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ARTICLE INFO ABSTRACT

Keywords: The autonomy of robotic underwater vehicles is dependent on the ability to perform long-term and long-range
AUV navigation missions without need of human intervention. While current state-of-the-art underwater navigation techniques
AUV autonomy are able to provide sufficient levels of precision in positioning, they require the use of support vessels or acoustic

Terrain based navigation for AUVs beacons. This can pose limitations on the size of the survey area, but also on the whole cost of the operations.

Terrain Based Navigation is a sensor-based navigation technique that bounds the error growth of dead-
reckoning using a map with terrain information, provided that there is enough terrain variability. An obvious
advantage of Terrain Based Navigation is the fact that no external aiding signals or devices are required.
Because of this unique feature, terrain navigation has the potential to dramatically improve the autonomy of
Autonomous Underwater Vehicles (AUVs).

This paper consists on a comprehensive survey on the recent developments for Terrain Based Navigation
methods proposed for AUVs. The survey includes a brief introduction to the original Terrain Based Navigation
formulations, as well as a description of the algorithms, and a list of the different implementation alternatives
found in the literature. Additionally, and due to the relevance, Bathymetric SLAM techniques will also be

discussed.

1. Introduction

Navigation is a broad and extensive field of study, and one of the
key issues in modern robotics. In a general sense Navigation encom-
passes all the sub-problems related to moving a robot from one point to
another, thus including tasks like robot self localization, trajectory
planning, collision avoidance or mapping, among others.
Notwithstanding, for the Marine Robotics community the term
Navigation is loosely applied to self-localization tasks only, and that
is the understanding that will be followed throughout the remainder of
this article.

According to Hagen et al. (2009), the level of autonomy achieved by
Autonomous Underwater Vehicles (AUVs) is chiefly determined by
their performance in three areas, namely energy autonomy, navigation
autonomy and decision autonomy. Navigation autonomy is then
described as the ability to navigate precisely and obtain positioning
solutions with little or non-significant errors over extended periods of
time. Therefore, the level of autonomy of robotic underwater vehicles is
dependent on the ability to perform long-term and long-range missions
with little or no human intervention. This is of particular importance

for autonomous operation in deep water or covert military operations,
that require the vehicles to handle submerged operation for long
periods of time, and covering long ranges. Enabling such missions is
therefore a challenging goal for the AUV community, and one that
would dramatically improve the level of autonomy of these vehicles.

The ability autonomous vehicles must have to correctly understand
their position and attitude within the environment is determinant for
the success of different applications. For field robotics, the Global
Navigation Satellite Systems (GNSS), like the American operated
Global Positioning System (GPS), have become an invaluable asset to
resolve the global position of a given robot. In fact, modern GPS
techniques can provide the global position in terms of latitude and
longitude with centimetre accuracy, which is considered to be adequate
to the vast majority of applications. However, underwater the use of
GNSS technology is not possible due to the strong attenuation that
affects electromagnetic radiations in aquatic environments.

Terrain Based Navigation, Terrain Relative Navigation or Terrain
Aided Navigation are all interchangeable terms used to describe a
family of position fixing systems based on the profile of the terrain.
Underwater Terrain Based Navigation (TBN), to which research efforts
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have been recently focused, is a potentially powerful solution for long-
range navigation of AUVs. Similarly to the use of GPS or even Acoustic
Navigation, TBN uses information of the variations of the terrain to
bound the errors of inertial navigation, thus increasing the long term
estimation accuracy of the position of the vehicle. TBN is a self-
contained technique, in the sense that no external aiding signals or
devices are needed. This is in fact a great advantage when comparing to
traditional approaches. Because of this unique feature, TBN has the
potential to dramatically improve the autonomy of AUVs, given that
terrain maps of the areas to navigate are available, and that sufficient
terrain variability exists in order to make the terrain informative.

This article aims to be an in-depth survey of existing TBN
algorithms for underwater vehicles. However, we are exclusively
interested on bathymetry-based, featureless approaches. Even though
some authors have proposed vision-based underwater navigation
algorithms, the use of rich imaging sensors, like cameras, is generally
precluded. Underwater images are known to be degraded due to
different environmental factors such as light attenuation, turbidity or
floating particles, and only in very close-range applications can
cameras be relevant, for example in docking operations. Some sonar
sensors can provide acoustic images of the bottom, and various
examples of the image-based problem for TBN have been proposed,
for example by Strauss et al. (1999); Zerr et al. (2005); Stalder et al.
(2008), or Woock and Frey (2010). Such methods, with roots on the
image-processing domain, are dependent on feature and landmark
matching. With the sea bottom being largely featureless, the use of such
techniques is restricted to only a small subset of underwater regions,
and mostly to structured environments, as segmentation and classifica-
tion of natural underwater features is not a straightforward task. For
those reasons, this survey is exclusively focused on bathymetric TBN,
and image-based TBN won't be further discussed.

By providing a complete overview on all the different aspects,
covering from the basic concepts, to sensors used and implementation
details, this article also complements previous existing surveys, as the
one published by Carreno et al. (2010). Naturally, a special focus is
given to the works in the area with a major impact on the AUV
community. The article is organized in the following way. Section 2
provides an overview on general methods for underwater navigation,
and motivates for use of TBN. On Section 3 an introduction to the
general TBN problem is provided, and the section that follows is
devoted to deliver an insight on the different sonar sensors that can be
used to capture the characteristics of the sea bottom. Section 5
discusses the underwater TBN algorithms while Section 6 presents a
discussion on the different state-space models used in the literature.
Section 7 introduces the Bayesian Estimation framework and the
possible realizations of the general Bayes Filter applied to the specific
problem of TBN. Section 8 introduces relevant related work, based on
SLAM techniques and scan matching, and finally Section 9 summarizes
the key findings.

2. Underwater navigation

Underwater navigation can be roughly subdivided in three main
branches: Inertial Navigation, Acoustic Navigation, and Geophysical
Navigation, the most recent branch. While these different techniques
can be used as standalone, they are usually combined into more robust
navigation solutions, designed to capture the strengths of each
individual method. Up to recently, the state-of-the-art approach has
been combining acoustic and inertial navigation systems. Inertial
Navigation is a self-contained navigation technique with a very good
short-term accuracy, but its position and velocity estimates are known
to drift over time. On the other hand, beacon-based Acoustic
Navigation techniques are able to provide navigational aids, usually
in form of range and bearing signals, but they usually have a low-
update rate. However, the need for deployment of acoustic beacons or a
support vessel is extremely inconvenient, and even impracticable for
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Table 1
Summary of advantages and disadvantages of the different underwater navigation
techniques.

Advantages Disadvantages

Drifts over time
Low update rate, deployment of
external devices
Scarcity of maps

Self—contained
Robust position
fixing
Self-contained

Inertial Navigation
Acoustic Navigation

Geophysical
Navigation

some applications. While resurfacing and using a GPS receiver can
partially solve for this problem, such behaviour is sometimes undesir-
able, like during deep water surveys, or even be impossible if, for
example, the vehicle is navigating under an iced surface. The challenge
is then to provide methods that allow AUVs to operate autonomously in
highly unstructured environments, and combining Inertial Navigation
with Geophysical Navigation methods, might be the way to go.

The advantages and disadvantages of the different underwater
navigation techniques have been summarized in Table 1. For reference,
in the remainder of this section we provide a brief overview on the
existing navigation techniques for AUVs. A more comprehensive
survey, covering both the technology and the algorithms, was provided
at different times by different authors, as for example Kinsey et al.
(2006); Stutters et al. (2008) and more recently Paull et al. (2014).

2.1. Inertial navigation

Inertial Navigation is, as the name indicates, based on inertial
principles and uses measurements from Inertial Measurement Units
(IMUs) to obtain estimates of both position and velocity using dead-
reckoning techniques. Dead-reckoning is the process of recurrently
estimating a navigation solution of a vehicle using a previously known
position and orientation, and integrating the vehicle's velocity and
acceleration.

