets. Another single dimensional method was presented in [18]
which calculates a Z value as the difference between the mean value for the attribute
and the query value divided by the standard deviation for the attribute. The Z value for
the query is compared with a 1% or 5% significance level. The technique requires no
user parameters as all parameters are derived directly from data.

The literature in anomaly and outlier detection is huge. Two recent overviews, with
excellent references are [11] and [2]. Most of the works refer to off-line approaches.
A recent paper [15], addresses the anomaly detection problem in large-scale data min-
ing applications using residual subspace analysis. The authors suggest a framework
wherein random projection can be used to obtain compressed data. Their contribution
shows that the spectral property of the compressed data is approximately preserved un-
der such projection and thus the performance of spectral-based methods for anomaly
detection is almost equivalent to the case in which the raw data is completely available.

[19] present an approach for combining adaptive pre-processing with adaptive online
predictor. The authors present a case study with real sensory data from a production
process. In that case, decoupling the adaptively of pre-processing and the predictor
contributes to improving the prediction accuracy.

The authors of [2] define 2 types of anomalies.

– Point Anomalies. If an individual data instance can be considered as anomalous
with respect to the rest of data, then the instance is termed as a point anomaly. This
is the simplest type of anomaly and is the focus of majority of research on anomaly
detection.

– Contextual Anomalies. If a data instance is anomalous in a specific context.. In this
case, it is convenient to define:
• Contextual attributes. The contextual attributes are used to determine the con-

text for that instance.
• Behavioral attributes. The attributes with abnormal values in the contexts de-

fined by the contextual attributes.

A relevant aspect, pointed out by [2], is that an observation might be an anomaly
in a given context, but an identical data instance (in terms of behavioral attributes)
could be considered normal in a different context. This property is a key characteristic
in identifying contextual and behavioral attributes for a contextual anomaly detection
technique.

In [13], the authors discuss distance-based outlier detection methods for very large
data bases, and propose several algorithms. The most efficient has complexity that is
linear with the number of examples but exponential in the number of attributes. It is
based on nearest neighbour search over cells defined by indexing structures. While the
proposed algorithms are effective for very large data bases, its complexity limit their
applicability in the streaming computational model.

One of the few systems that can detect contextual anomalies is Gritbot [16]. GritBot
is not described in any scientific paper, is a commercial tool that detects inconsistencies
in the data set. GritBot is an off-line tool that finds anomalies in data as a pre-processing
to data mining algorithms. It can be thought as an autonomous data quality auditor
that hunts for records having ”surprising” values of nominal and/or numeric attributes.
Anomalies need not stand out in the complete dataset – GritBot searches for subsets of
records in which the anomaly is apparent. Although there is no technical description of
the methods used by GritBot, we can guess from the code, results and studies published
by Quinlan that the GriBot generates rules iteratively. In each iteration, considers an
attribute from a subset of n attributes as objective (dependent) attribute. Then, to each
tuple that violates a certain rule is assigned the probability that the value anomaly can
occur by chance and not by error. The approach we present in this paper identifies
anomalies a la Gritbot, but on-line, with a single-scan over the data.

3 Anomaly Detection

The method we propose detects contextual anomalies. Contextual anomalies are char-
acterized by a context that refers the region of the instance space where the anomaly

was detected, and behavioral attributes, those with anomalous values. One example of
the type of anomalies we detect, from the Adult dataset [5], is:
Case 15904:
education = 10th [6 in 1470]
capital-gain = 99999 [889.2±633.6]
Rule:
education-num <= 10 ∧
marital-status = Married-civ-spouse → >50K

The 15904th example is signaled as an anomaly, and is interpreted as follows. The
context of the anomaly is given by the rule:
education-num <= 10 ∧
marital-status = Married-civ-spouse → >50K.
The attributes with suspicious values are education and capital-gain. The first attribute
is nominal. In 1470 examples, the attribute value education = 10 was observed 6 times.
The second attribute is numerical. The mean of this variable (using the examples seen
so far) is 889 and the standard deviation is 633. The anomaliness score for this example
is 0.99.