Modern IMUs consist on a set of accelerometers and gyroscopes,
that measure the specific force and angular velocity, respectively. By
using a triad of each of these sensors, mounted along the different
coordinated axis, it is possible to obtain by integration three-dimen-
sional position and attitude estimates, with good short time accuracy
and high update rates. Sometimes IMUs also contain a triad of
magnetometers, to measure Earth's magnetic field, which allows to
obtain heading estimates. In alternative, heading estimates can also be
obtained by gyrocompassing, provided that the precision of the
gyroscopes is high enough to measure the earth's rotation.

The fact that Inertial Navigation is self-contained, in the sense that
it neither emits nor receives any external signal, is one of its most
significant strengths, making it a stealthy navigation solution, immune
to interference or jamming. However, due to the dead-reckoning nature
of the process, the navigation errors obtained with this method are
known to increase and grow unbounded with time, in an extent that is
heavily dependent on the accuracy of the sensors used. This is caused
by the noise and bias levels present on the signals coming from the
IMUs, which are then continuously integrated. According to Groves
(2013), inertial sensors can be roughly divided in 4 categories with
respect to their levels of maximum horizontal position drifts, as
specified on Table 2.

While with marine and navigation grade IMUs it is possible to have
AUVs to perform short-term missions with negligible navigation errors,
IMUs in these classes are characterized for having dimensions, cost and
power requirements that are not compatible the majority of the up-to-
date autonomous vehicles. On the other side, for the IMUs in the lowest
class, the automotive class, obtaining position estimates only from
inertial measurements is hardly possible, this class of low-cost sensors
are employed on Attitude and Heading Reference System (AHRS). For
IMUs of the remaining classes, or for longer missions, the use of
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Table 2
Inertial Navigation Systems performance categories.

Grade Position drift Application

Marine < 1.8 km/day submarine, spacecraft
Navigation ~1.5 km/hour airliner, military aircraft
Tactical > 15 km/hour guided weapons, UAVs
Automotive n.a. AHRS, ABS

navigational aids are therefore required.

At the core of Inertial Navigation are the Inertial Navigation
Systems (INS). These systems are responsible to solve the standard
inertial navigation equations of the vehicle, using data coming from the
IMU. In addition, Modern INS are also responsible for data fusion of
inertial data with position and velocity data, acquired by external
sensors. In the case of underwater vehicles, sensors like Doppler
Velocity Loggers (DVL) or barometric depth sensors are usually
employed. It is also common to obtain external positional aids using
any of the acoustic navigation schemes, detailed on the following
subsection.

2.2. Acoustic navigation

Acoustic Navigation embraces a number of techniques that rely on
the exchange of acoustic signals between a set of acoustic beacons, and
one or more vehicles, with the objective of determining the position of
the latter. Broadly speaking, three distinct Acoustic Navigation
schemes exist, namely the Long Baseline (LBL), the Short Baseline
(SBL), and the Ultra Short Baseline (USBL). If appropriate acoustic
interrogation protocols are used, all of these systems can be used for
external tracking of the vehicle, but also to provide relative navigational
aids to the vehicles. A detailed review of the different Acoustic
Navigation schemes, their individual strengths and their disadvantages
has been provided by ,.

SBL and USBL are two acoustic positioning systems that provide
relative range and bearing to an acoustic beacon. Differently from
those, LBL systems only provide ranges to an array of acoustic beacons,
but position estimates can be obtained by applying multilateration
techniques. Nevertheless, the ranges provided by these methods are
always obtained using the Time-of-Flight of the acoustic signals, and
highly dependent on knowing with a high degree of accuracy the local
sound wave propagation velocity. Computing bearing, however is done
differently for SBL and USBL. On SBL systems, bearing is derived from
the time differences of arrival (TDOA), as a ping (transmitted acoustic
signal) is detected on each of the transceivers. On the other hand, due
to its relatively small baseline, USBL systems compute bearing by
comparing the phase of a given ping between individual elements of an
acoustic array.

The length of the baseline among such systems differs significantly.
as indicated in Table 3. SBL is usually characterized for having the
transducers mounted on the hull of the vehicle, as distant from each
other as possible. On the other hand USBL systems have the transdu-
cers mounted closely to each other. Differently from the previous
methods, LBL systems only provide ranges to an array of acoustic
beacons deployed on the seafloor, in predefined locations within the
operation area. While usually four beacons need to be deployed prior to
the operation, in some specific configurations the number of beacons

Table 3
Baseline length for the different types of Acoustic Navigation systems.

Acoustic System Baseline Length

LBL >100 m to ~< 2000 m
SBL ~20m to 50 m
USBL <10 em
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can be smaller. In those cases some ambiguity with respect to three-
dimensional position of the vehicle might arise. Loosely speaking, SBL
and USBL have a lower level of complexity and don't require the
deployment of any additional transponders, but they need to go
through a detailed calibration process to obtain optimal precisions on
positioning.

One of the main advantages of LBL systems is its very good position
accuracy, which is independent of the operational depths. Maybe for
that reason, LBL is in fact the most popular of all the acoustic
positioning systems. However, the cost and time needed to set up a
network, and the later recovery of the beacons, which can be quite
cumbersome for adverse environments, is still a big drawback for the
use of such systems. To overcome the need of deploying the beacons on
the seafloor, the use of GNSS enabled buoys has been proposed, in
what can be called Inverted LBL. With the use of such systems, the
transponders of the bottom are replaced by floating buoys which carry
the acoustic transducers. Due to the fact that such devices also carry
GNSS receivers, calibration of the system can be significantly simpli-
fied.

Both traditional LBL or the Inverted LBL require the use of multiple
acoustic beacons, deployed prior to operations whether on the sea
bottom, or on the surface. In order to reduce the logistics associated to
LBL, different researchers have focused on developing methods that
use only a single acoustic beacon. To name only a few, Larsen (2000)
proposed the Synthetic LBL method, which combined dead-reckoning
with range measurements from a single acoustic source to provide sub-
meter positioning accuracy. Later on, LaPointe (2006) presented the
Virtual LBL system, a single beacon navigation system that uses a
virtual network of multiple acoustic transponders that allows an
underwater vehicle to navigate similarly to what happens with tradi-
tional LBL. The position of each virtual transponders at any given time
is then obtained by combining multiple range measurements from the
real single transponder and the dead reckoning track of the vehicle.
More recently, the work by Ferreira and Matos (2010) simultaneously
addressed the problems of localization and control of an AUV using a
single acoustic beacon for homing scenarios.

Recent advances in underwater communication topics have also
brought Acoustic Modems to play a relevant part in underwater
navigation capabilities. Several authors have proposed different frame-
works to enable Cooperative Navigation, for example Bahr et al.
(2009); Fallon et al. (2010). In Cooperative Navigation, teams of
AUVs localize themselves more accurately by sharing position esti-
mates and uncertainty. However, such approaches require a data link
between the vehicles. While this is an interesting approach, acoustic
communications are still characterized by small bandwidth, low data
rates and high latency and, particularly for shallow waters and adverse
environmental conditions, reliable underwater communications can be
quite challenging for long distances.

2.3. Geophysical navigation

Geophysical Navigation uses physical features of the environment
where the AUVs navigate to produce an estimate of the location of the
vehicle. As stated by Leonard et al. (1998), at its basis this kind of
navigation relies on matching sensor data with an a priori environment
map, under the assumption that there is sufficient spatial variation in
the parameters being measured to permit accurate localization.
According to Meduna (2011), perhaps the biggest advantage of these
map-based navigation methods is the fact that it is a completely on-
board navigation, without the need for external devices, granting the
vehicles a large operational range. TBN, the focus of this article that
will be thoroughly discussed over the following sections, fits in this
category. However other techniques also exist.

Geomagnetic Based Navigation is in fact a related and very similar
problem to TBN, with the main difference being the features present in
the pre-surveyed digital map. While for TBN the map represents



J. Melo, A. Matos

terrain elevation, in geomagnetic navigation a Marine Geomagnetism
Map is used. Marine Geomagnetism has eight elements, namely
geomagnetic total intensity, geomagnetic horizontal component, geo-
magnetic vertical component, geomagnetic declination, geomagnetic
inclination and geomagnetic components in X, Y, and Z. Comparing
with TBN, which uses sonar, Geomagnetic Navigation relies only on
magnetic sensors, which are passive sensors. This is an obvious
advantage particularly for stealthy operations. Given the similarity
between Terrain Based Navigation and Geomagnetic Navigation, all the
matching techniques could, in principle, be applied to the latter, up to
some minor differences. Different authors have addressed the applica-
tion of Geomagnetic Navigation to underwater environments, namely
by Mu et al. (2007); Ren et al. (2008); Zhao et al. (2009) or Wang et al.
(2010). However, up to now conclusive experimental results are still to
be presented.

3. Terrain based navigation

The goal of TBN is to obtain a position estimate that best fits a set of
acquired terrain measurements. This is done by comparing the
obtained terrain profile with a prior map or terrain database. In the
remainder of this section a description of the seminal work that lead to
modern TBN algorithms will be provided, namely the instrumental
TERCOM and SITAN methods.

The pioneering techniques for TBN were initially derived to be used
on missiles and aerial military vehicles. In an era when the ubiquity of
GPS was still not a reality, TBN presented some unique characteristics
that lead to its widespread acceptance. The autonomy and robustness
against interference or jamming, together with the fact that such
systems could be used under all weather conditions, during day or
night, where among the main advantages of such algorithms. The ever
increasing availability of high-resolution digital terrain maps delivered
with the aid of satellites played a great contribution to the widely
acceptance of this technique.

Initial techniques eventually evolved into commercial products and
nowadays several NATO aircraft are equipped with such systems.
Besides providing accurate navigation solutions, modern TBN systems
have been extended for both safety and tactical benefits of the aircraft,
offering features like predictive ground collision avoidance or obstacle
warning, making it particularly suited to military vehicles. A recent
description of a commercial TBN system for aircraft has been done by
Cowie et al. (2008). More recently, TBN has also been proposed to be
used on several space exploration missions, namely for planetary entry,
descent and landing by Alexander et al. (2012) and Johnson and
Montgomery (2008). For a recent review on the different TBN solutions
for aerial vehicles, refer to works by Karabork (2010); Vaman (2012)
and the references therein.

Early classifications divided TBN methods on two different broad
categories: Batch Methods and Sequential Methods. For reasons that
will be made clear ahead, these designations arose due to the nature of
TERCOM and SITAN methods, arguably the most influential in the
field of terrain navigation. The main differences between these two
algorithms are schematically depicted in Fig. 1. Other alternatives were
also proposed that were conceptually different from those two meth-
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ods. However, for various reasons they were never widely adopted by
the community. Examples of this are VATAN algorithm, proposed by
Enns and Morrell (1995), which uses the Viterbi algorithm applied to
the TBN. Recently, Kedong et al. (2006) suggested applying the
Iterative Closest Point (ICP) algorithms to the problem of TBN.
Pattern matching approaches, using image processing techniques for
landmark matching were also proposed, for example by Lucido et al.
(1998); Strauss et al. (1999) and others, but they will not be further
discussed in this article. Finally some hybrid approaches, combining
batch and sequential methods, have arisen most notably TERPROM.
Bergman et al. (1999) presented such hybrid solution, that used a
correlation based batch method on an initial phase, to obtain a coarse
position estimate, and once this was done it used a sequential approach
to track the position, using Kalman Filter techniques.

3.1. TERCOM

The Terrain Contour-Matching (TERCOM), the first Terrain Based
Navigation method ever developed, dates back to the 1950's, when the
concept was initially proposed. However, only almost two decades later
was the TERCOM system successfully applied to cruise missile
guidance systems. According to Vaman (2012), on its original formula-
tion TERCOM was designed to provide positional fixes to update the
INS of different vehicles, like aircraft or land-attack cruise missiles. In
this method, the positional fix is obtained by taking the best match
from a correlation-like function that assesses how well the obtained
terrain profile matches an existing map of the terrain. For aerial
vehicles terrain profiles are traditionally obtained by combining the
readings of barometric altimeters together with laser or radar alti-
meters.

Even though a navigation Kalman Filter is used, TERCOM can be
considered basically a correlation method in the sense that the position
fix, which is obtained by matching the sensor-based profile with a
bathymetric map, is the measurement input to be used by the
navigation filter. Jalving et al. (2001) noted that the term “correlation”
can be misleading in the sense that these methods do not compute
correlation in a strict statistical sense, but use instead some other
matching function that shows how well a measured bottom depth
profile matches a map. Usually the Absolute Square Distance (1) or
variations of it are used.

N
ASD(x) = Y (zi = h(x))?

i=1

1)

On the original TERCOM formulation, profiles of the terrain were
acquired by collecting a set of readings from the altimeter sensors,
which were then simultaneously processed. Because of that, these TBN
methods were classified as batch estimation methods. However, as
reported by Meduna (2011), due to the fact that the motion of the
vehicle between consecutive measurements is not taken into account,
these systems are only successful when used with a highly accurate INS
or with a dense range sensor. Another limitation of the original
TERCOM formulation is the fact that no statistically justified measure
of uncertainty in position estimates is provided. A schematic view of

Altitude Bottom Profile

Navigation Correlator

Position

Map Elevation

Position Corrections

Altitude

Navigation Correlator

Position

Map Elevation

Position Corrections.

Fig. 1. Schematic view of the two instrumental Terrain Based Navigation methods: TERCOM (1) and SITAN (1).

253



J. Melo, A. Matos

the TERCOM method can be found in Fig. 1(a).

3.2. SITAN

The Sandia Inertial Terrain Aided Navigation, best known as
SITAN, is another fundamental TBN method developed at the Sandia
National Labs and first proposed by Hostetler (1978). SITAN, a
Kalman Filter based TBN algorithm, was the first sequential method
developed, which radically differed from the existing batch methods.

Recalling from the previous subsection, TERCOM uses only the best
match from the correlation obtained between a set of terrain measure-
ments, that constitute a terrain profile, and a digital map of the terrain.
This best match is then used to update the navigation filter. Opposed to
that, the sequential nature of SITAN comes from the fact that every
new terrain measurement is processed independently, and used as an
input to the navigation filter. A schematic view of the SITAN method
can be found in Fig. 1(b). SITAN uses the obtained terrain measure-
ments directly as an update of the navigation filter, which introduces a
non-linearity on the measurement equation. Due to its undulating
nature, terrain measurements are in fact a nonlinear function of the
state of the navigation system. This is can be handled by linearising the
TBN measurement equation around the best estimate of the position of
the vehicle, an usual procedure when resorting to the Extended Kalman
Filter.

SITAN's simplicity, when compared to the computational load
required by TERCOM, is one of its the main advantages.
Nevertheless, there are two key limitations which are related with the
aforementioned linearisation. Because terrain gradients need to be
computed, with respect to the latitude, longitude and height compo-
nents INS position error, the quality of it will have a significant impact
on the produced position estimates. This is of particular importance if
we consider that natural terrain is highly non-linear. This can be in part
addressed by using stochastic linearisation methods as suggested by
Hostetler (1978) and Hollowell (1990), or even Multiple Model
Adaptive Estimation (MMAE) techniques as proposed by Hostetler
and Andreas (1983). Another limitation with this method is related
with the fact that gradient are computed at the position estimated by
the navigation filter, but deviations from the actual correct position can
occur. For this reason, SITAN algorithms always require small initial
position errors Fig. 2.

4. Terrain measurements

The first TBN formulations emerged decades ago and were directed
towards its use on aircraft and missiles, but research on applying these
methods to underwater vehicles is fairly recent. TBN for AUVs and
submarines differs significantly from that of an aircraft with respect to
the vehicle dynamics, but also to the sensors used. This section
presents an overview of the necessary sensors for a correct perception

Fig. 2. Footprint of Altimeter sonar sensor.
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Fig. 3. Footprint of DVL sonar sensor.

of the terrain elevations. In fact, the achievable performance of any
TBN system is determined primarily by sensor capability and also
terrain variability. Thus, the sensors used, and their ability to correctly
perceive the elevations and terrain variability is of uttermost impor-
tance Fig. 3.