In the first part of this section, we describe the algorithm to learn the decision rules
defining the context of the anomalies. We should point out, that our anomaly detection
system can be used in classification and regression problems with any VFDT like algo-
rithms [4]. The current implementation is based on a stream classification rule learner,
previously presented in [8]. In the next Section we provide a concise description of the
learning algorithm, to clarify how the detection method works.

3.1 Very Fast Decision Rules Algorithm

As in many other systems, a rule in VFDR [14] is an implication of the form A ⇒ C.
The A part of a rule is a conjunction of literals, that is, conditions based on attribute
values. For numerical attributes, each literal is of the form Xi > v, or Xi ≤ v for
some feature Xi and some constant v. For categorical attributes VFDR produce literals
of the form Xi = vj where vj is a value in the domain of Xi. The C part of a rule r,
designated Lr, is not a constant as in most of rule based systems, but a function. This is
the most different feature of VFDR.

The VFDR algorithm is designed for high-speed data streams. It learns ordered or
unordered rule sets. It needs only one scan of data and is able to provide any-time
classifications.

Growing a Set of Rules The algorithm begins with a empty rule set (RS) and a
default rule {} → L, where L is initialized to ∅. L is a data structure that contains
information used to classify test instances, and the sufficient statistics needed to expand
the rule.

As already said, each learned rule (r) is a conjunction of literals, that are conditions
based on attribute values, and a Lr. If all the literals are true for a given example, then
the example is said to be covered by the rule. The labeled examples covered by a rule

r are used to update Lr. A rule is expanded with the literal that has the highest gain
measure of the examples covered by the rule. Lr accumulates the sufficient statistics to
compute the gain measure of all possible literals. Lr is a data structure that contains:
an integer that stores the number of examples covered by the rule; a vector to compute
p(ck), i.e., the probability of observing examples of class ck; a matrix p(Xi = vj |ck) to
compute the probability of observing value vj of a nominal attribute Xi per class; and
a btree to compute the probability of observing values greater than vj of continuous
attribute Xi, p(Xi > vj |ck), per class. The information maintained in Lr is similar to
the sufficient statistics [6].

The number of observations, after which a rule can be expanded or new rule can be
induced, is determined by the Hoeffding bound. It guarantees that, with probability at
least 1− δ, the true mean of a random variable x with a range R will not differ from the
sample mean of size N by more than:

ε =

√
R2ln(1/δ)

2N
.

It is not efficient to check for the sufficient number of examples with every incoming
example, therefore this is done only after every Nmin observations.

The set of rules (RS) is learned in parallel as described in Algorithm 1. We consider
two cases: learning ordered or unordered set of rules. In the former, every labeled exam-
ple updates statistics of the first rule that covers it. In the latter, every labeled example
updates statistics of all the rules that cover it. If a labeled example is not covered by any
rule, the default rule is updated.

The expansion of a rule is done using Algorithm 2 that employs the aforementioned
Hoeffding bound. For each attribute Xi the value of split evaluation function G is com-
puted for each attribute value vj . If the best merit is better the second best with given
confidence, i.e. satisfies condition gbest − g2best > ε, the rule is expanded with condi-
tion Xa = vj and the class of the rule is assigned according to the majority class of
observations of Xa = vj .

Classification Strategies The set of rules learned by VFDR can employ different clas-
sification strategies: First Hit, and Weighted Sum. As in [3], the ordered rules use the
First Hit strategy, while the unordered rules use the Weighted Sum strategy. In that case
all rules covering the example are used for classification and the final class is decided
by using weighted vote.