TBN implementations for aerial vehicles usually require combining
a barometric altimeter, outputting height above the mean sea level
(MSL), and radar or laser altimeters, used to obtain the height of the
vehicle from the terrain. A profile of the terrain in then obtained by
combining the readings of these two sensors. Likewise, TBN imple-
mentations for underwater vehicles require the vehicle to be able to
know its depth from the water surface, and its altitude towards the sea
bottom, as described in one of the earliest works in the field by Massa
and Stewart (1997). In this section a discussion on the different sensors
that have been used for TBN solutions will be presented.

Underwater depth estimates are usually obtained by converting
hydrostatic pressure, measured with a common barometric sensor, to
depth using the UNESCO pressure-to-depth formula, presented by
Fofonoff and Millard (1983). While hydrostatic pressure is affected by
several environmental factors, like salinity, temperature or atmo-
spheric pressure, these can usually be estimated in a fairly accurate
way. Waves are also known to cause pressure fluctuations which
negatively affect depth estimates, but if needed appropriate models
can be used to filter out dynamic pressure sensor noise. The interested
reader should refer to the works by Willumsen et al. (2007) and Hagen
(2008) for more details.

Observing the sea-floor relief in underwater environments can be a
greater challenge. Sonar sensors are the most reliable and commonly
used sensor for underwater measurements of altitude towards the
bottom. Sonar take advantage of the particularly good conditions of
sound waves propagation in the water. Even though this behaviour is
frequency dependent, sound waves are able to travel for long distances,
in the order of kilometres, without significant attenuation. This is
contrasting to the attenuation that light is subject to, which can only
travel for a few meters before losing most of its energy, and limits the
use of cameras or lasers to specific short-range applications. Therefore,
for TBN the vehicles are required to be equipped with a sonar to image
the bottom.

When a sound wave hits a portion of the ocean bottom, it is said to
illuminate or ensonify that part of the bottom. A portion of the wave
energy is absorbed by the sea floor, and the bulk of the energy that
cannot be absorbed is reflected back into the water, in what is called an
echo. Echo sounder sonars, also called active sonars, are devices that
emit a pulse of sound, and then listen for the echo of the pulse reflected
from the bottom, thus the designation. The time between the instant
the sound is emitted until its echo is detected from the sonar, the time-
of-flight (TOF) of the sound, is proportional to the range to the bottom
Fig. 4.

Various kinds of active sonars have been used for TBN applications.
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Fig. 4. Footprint of multibeam sonar sensor.

Expensive but highly-accurate sonar sensors, like Multibeam
Echosounders (MBE), have been one of the main requirements for
the success of TBN. However, recent work (Meduna et al., 2008, 2010;
Meduna, 2011) has studied the performance trades associated with
using lower quality cheaper sensors for TBN, for example Doppler
Velocity Logger sonars (DVL) or single beam sonars. The use of a
multiple sonar sensors combined for improved results has also been
reported (Hagen et al., 2011). The differences between the different
echo sounders are depicted in Figs. 2—4 and will be highlighted in the
remainder of this section. Further details on sonar theory of operation
can be found in both the Multibeam Sonar Theory of Operation (2000)
and Manual on Hydrography (2011).

4.1. Altimeter

Similarly to laser or radar altimeters, commonly used on aircraft,
sonar altimeters are instruments primarily used to measure the
altitude, or height, above the sea bottom. Altimeters are single beam
echo-sounders usually with narrow beam, of only a few degrees.
Besides the transducer, altimeters employ basic signal processing to
accommodate variations on the different properties of the environ-
ment, such as acoustic propagation and bottom reflection. They are
also one of the cheapest option among the different kinds of sonars
Fig. 5.

When compared to other sensors with multiple beams, altimeters
have the drawback of requiring several consecutive measurements for
disambiguation when applied to Terrain Based Navigation algorithms.
Moreover, they are particularly sensitive to faulty readings, especially
when the vehicle roll and pitch angles are high. Despite that, and
because there are cheap sonars, there has been an increasing interest
on using altimeter for TBN problems, for example the works by
Williams and Mahon (2006); Meduna et al. (2008); Kim and Kim
(2014).

Fig. 5. Footprint of sidescan sonar sensor.
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4.2. DVL

Doppler Velocity Loggers (DVLs) are one of the main sensors used
by small-scale unmanned underwater vehicles, like AUVs and ROVs, to
measure speed over ground. Usually mounted on the hull of the
vehicles, DVLs make use of the Doppler effect that affects acoustic
waves when reflecting on the bottom to calculate the velocity of the
vehicle. The Doppler effect is the shift in frequency and wavelength of
wave that is perceived by an observer moving relative to its source. The
most common configuration for DVLs uses 4 beams pointing down-
wards, aligned with the fore, aft, starboard and port directions of the
vehicle and each with an inclination of 20-30 degrees with the vertical,
thus allowing for a three dimensional velocity vector to be derived.

Analogously to single beam sonars, DVLs can also provide altitude,
or range to the bottom, by measuring the round-trip travel time of the
pulses emitted by each of the beams. As DVLs have became quite
popular as navigation sensors, the interest of using such sensors on
TBN solutions arises naturally, and has been tried by different authors
like Meduna et al. (2008); Donovan (2011), and others. Though not as
cheap as altimeters, DVLs are still relatively cheap and are nowadays a
fairly common navigation equipment in AUVs.

4.3. Multibeam

While Multibeam Echo Sounders (MBE) also rely on echo sounding
to obtain terrain measurements, its working principle is, up to some
point, distinct from the sensors covered on the previous subsections.
MBEs have separated transducer arrays for transmission and recep-
tion, one projector and one hydrophone respectively. The first is
oriented longitudinally and the latter is oriented transversally to the
vessel's bow. By using advanced beam forming and beam steering
techniques, it is possible for MEBs to ensonify multiple locations on the
ocean floor with a single ping. The ensonified area, usually an area of
points in a direction along track called a swath, is also covered with a
higher resolution than conventional echo sounders. Naturally, MBEs
are one of the most expensive and bulky kind of echo sonars. More
details can be found in both Multibeam Sonar Theory of Operation
(2000); Manual on Hydrography (2011).

A single MBE measurement can obtain the same terrain data points
that multiple altimeter measurements performed at multiple locations.
An MBE can have as much as 400 beams, or even more. According to
Jalving et al. (2001) this feature makes MBE nearly optimal sonar
sensors for bathymetric terrain navigation. Using such high number of
beams is likely to introduce strong correlations between measurement
errors of the different beams. To address such issue, Anonsen and
Hallingstad (2006) proposed the adoption of sub-sampling procedure
to effectively tackle this problem. Successful implementations of TBN
algorithm using MBEs have been reported by numerous authors
Anonsen and Hallingstad (2006); Anonsen et al. (2007); Anonsen
and Hagen (2011); Donovan (2011). However, due to the high cost of
these sonars, which can be many times that of a single-beam sonar,
there is an increasing interest on using cheaper, and therefore less
accurate, sensors for TBN solutions.

4.4. Sidescan sonars

The working principle of traditional sidescan sonars (SSS) is
fundamentally different from the echo sounders described in the
previous subsections. While the latter use the time-of-flight of acoustic
waves to obtain terrain measurements, SSSs interpret not only the
time-of-flight but also the acoustic backscatter intensity of the returned
signal. After each pulse emission, SSS listen to the echo intensities at
fixed time intervals, until a new pulse is emitted. The recorded data
array, containing the received intensities is also referred to as swath.
Naturally, the sampling period between two consecutive emissions
determines the maximum sensor range. SSS are usually bulkier and
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Table 4
Main achievements for Underwater Terrain Navigation.
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Period Achievements Authors

1990~2000 Initial developments of underwater TBN; Bergem (1993), Massa (1997)
Real time implementations of the algorithms; Massa and Stewart (1997)

2000~2005 Measurement likelihood proven to be Gaussian; Karlsson et al. (2003), Nygren and Jansson (2004)
Initial studies on the CRLB of TBN estimators; Nygren (2005)

2005~2010 Nonlinear Bayes Filter for underwater TBN; Anonsen and Hallingstad (2006), Kjetil (2007)
Initial studies of the CRLB of TBN estimators; Meduna et al. (2008), Donovan (2011)

2010~2015 Tighly—coupled integration between TBN and INS; Williams and Mahon (2006), Anonsen (2010)

Use of low—accuracy bathymetric sensors (DVL, altimeter)

Meduna (2011), Donovan (2011);

require additional availability of energy and processing power, which
may be not compatible for use with some classes of AUVs.