More specifically, assume that a rule r covers a test example. The example will
be classified using the information in Lr of that rule. The simplest strategy uses the
distribution of the classes stored in Lr, and classify the example in the class that max-
imizes p(ck). This strategy only use the information about class distributions and does
not look for the attribute-values, therefore it uses only a small part of the available in-
formation. In a more informed strategy, a test example is classified with the class that
maximizes the posteriori probability given by Bayes rule assuming the independence
of the attributes given the class. There is a simple motivation for this option. L stores
information about the distribution of the attributes given the class usually for hundreds

Algorithm 1: VFDR: Rule Learning Algorithm.
input : S: Stream of examples

Nmin: Minimum number of examples
ordered set: boolean flag

output: RS: Set of Decision Rules
begin

Let RS← {}
Let default rule L ← ∅
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

Update sufficient statistics of Rule r
if Number of examples in Lr mod Nmin = 0 then

r ← ExpandRule(r)

if ordered set then
BREAK

if none of the rules in RS trigger then
Update sufficient statistics of the empty rule
if Number of examples in L mod Nmin = 0 then

RS ← RS∪ ExpandRule(default rule)

or even thousands of examples, before expanding the rule and re-initializing the coun-
ters. Naive Bayes (NB) takes into account not only the prior distribution of the classes,
but also the conditional probabilities of the attribute-values given the class. This way,
there is a much better exploitation of the available information in each rule. Given the
example x = (x1, . . . , xj) and applying Bayes theorem, we obtain:

P (ck|x) ∝ P (ck)
∏

P (xj |ck).

Using NB in VFDT like algorithms [4], is a well-known technique since it was intro-
duced in [7]. One of its greatest advantages is the boost in any-time learning property
because even though the learned rule set might not be robust enough or the individual
rules might not provide sufficient information for expert interpretation (not being spe-
cialized enough, i.e., having only one or few conditions), it may already be able highly
informed predictions based on NB classification.

3.2 Detecting Anomalies

Different kinds of rule systems are commonly used in multivariate anomaly detection.
The use of AVFDR in on-line detection is one of the advantages the system provides. It
can detect possible anomalies during the learning process. The detection process works
as follows. When the system reads a new example, the rule set is checked to find the
rules that cover the example. An example is covered by a rule, when the conditional

Algorithm 2: ExpandRule: Expanding one Rule.
input : r: One Rule

G: Split evaluation function;
δ: is one minus the desired probability
of choosing the correct attribute;

output: r: Expanded Rule
begin

Compute ε =
√

R2ln(1/δ)
2N

(Hoeffding bound)
EvaluateLiterals()
if (gbest − g2best > ε) then

Extend r with a new condition based on the best attribute Xa = vj
Release sufficient statistics of Lr
r ← r ∪ {Xa = vj}

return r

tests of the antecedent of the rule are true for that example. For each attribute value, we
compute the probability P (Xi = v|Ruler). These probabilities are computed from the
consequent of the rule, Lr, that maintains the sufficient statistics required to expand the
rule. Low values of these probabilities suggest that the example is an uncommon case in
the context of the rule, and it is reported as anomaly. More specifically, for an example
(x, y) and its attribute Xi = v let

Pr(Xi = v|Lr)

be the probability of observing attribute value v of the attribute Xi given the conditions
of a rule r.

We compute the univariate anomaliness score as:

Uscorei = 1− Pr(Xi = v|Lr) (1)

This score is unsupervised in the sense that does not take into account the class label
of the example. During the on-line learning, the learner receives labeled examples and
therefore we can use the class information to compute the univariate score. The super-
vised univariate anomaly score is given by:

Usscorei = 1− Pr(Xi = v|y,Lr) (2)

If Uscorei > λ, for a given value of λ (typically 99%), the attribute value is said to
be an anomaly for the context provided by rule r. This is applicable both for supervised
and unsupervised scores.

Computing the Anomaly Score for Nominal Attributes The domain of nominal is
finite and unordered. For each nominal attribute, the statistics store in Lr of a rule,
are in the form of a contingency table. For a given attribute, let N be the number of
examples, seen so far, covered by rule r, Ni,· the number of examples, covered by rule

r, where the attribute take the ith value, N·,j the number of examples, covered by rule
r, from class j, and Ni,j be the number of examples where the attribute takes value i in
examples of class j.

Assume we observe an example of class c where the value of attribute i is v. The
univariate anomaliness score for this attribute is computed as:

Uscorei = 1− Nv,·
N

(3)

The supervised anomaly score is computed as:

Usscorei = 1− Nv,c
N·,c

(4)

Again, if Uscorei > λ, the attribute value is said to be an anomaly for the context
provided by rule r.

Computing the Anomaly Score for Continuous Attributes For continuous attributes,
the statistics stored inLr include the mean and standard deviation of each attribute given
the class. Remember that these statistics are computed from the examples covered by
the rule. Using these statistics we can compute Equation 1 (or Equation 2) using differ-
ent strategies, including Normal distribution, Z scores, etc. From a set of experiments
not described here, the Chebyshev inequality seems to be more effective.

The Chebyshev inequality guarantees that in any probability distribution, ’nearly
all’ values are close to the mean. More precisely no more than 1

k2 of the distribution’s
values can be more than k standard deviations away from the mean. Although con-
servative, the inequality can be applied to completely arbitrary distributions (unknown
except for mean and variance). Let x be a random variable with finite expected value x
and finite non-zero variance σ2. Then for any real number k > 0,

Pr(|x− x| ≥ kσ) ≤ 1

k2
.

Only the case k > 1 provides useful information. When k < 1 the right-hand side is
greater than one, so the inequality becomes vacuous, as the probability of any event
cannot be greater than one. When k = 1 it just says the probability is less than or equal
to one, which is always true.

Therefore, for k = |x−x|
σ and k > 1, the anomaliness score is:

Uscorei = 1− 1

(|x−x|σ)2
(5)

The anomaliness score in Equation 5 can be computed using supervised or unsuper-
vised information depending on computing x and σ conditioned to the class or not.

Relatively new rules, that are rules that have not been trained with many examples,
would more often tend to report a training example as anomaly. In order to prevent this
situation, only rules that were trained with more than mmin examples are used in the
anomaly detection.

Multivariate Score For each training example and for each attribute value i, we com-
pute the univariate score, Uscorei using Equation 1. The join degree of anomaliness,
assuming that the attributes are independent, is computed for all the attributes such that
Uscorei > λ, and is given by: ∏

k

Uscorei

where k is the set of anomalous attributes.
By applying logarithms, to avoid numerical instabilities, and normalizing, the de-

gree of anomaliness of an example is given by:

Ascore =

∑n
i=1 I(Uscorei)∑n
i=1 log(Uscorei)

(6)

where

I(x) =

{
0 if x < λ

log(x) otherwise

Equation 6 takes values in the interval [0, 1], where 0 corresponds to the case that
none of the attributes is anomalous, and 1 when all the attributes are anomalous.

3.3 Discussion

The main contribution of this work is the ability of incorporating anomaly detection
inside the learning process. The advantages of this integration are two-fold. On one
hand, the system reports possibly anomalous values, together with an explanation of
why each value seems surprising. This information provides insights to the user about
the dynamic of the process generating data. On the other hand, the online identification
of anomalous examples prevents us to learn from outliers. This is a crucial task in online
learning.

Although we illustrate the usability of anomaly detection coupled with a decision
rule learner, the proposed method can be used in classification and regression problems
with any VFDT like algorithm. The information required to compute the anomaly score
is stored in the consequent of rules and in the leaves of a decision tree. Algorithms like
decision trees [6] and regression trees [12] can easily incorporate the techniques pre-
sented here. The proposed method does not guarantee to find all the anomalies. More-
over, what is an anomaly might depend in the order that examples arrive. The set of
rules learned by AVFDR are stable with respect to the order of examples [8].

4 Experimental Evaluation

4.1 UCI Datasets

In a firs set of experiences, and for sanity check, we run the on-line anomaly detection
in two artificial datasets - waveform21 [5] and SEA [17]. In these datasets the algorithm
did not find any anomalies, which is the correct behavior. In the SEA dataset, shown in
Figure 1, the anomaly score 1 is always around 0.