Typical SSS are characterized by having two sensing heads, aligned
with port and starboard directions, usually with an angle of around 45
degrees to the vertical. Hence, SSS have a wide swath even at low
altitudes. This can be particularly advantageous in shallow water
scenarios, where the footprint of other sensors would necessarily be
small. The emitted beams are usually narrow, and across the direction
of movement. Therefore, two-dimensional acoustic images of the
seabed can be obtained by acquiring successive swaths of data, but
this necessarily requires that the sonar is in motion. Consequently, the
motion and attitude that the sonar undergoes needs to be taken into
account when processing the obtained data.

The acoustic echo intensity is mainly influenced by the reflectivity
of the sea floor, but it is also attenuated depending on the travelled
distance and corrupted by the SSS ensonification pattern (Burguera
and Oliver, 2016). Therefore, instead of producing bathymetric data,
SSS provide a relatively high definition acoustic image of the seabed,
which can be interpreted as a monochromatic representation of the
physical properties of the bottom. However, the data obtained by SSS is
not an accurate visual representation of the sea floor, as the intensity
returns are functions of multiple factors like the grazing angle, terrain
surface, and local water properties. For example Wilby (1999) reported
that one of the drawbacks of using SSS is that gentle undulations in the
seabed are usually perceived as a flat area. Moreover, it is customary to
have parts of the bottom occluded due to terrain elevations. Therefore,
applying standard image-processing techniques to the produced
images is anything but straightforward. Because of that, SSS have been
used in solutions of AUV localization and navigation, but only in the
context of landmark detection and matching, particularly in the case of
existing known local features.

Because SSS do not provide bathymetric information of the terrain,
their use for TBN has been rather scarce. However, recent studies have
investigating the feasibility of using SSS as a primary sensor for TBN
(Padial et al., 2014a, 2014b). The presented method tries to directly
correlate SSS acoustic shadows with bathymetric maps, by formulating
an appropriate measurement model that takes as inputs a map and
vehicle pose, and outputs an expected sidescan intensity returns. The
predicted SSS shadows are then correlated with the actual SSS data in
order to obtain a possible positioning aid.

Leveraging from advanced signal processing techniques, different
kinds of SSS have emerged that are likely to play a more important role
on bathymetric tasks. Examples of this are the Synthetic Aperture
Sonars (SAS), also known as Phase Differencing Bathymetric Sonar.
The principle behind SAS is to combine successive pings coherently
along a known track in order to increase the along-track resolution
(Hansen, 2011). In that way, SAS can potentially produce high
resolution images, which is great for applications like searching for
small objects or imaging the seafloor. If additionally SAS are equipped
with two receiver arrays, vertically displaced, it is then possible for an
interferometric processing of the returned echos. In that way, it is
possible for the SAS to provide not only the usual high-resolution data
from traditional SSS, but also able to retrieve bathymetric information.

The interested reader should refer to the work by Hansen et al. (2003)
for an overview of signal processing chain required for AUV based
sonar interferometry. Naturally, interferometric SAS can be used as
primary bathymetric sensors for TBN, as reported by Stalder et al.
(2008); Hagen et al. (2011); Hansen et al. (2011).

5. Underwater TBN

TBN for underwater environments is fairly recent, at least when
compared to aerial techniques. The main differences between the
methods developed for the two environments are mostly related to
the sensors used and, naturally, the vehicle dynamics. While aerial TBN
has been focused mostly on the use single beam sensors, usually radar
or laser altimeters, the underwater community has been focused on
using dense sensors, able to map large areas of terrain within a single
measurement acquisition step. In this section, a brief overview of
Terrain Based Navigation for underwater vehicles will be provided,
focused on the most prominent approaches. Table 4 summarizes the
main achievements of TBN for AUVs since the early days.

Studies detailing a possible TBN system for AUVs were initially
described by ,. Even though it was just a description of a possible
system, the author had already anticipated underwater terrain naviga-
tion to be a much more difficult problem, namely in terms of collecting
the necessary data for terrain navigation and, furthermore, that data
may have large errors. As described, the existence of different layers on
the water, like thermoclines, pycnoclines and haloclines, that result
from the natural properties of the water, could seriously affect the data
collected.

Later on, Bergem (1993) studied the problem of bathymetric
navigation of AUVs using a multibeam sonar. It was the first thorough
evaluation of TBN for AUVs, and the demonstration that navigational
errors could be bounded by only using information from bottom
topography. Despite being only an initial work in the field, the work
presented by Bergem also gave some insight on some important
theoretical aspects. Example of this is the development a method to
compute a Relative Measurement Covariance Matrix, adequate to the
use of multiple beam sonar measurements. His approach is built
around a Kalman Filter and was implemented and tested with real
data. Massa (1997); Massa and Stewart (1997) focused on some
aspects of TBN that had been left undealt by previous approaches.
First, the possibility to deal with multiple matches in the correlation
algorithm was addressed. This issue was achieved by applying prob-
abilistic data association techniques. Additionally, some effort was
directed towards the real-time implementation of the algorithms.
Specifically, a coarse-to-fine algorithm was introduced to intelligently
search for good matches. Also, in order to alleviate the computational
requirements, suitable validation gates for the correlation outputs were
also derived.

Following to that, a series of papers by Lucido et al., (1998, 2004)
dealt with the problem of matching high resolution local depth maps
against a large, on-board, low resolution reference map. The focus was
on the use of invariant of special critical points and also on the
multiscale analysis of bathymetric maps. Probably due to development
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and improvement of sonars, the work presented was not followed by
any of the subsequent articles in the field of TBN.

Early classifications divided TBN methods into two different
classes, namely the batch methods and the sequential methods, as
previously detailed in Section 3. Regardless of that, Anonsen (2010)
introduced an alternative classification of underwater terrain naviga-
tion methods, dividing them between Search Area methods or
Gradient-Based methods. This new designations are related with how
terrain measurements are incorporated on the navigation filter of the
vehicle. Indirectly, they are also a consequence of the ability to process
large swaths of terrain in a single step, contrary to the traditional batch
methods. This is done using complex Bayesian Estimation techniques,
as will be covered ahead on Section 7.

Loosely speaking, TERCOM tries to correlate the entire swath of
measurements of the terrain with profiles of the map, using the best
result of such match as a system measurement. Hence, in TERCOM a
search is made on the entire map, or part of it, to find the position that
best matches the entire terrain measurements swath. On the other
hand, in SITAN like methods the multiple depth measurements
provided by the sonar are used to compute local gradients and
propagate the estimated position in the direction indicated by the
measurements. Having this in mind, TERCOM could be classified as a
Search Area method while SITAN would be a Gradient-Based methods.

On an alternate perspective, TBN algorithms can also be classified
according to the degree of integration with the INS: we can distinguish
between loosely and tightly coupled integrations. According to Hagen
et al. (2011), in the tightly coupled approach the bathymetric measure-
ments are used directly within the filter of the INS, along with all the
other sensor measurements. On the other hand, in the loosely coupled
approach, the bathymetric measurements are processed in a parallel
filter until it converges or diverges, and in case of convergence, the
position estimate from terrain navigation is fed back to the INS as a
regular position measurement. Nygren and Jansson (2004); Nygren,
(2005, 2008) developed some work of paramount relevance, on which
the use of a 3D sonar for the subject of correlation-based terrain
navigation was analysed. One of the most significant results was the
theoretical proof that, under certain conditions, the Maximum
Likelihood estimator is optimal, and that the likelihood measurement
function asymptotically converges to a Gaussian probability distribu-
tion as the number of measuring beams increases. The Cramér-Rao
lower bound, which is commonly used to expresses a lower bound on
the variance of estimators, was also thoroughly discussed for under-
water TBN problem. Additionally, the actual implementation and test
of the approach on an AUV using a multiple beam area-sonar were also
presented. Even though the position error was a bit far from the 1 m
RMS predicted by the simulations, the corresponding error in the sea-
trial was of only a few meters, which is very impressive considering the
ground truth given by DGPS had accuracy of about 3 m RMS (see
Nygren, 2005).