1 The y axis in the plots showing the distribution of the anomaliness score is in log scale.

Table 1. Anomaly Detection Summary

Nr.Anomalies Prequential error Error in holdout
Adult
Normal - 17.58 17.51
Unsupervised 9 17.57 17.51
Supervised 9 17.57 17.51
Covertype
Normal - 24.92 38.46
Unsupervised 57 23.75 32.55
Supervised 37 23.91 36.88
Electricity
Normal - 18.77
Unsupervised 189 18.51
Supervised 13 18.96
KDDCup99
Normal - 0.86
Unsupervised 10 0.84
Supervised 17 0.82

4.2 Real-World Data

The second set of experiments uses well-known datasets were we find anomalies. A
summary of the number of anomalies detected is presented in Table 1. For each dataset,
we report 3 lines. The first line reports the behavior of AVFDR without detecting
anomalies. The second and third line summarizes the behavior of the system using un-
supervised and supervised anomaly detection, respectively. The anomalies detected are
not used for training the rule learner. The details about these experiments are reported
in the following subsections.

Intrusion Dataset The KDDCUP 99 is a data set [5] of TCP/IP connections which are
labeled either as normal or one of many different types of attacks. In many cases, the at-
tacks are grouped into four categories: DOS (denial-of-service), R2L (unauthorized ac-
cess from a remote machine), U2R (unauthorized access to local superuser privileges),
and probing (surveillance and other probing).

– DOS: denial-of-service, e.g., syn flood;
– R2L: unauthorized access from a remote machine, e.g. guessing password;
– U2R: unauthorized access to local superuser (root) privileges, e.g., various ’buffer

overflow’ attacks;
– probing: surveillance and other probing, e.g., port scanning.

The test data is not from the same distribution as the training data and moreover there
are new attack types that are not in the training data. These new types can be grouped
to the categories above as well. The set consist of 4,898,431 and 311,029 instances for
training and test respectively.

Fig. 1. Distribution of the anomaliness score (supervised and unsupervised) in the SEA dataset.

Fig. 2. Anomaly detection influence on prequential error in Intrusion dataset

An example of supervised anomalies found in intrusion dataset:
case 148160:
dst host count=15 [252.2±21.3 class=normal]

dst host srv count=13 [248.1±20.9 class=normal]

in rule:
count ≤ 5 ∧ service = private → Probing

An example of unsupervised anomalies found in intrusion dataset:
case 121735:
dst host srv count=163 [254.9±4.51]
dst host same srv rate=0.64 [1.0±0.02]
in rule:
count > 508 ∧ service = ecr i → DoS

Distribution of the anomaliness score (supervised and unsupervised) in the Intrusion
dataset is provided in 3.

Fig. 3. Distribution of the anomaliness score (supervised and unsupervised) in the Intrusion
dataset.

Adult Dataset Data was extracted from the census bureau database in 1994. Prediction
task is to determine whether a person makes over 50K a year. The description of data
in UCI [5] refers: A set of reasonably clean records. The distribution of the anomali-
ness score (supervised and unsupervised) in the Adult dataset4. Examples of supervised
anomalies found in adult dataset:
case 1231
occupation = Priv-house-serv [0 in 216 class=≤ 50K]

native-country = France [0 in 216 class=≤ 50K]

in rule:
education-num > 12 ∧ marital-status = Never-married →
→≤ 50K

case 98361:
occupation = Tech-support [3 in 625 class=≤ 50K]

native-country = Peru [0 in 625 class=≤ 50K]

in rule:
age > 35 ∧ education-num <= 9 ∧ marital-status = Married-civ-spouse

→> 50K

Electricity Dataset A widely used dataset is the Electricity Market Dataset introduced
in [10]. This time series based data was collected from the Australian New South Wales
Electricity Market. The class label identifies the change of the price related to a moving
average of the last 24 hours.

Examples of supervised anomalies found in electricity dataset:
case: 7123

day = 6 [0 in 185 class UP]

in rule:
nswprice > 0.102 → UP

Fig. 4. Distribution of the anomaliness score (supervised and unsupervised) in the Adult dataset.