TBN is inherently a strong non-linear problem, mostly because of
the non-linear nature of the terrain measurement function. As such,
the interest on using non-parametric nonlinear Bayesian methods to
address the problem of underwater terrain navigation is obvious.
Following the initial theoretical work by Bergman (1999), several
authors from the Norwegian University of Science and Technology,
most notably Anonsen and Hallingstad (2006); Anonsen and Hagen
(2011) among others, presented a number of different estimation
algorithms applied to the TBN problem. Details on the different
Bayesian Estimation techniques, like Particle Filters, Point-Mass
Filters and Sigma Point Kalman Filters were studied, and their
performance was compared using real AUV data. According to the
authors, the Point-Mass Filter is in general slightly more accurate and
robust than the Particle Filter, but also more computationally expen-
sive. Details on the different Bayesian Estimation filters will follow in
Section 7. Moreover, with a series of sea trials, the authors demon-
strated the ability to achieve real-time TBN using a MBE, having
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obtained bounded errors within 5-20 m, with the vehicle navigating
for a period of more than two hours.

Since the early days, the use of TBN for underwater vehicles has
been highly focused towards the use of powerful multiple beam sonar,
able to provide a high resolution perception of the environment.
Experimental validation of such approaches was also consistently
coupled with the use of high-grade INS. Lately, some research efforts
have been directed on a rather opposite approach, which is the
application of TBN for sensor limited systems. Such denomination,
introduced by Meduna (2011), refers to a class of vehicles equipped
with a combination of low-accuracy inertial sensors and simple, low-
information sonar like DVLs or altimeters. The use of DVLs or single
beam sonars for TBN purposes has also been reported by other authors
Morice et al. (2009); Donovan (2011). Since the larger group of existent
AUVs is, by far, equipped with such low accuracy sensors, the rational
of such approach is evident.

Meduna et al., (2008, 2010); Meduna (2011) developed a tightly-
coupled TBN filtering framework for sensor-limited vehicles, which
basically relies on the estimation of critical sensor errors, tightly
integrated with the on-board navigation system. The success of the
approach was also experimentally demonstrated in different scenarios
like long range navigation and return-to-site missions. An analytical
formulation was developed giving a conservative prediction of the
terrain navigation estimate sensitivity to constant attitude errors. A
comparison between the performance achieved using different range
sensors like MBE, DVL and altimeter, has also been provided. During a
series of field trials in Soquel Canyon, Monterey Bay, terrain correla-
tions were performed using the Benthic Imaging AUV (BIAUV) with
DVL sonar range measurements and a 1 m resolution bathymetry map
generated by MBARI's Mapping AUV (MAUV). The authors reported
that accuracy and precision of 5-10 m was achieved, which was shown
to be only a factor of two worse than the performance achieved when
using the significantly more expensive, sensor-rich MAUV.

Claus and Bachmayer (2015) presented results documenting the
use of a TBN method for an underwater glider. The algorithm used,
based on a Particle Filter, makes use of the vehicle's dead-reckoned
navigation solution, altimeter, and a local digital map, and it was
experimentally validated with both offline and online field trials. The
offline trials allowed to adjust a number of parameters like the jittering
variance, the DTM grid cell size, or the number of particles. In both of
them the TBN algorithm provided bounded error location estimates
that improved on the dead-reckoned estimates.

One of the main factors contributing to the success of TBN systems
is the amount of terrain variability. As initially postulated by Massa and
Stewart (1997), results demonstrate a more accurate navigation in
areas with greater bathymetric variability occurs, opposed to flatter
areas with more gentle terrain contours. Anonsen (2010) claimed that
TBN occasionally converges to overconfident, incorrect solutions when
operating for an extended period of time over featureless terrain.
Noting that, Dektor and Rock (2012) analysed the causes for the filter
failure when in flat terrain. According to the author, the cause of false
fixes in information-poor regions is the assumption that the terrain is
uncorrelated. Dektor and Rock (2014) further addresses this issue by
making some adaptive variance adjustments, which is dependent on
the amount of map error, sensor error, and information of the terrain.
Houts et al. (2012) designed a robust framework for failure detection
and recovery for TBN. The framework builds up on a series of
diagnostic checks and, in particular, by checking whether the measure-
ments predicted by the estimate agree with the observed measure-
ments.

On a complementary line of work, Hausler et al. (2013) developed
path planning algorithms that along choose a suitable vehicle path that
maximizes the amount terrain information. His approach involves on
an initial phase an instantiation of an A" algorithm, on which the cost
criterion to maximize is related to the integral of the magnitude of the
terrain gradient along its trajectory. After that, and using an optimal
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control formulation, the initial trajectory is refined taking into account
several constraints, like the vehicle dynamics or collision avoidance
schemes. Furthermore, TBN performance is not only dependent on the
actual terrain variation, but on numerous factors, like algorithm
characteristics, sensor accuracy, map accuracy and map resolution. A
discussion of the map resolution effects on the performance of TBN
algorithms can be found in Meduna (2011). Kedong (2010) discussed
the influence of different conditions like terrain characteristics, map
resolution, initial INS error and others on the precision of underwater
TBN.

6. State space model

A generic continuous-time stochastic filtering problem can by
described in a dynamic state-space form according to the following
equations (Chen, 2003):

X =f (& X, up, wp)

(2a)

» = 8(t, xp, us, vy) (2b)

In (2) x, refers to the state variable vector, u, refers to the system
inputs, and t denotes time. w, and v, represent process noise and
measurement noise, respectively. Despite its simplicity, the above
model is rather general and can be applied in most of the applications.
The function f (¢, x;, u;, w,) describes the system dynamics, and deter-
mines how the states evolve over time. On the other hand g (¢, x;, u;, v;)
is the measurement equation and describes how observations of the
system are made, and how do they relate to the system state, x;. The
process and measurement noise components are generally unknown
and modelled as stochastic processes.

The state-space approach is a natural framework to address TBN. In
what follows we will present the different formulations for the TBN
systems that can be found throughout the literature for both the
process and measurement models, in an unifying perspective. There
will be a particular emphasis on the different flavours for both the
process and measurement models employed on the most relevant
approaches from the literature.

From (2), a basic discrete state-space model for an INS-based AUV
system, can be expressed by the following difference equations:

(3a)
(3b)

Xyt = f (o, ) + wy
2% = g) + v

The difference Egs. (3) can capture the fundamental idea of the
general TBN approaches, on which vehicle terrain elevation data is
used to correct the existing drift of INS. The characteristics of such
problem are described by both the state transition equation (3a) and
measurement model equation (3b), that will be further described the
following subsections.

In most of the early approaches, only motion on the North-East
plane was assumed. This means that no uncertainty in any other
directions can be observed and, therefore, there is no need to estimate
them. While such assumptions are rather strict and difficult to observe,
especially when in presence of sensor limited systems, they were
introduced, up to a great extent, due to the computational require-
ments.

xXo= [PV Xex]” (4a)

w = [Dxyi Axgyl”

(4b)

A problem with the state space in (4) is that uncertain depth
measurements might arise due to tidal levels variations. This can
negatively affect the results obtained by TBN algorithms, particularly
on missions with several hours of duration. To counter this, the time
varying tidal level needs to be estimated. Anonsen and Hallingstad
(2006) added a depth bias term, related to tidal errors, to the state
vector, in order to address the non-negligible effects of tides when
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determining the altitude of an AUV with respect to the sea bottom. A
similar approach is also suggested by Donovan (2011). Alternatively, it
was also possible to work with relative profiles, but this option must be
carefully considered as it is known to perform poorly in self-similar
terrains.

With the increase of available computational power on-board the
vehicles, different authors have proposed to increase the state space
model to cope with different characteristics of the TBN problem. This
has the purpose of trying to incorporate prior knowledge and taking
advantage of specific robot configurations. Another reason for the use
an augmented state vector is the use of sensors with poor accuracy,
thus requiring the respective state variables to be estimated, as
concluded by Anonsen et al. (2007). Meduna et al. (2010) introduced
significant changes to traditional underwater TBN systems: the state
vector is augmented to a dimension of eight, and being composed not
only by the vehicle position, but also by the vehicle attitude and angular
rates. This also motivates and tightly-coupled integration of the
acquired bathymetric measurements.

6.1. Motion model

Eq. (3a) represents the state transition equation. The state vector,
Xy, is assumed to be Markovian, usually representing the vehicle's 2-
dimensional horizontal position, at time instant k. These positions are
frequently referenced to a north-east-down earth-fixed frame. uy
contains the position updates as calculated from the INS, and vy
represents the noise associated to the updates.

In the literature, there has been a preference for having the state
space model, described by (3a), to follow simple linear models. This is
what happens for example in Anonsen et al. (2007); Donovan (2012),
to mention only a few. Nevertheless, depending on the available on-
board sensors and on-board computational power, other models can
also be used, particularly in the cases when a tight-integration with the
INS is performed.

According to Donovan (2011), the stochastic motion model errors
are dominated by the INS drift error, and commonly characterized as
an independent white Gaussian sequence. Some references also men-
tioned the use of the Singer model, a zero-mean stationary first-order
Markov process. This is justified when it is necessary to capture the
trongly correlated propagation error of the INS (see Bergem, 1993;
Anonsen et al., 2007).

6.2. Measurement Model

Recalling (3b) from above, g(x) is a non-linear function that
retrieves from a map the total depth, or altitude towards the bottom,
for the current vehicle position. This is fact just the vertical distance
from the surface to the bottom. For the general case, the vehicle is not
navigating at the surface when acquiring the range measurements,
therefore the actual depth of the vehicle, di, must also be taken into
account. The depth di can be measured with relatively high precision
by common pressure sensors. This situation is illustrated in Fig. 6,
where the case of an AUV carrying a single-beam altimeter is depicted,
and can be described as:

6)

In the equation above, M(x;) refers to the function that provides the
depth for a given position, obtained from a DTM. On its most common
form, DTMs consist on gridded nodes where each node corresponds to
a depth at a specific location. The grid is usually equally spaced, and
depth at locations other that the grid nodes are obtained through
bilinear interpolation. Nygren (2005) claimed that in relatively flat
areas using linear interpolation is appropriate, but in more rough hilly
terrains a more accurate method must be used. However, in a more
recent work, Meduna (2011) stated that higher-order interpolation
methods give small performance gains at the expense of large

2% =M@ — di + v
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Fig. 6. Schematic view for the terrain measurements for the single beam sonar case.

computational effort and that such higher order methods are more
susceptible to overfitting. Such situations can lead to an over-estima-
tion of terrain variability and consequently degrade the performance of
the system. Anonsen (2010) provided insight on problems that can
arise due to map representation issues.

The vector of observations consists on range measurements, as
obtained by the bathymetric sensor employed. For single beam sensors,
the observation vector consists of only a single range measurement, but
for multiple beam sensors the observation vector will consist on the
different r; range measurements stacked in a vector, as in (6).

()1’

(6)

The likelihood of a given range measurement r; can be obtained by
comparing it with the bathymetric map of the area M(x;), naturally
affected by di. When the vehicle has non-negligible roll and pitch
angles, the range measurement obtained needs to be properly com-
pensated for it. The same happens when sonar sensors have multiple
beams with a large swath. This is of particular importance when the
vehicle is navigating at high altitudes. Most TBN implementations use
projection-based methods for that. Each measured range, r;, is
projected into the three-dimensional space:

7 = [r1(a)

pN,r,'
pE,r,‘
pD,rl'

= R(q)a(m)n
@

In (7) R(q) refers to the rotation matrix for the specific vehicle
orientation g, and a(r) refers to the unit direction vector of beam
corresponding to r;. By doing so it is possible to compute the location p,,
where a specific beam hit the bottom of the sea, and from there
evaluate the likelihood, as it will be made clear ahead. While the
notation here used is adapted from Meduna (2011), similar approaches
can be found elsewhere. According to the same author range-based
schemes, on which range measurements are compared directly with a
predicted range, can also be employed However, as such alternatives
are based on ray-tracing techniques, which can be computationally
demanding, they tend to incompatible with the processing power
available on-board the vehicles.

Analogously to the motion model, stochastic measurement model
errors are described by an independent white Gaussian sequence,
v ~ N(0, o;). However, and as detailed by Hagen et al. (2011), the
fusion of different sensors can motivate a more detailed error model,
that can capture the characteristics of each individual sensor, namely
AUV depth errors v,, attitude and alignment errors v,, sound speed
errors v.,, DTM errors vy, or even sensor processing errors v.

Combining (5-7), the final measurement model (8) is obtained:

XNk PN
Ppr = M([XE,k] + [pE,r,]] —di + vk ®

Assuming that the measurement errors in each of the beams to be
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uncorrelated and independent, the likelihood of a measurement z,
composed out of N range measurements, is given by

N
1o 1
p(adx) = aexp| = 37— (i = pp,)?
23 o

)

where oy, refers to the covariance of the measurement error for beam i,
assumed independent and identically distributed Gaussian, while a is
just a normalization constant.

7. Bayesian estimation

Bayesian filters have become the standard for sensor fusion in
integrated navigation systems. Morice et al. (2009) stated that the
strength of Bayesian filtering techniques is that they allow the fusion of
information from multiple sensors, taking into account both the sensor
measurements and the accuracy of the sensors. Moreover, these
probabilistic algorithms also allow to explicitly deal with uncertainties
in both the motion and the measurement models. This section will
briefly review the different Bayesian Estimation algorithms that have
been used for Terrain Based Navigation for underwater vehicles. For
details on the theoretical derivation of such filters, please refer to works
by Bergman (1999); Arulampalam et al. (2002); Chen (2003), and the
references therein.

The objective of an estimation procedure is in general to obtain the
value of a parameter x, given an observation of an experimental
outcome y. This has been mathematically stated most notably as the
Bayes theorem:

P (Yx)p x)
p(y)

Bayesian Estimation adapts the Bayes theorem to a statistical
paradigm. In the Bayesian Estimation framework all the unknowns
are considered a stochastic variable, described by its respective
probability distribution. The goal of Bayesian Estimation is then to
compute the posterior distribution of the state vector x, of a stochastic
system, given a set of observations z,.

At the core of Bayesian Estimation framework is the Bayes Filter, a
general probabilistic tool that has been extensively. Under Markovian
and mutually independence assumptions, and using the Bayes formula
(10) and the law of total probability, the general Bayes Filter can be
approximated by the following Bayes Filter recursion:

ply) = (10)

P&z = [pOuixp (),

1n

= P@X)p iz, )
T (12)
p(zlz,_y) = f]’ (zIx)p (x;1z,_1)dy, (13)

Eq. (11) corresponds to the time update equation, and this is
determined by the state transition density, p(x,Ix,_;). On the other
hand, Eq. (12) is the measurement update equation, and is determined
by the measurement model, p(z,Ix;) and the prior, p(x;lz,_;). The term
p(z,z,_,) is a normalization constant, evaluated as in (13).

When the dynamical system has a state space representation as in
(3), p(x/x,_1) and p(zx,) can be easily computed if the noise densities
w; and v; are known, as follows:

p(X/Ix;_1) = Py, X = f (X115 Uy, 1)) (n)

(o)

The Bayes Filter is not analytically solvable for the general case,
mostly due to the complexity involved on evaluating the existing
integrals. TBN can be implemented using one of the different realiza-
tions of the Bayesian Filter namely parametric filters like the Kalman
Filter (KF), the Information Filter (IF) or even the Extended Kalman

p(Zx;) = Py, (z; — g(x1, 1))
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Filter (EKF), or non-parametric approaches like the Particle Filter (PF)
or the Point Mass Filter (PMF).