The distribution of the anomaliness score (supervised and unsupervised) in the Elec-
tricity dataset is presented in 5. Examples of unsupervised anomalies found in electricity
dataset:

case: 17434
vicdemand = 0.032626 [0.423±7.15E-8]
transfer = 0.500526 [0.41±6.96E-8]
in rule:
date > 0.0131 ∧ nswprice ≤ 0.0425→ UP

Fig. 5. Distribution of the anomaliness score (supervised and unsupervised) in the Electricity
dataset.

Fig. 6. Anomaly detection influence on prequential error in Electricity dataset

5 Conclusions

In this paper we present a one-pass, streaming algorithm for learning classification rules
able to detect contextual anomalies in the data. Contextual anomalies are surprising
attribute values in the context defined by the conditional part of the rule. The anomalies
detected are characterized by a context that refers the region of the instance where the
anomaly was detected, and behavioral attributes, those with anomalous values. For each
example we compute the degree of anomaliness based on the probability of the attribute-
values given the conditional part of the rule covering the example. Our system reports
two types of anomalies: supervised and unsupervised anomalies. The examples with
high degree of anomaliness are signaled to the user and not used to train the classifier.
This is the main claim of this paper: online algorithms benefit from online anomaly
detection by rejecting anomalous examples. The experimental evaluation in real-world
data sets shows the ability to discover anomalous examples in well-known datasets. The
main advantage of the proposed method is the ability to inform the context and explain
why the anomaly occurs.

Acknowledgments

We thank the anonymous referees for their constructive comments. The authors ac-
knowledge the financial support given by the project FCT-KDUS PTDC/ EIA/ 098355/2008
FCOMP -01-0124-FEDER-010053, the ERDF through the COMPETE Programme and
by National Funds through FCT within the project FCOMP - 01-0124-FEDER-022701.
Petr Kosina also acknowledges the support of Fac. of Informatics, MU, Brno.

References

1. José Barateiro and Helena Galhardas. A survey of data quality tools. Datenbank-Spektrum,
14:15–21, 2005.

2. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3), 2009.

3. Peter Clark and Robin Boswell. Rule induction with cn2: Some recent improvements. pages
151–163. Springer-Verlag, 1991.

4. Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Raghu Ramakrish-
nan, Salvatore J. Stolfo, Roberto J. Bayardo, and Ismail Parsa, editors, KDD, pages 71–80.
ACM, 2000.

5. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
6. J. Gama, R. Fernandes, and R. Rocha. Decision trees for mining data streams. Intelligent

Data Analysis, 10:23–45, 2006.
7. J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining high-speed data

streams. In Proceedings of the Ninth International Conference on Knowledge Discovery
and Data Mining. ACM Press, New York, NY, 2003.

8. João Gama and Petr Kosina. Learning decision rules from data streams. In Toby Walsh,
editor, IJCAI, pages 1255–1260. IJCAI/AAAI, 2011.

9. Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, 2012.

10. M. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine Learning, 32:101–
126, 1998.

11. V.J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence
Review, 22(2):85–126, 2004.

12. Elena Ikonomovska, João Gama, and Saso Dzeroski. Learning model trees from evolving
data streams. Data Min. Knowl. Discov., 23(1):128–168, 2011.

13. Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. Distance-based outliers: algo-
rithms and applications. The VLDB Journal, 8(3-4):237–253, February 2000.

14. Petr Kosina and João Gama. Handling time changing data with adaptive very fast decision
rules. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors, ECML/PKDD (1), volume
7523 of Lecture Notes in Computer Science, pages 827–842. Springer, 2012.

15. Duc-Son Pham, Svetha Venkatesh, Mihai Lazarescu, and Saha Budhaditya. Anomaly detec-
tion in large-scale data stream networks. Data Mining and Knowledge Discovery, to appear.

16. J. Ross Quinlan. Kdd-99 panel on last 10 and next 10 years. SIGKDD Explorations, 1(2):62,
2000.

17. W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale
classification. In KDD, pages 377–382, 2001.

18. John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
19. Indre Zliobaite and Bogdan Gabrys. Adaptive preprocessing for streaming data. IEEE Trans-

actions on Knowledge and Data Engineering, 99(PrePrints):1, 2012.