The earlier approaches for underwater TBN were characterized by
the use of a KF to address the navigation problem. The Bayes Filter can
be optimally implemented as a KF under the assumptions that both the
state transition model and observation model can be represented by
means of a linear stochastic equation, and additionally that the state
and process noise are mutually independent Gaussian distributions.
While these assumptions can be considered strong, especially con-
sidering that TBN is inherently non-linear, several authors proposed
the use of a KF to address the problem of underwater terrain
navigation, most notably Bergem (1993) and Massa (1997). In such
approaches the measurement inputs of the KF are the position outputs
of a given correlation function, as it typical on Search-Area methods.
Such approaches have low computational requirements, when com-
pared to its non-linear counterparts..

Gradient-based methods, on the other hand, have its roots on the
EKF. EKFs are able to deal with non-linear problems by using an
approximation of both state transition and observation model. These
approximations are based on the first-order Taylor series expansion
around a given working point. This is particularly convenient when
dealing with Gradient-based methods which use terrain depth mea-
surements directly as an input to the filter, as described on early SITAN
formulations by Hostetler (1978) and Hollowell (1990). However, the
Taylor expansion requires the computation of the terrain gradient
vector which is sometimes non-trivial, particularly when in the
presence of highly non-linear environments. In such cases, the
computed gradient can negatively influence the accuracy of the
approximation, and therefore result in poor TBN estimates. EKFs have
also been used by Yuan et al. (2012) in methods that combine both
gradient based and search-area methods.

The non-linearity of the process described by (3) motivates the use
of a full Bayesian, non-parametric filter for successfully tracking the
vehicle state estimate. However, while those are in general more
accurate in representing non-linear systems, and relatively simple to
implement, its main drawback is related with their computational
complexity, that quickly increases with the dimension of the state
space.

The Sigma Point Kalman filter (SPKF), also known as Unscented
Kalman filter (UKF), is a nonlinear realization of the Bayes filter that
relies on the use of only a few deterministically chosen sigma points,
which are then propagated through the nonlinearities of the process
and measurement equations to yield a new sigma point approximation
of the posterior density. A navigation filter based on the unscented
transform was briefly sketched by Nygren (2005), who concluded that
the SPKF to be a non-optimal filtering method that fits the problem of
TBN. Later, the performance of SPKF using real AUV data was also
analysed by Kjetil (2007). However, due to is characteristics and
simplicity, non-parametric realizations of the Bayes Filters, like the
Particle Filter or the Point Mass Filter have gained more attention in
the recent approaches.

The Particle Filter, also sometimes referred to as Sequential Monte
Carlo (SMC) methods, is a numerical approximation to the Bayesian
filter for non-linear systems. The PF method uses a large number of
hypothetical samples of the state vector to estimate its probability
distribution. Each sample is called a particle, hence the name, and they
are generated according to its probability density function (PDF). Each
of the particles is then weighted according to the most recent
observation. The key idea in PF is to represent the required posterior
density function by a set of random samples an its associated weights.
It can be demonstrated that as the number of samples becomes very
large, this discrete weighted approximation becomes an equivalent
representation to the usual posterior density. The particle filter is also
known to be asymptotically optimal in a minimum mean square sense.
Various authors have reported the use of PF for underwater terrain
navigation. Examples of this are the works by Bachmann and Williams
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(2003); Karlsson et al. (2003); Williams and Mahon (2006); Nakatani
et al. (2009); Morice et al. (2009); Meduna et al. (2010); Murangira
et al. (2011); Stuckey (2012); Melo and Matos (2013).

The Point Mass Filter is yet another non-parametric realization of
the Bayes Filter, even though not as popular as the PF. In this case, the
posterior density is assumed to be represented by a set of point masses,
ordered in a grid. The continuous PDF is obtained by integrating over
the masses of the grid. Among the main advantages of such filters is
their ability to solve the Bayesian Filter in an asymptotically optimal
way. Even though the size of the grid is usually fixed, efficient
implementations of the PMF use grid adaptation mechanisms to
automatically adjust the grid mesh, which is particularly useful in
situations when a high gradient PDF exist. This grid-adaptation
mechanism can also be regarded as a trade-off between algorithm
performance and computational requirements. Examples of the use of
PMFs for underwater TBN were given by Jalving et al. (2001);
Carlstrom (2007); Jian et al. (2012). Hagen et al. (2011) proposed
the used of a PMF to address the problem of TBN for AUVs navigating
at low altitude.

Both PFs and PMFs have been successfully implemented for
underwater TBN and studies comparing these two implementations
have also been performed. Anonsen and Hallingstad (2006) and
Meduna et al. (2008) showed that the PMF is more robust and accurate
than the PF, whereas the PF allows higher dimensional search without
the computational expense of the PMF.

Non-linear filters like the Particle Filter or the Point-Mass filter,
previously described, can gracefully address the non-linear problem of
TBN. However, these filters tend to scale very poorly when the number
of dimensions of the state space increases, which tends to happen more
frequently when dealing with sensor-limited systems. In such situa-
tions, the Rao-Blackwellized Kalman Filter (RBPF), also known as
Marginalized Particle Filter is of great use. The RBPF is a powerful
combination of a PF and a KF, which can be used when the underlying
model contains a linear sub-structure, subject to Gaussian noise. In
such filters, the states following a linear model can be estimated with
the KF, while the non-linear states are estimated with the PF. The use
of RBPF for TBN has been suggested by Schon et al. (2006) and
Nordlund and Gustafsson (2009), however these studies were mostly
focused on the estimation point of view of the problem, and did not
consider the peculiarities of underwater TBN. Anonsen (2010) sug-
gested that a RBPF could be used to gain a better understanding of the
overconfidence effects, possibly by integrating the TBN updates more
tightly in the inertial navigation system. Teixeira et al. (2012) made a
decisive contribution by formally deriving two variants of a RBPF and
assessing their performances when applied to the underwater TBN
problem in particular.

When dealing with estimation, it is always convenient to establish a
lower bound on the estimation error that is possible to achieve.
According to Bergman (1999), such a bound can then be used to
quantify the fundamental performance level that can be reached for the
currently studied estimation problem. The Cramér-Rao Lower Bound
(CRLB) is known to set a lower limit on the mean square estimation
error of every estimator. In the context of TBN, the CRLB is often used
to assess the performance of the filter, by evaluating how far from the
CRLB the obtained estimates are. In this way, the CRLB is also an
useful tool when designing INS, establish sensor performance require-
ments, or even estimating the amount of terrain information needed to
achieve a given performance level. An initial theoretical insight on the
CRLB applied to the underwater TBN was provided by Bergman
(1997). The analysis of the CRLB for different navigation solutions
for TBN was also covered by Karlsson et al. (2003) and Nygren (2005).

8. Related work

So far this article dealt exclusively with the problem of TBN, which
has been detailed in the previous sections. TBN has been described as
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the process of localizing a robot in the environment with the aid of
known a-priori map of the terrain. However, what to do when these
terrain maps are not available, as it happens in the majority of the
situations? Considering this, several authors have adopted and ex-
tended Simultaneous Localization and Mapping (SLAM) techniques to
underwater vehicles.

8.1. Underwater SLAM

Even though previous authors have provided early descriptions of
the SLAM problem, Csorba (1997) was the first to present a rigorous
theoretical investigation into the SLAM problem. According to him, the
SLAM problem could be presented as the ability of having an
autonomous vehicle, deployed at an unknown environment, and then
have it build a map and use this map to navigate. Being a fundamental
problem for the mobile robotics community, early SLAM algorithms
have since then been extended into a variety of application-dependent
alternatives.

The traditional approach for the SLAM problem uses an EKF for
estimating both the vehicle's pose and the position of the different
features. This means that the state vector needs to be augmented
accordingly, to accommodate all the necessary information. As the
number of features to track increases, the estimation process becomes
complex and demanding to solve in real time. Particle Filters could also
be a very appealing option, as both process and sensor noise can be
modelled by non-parametric probability density functions. However, as
stated by Thrun et al. (2005), a straightforward implementation of this
filter for the SLAM problem would be doomed to fail, due to the large
number of variables involved in describing a map. Nevertheless, with
some adaptations, PF based SLAM algorithms have also been pro-
posed, namely the FastSLAM algorithm by Montemerlo et al. (2002),
the Distributed Particle SLAM (DP-SLAM) by Eliazar and Parr, (2003,
2004), or the Segmented SLAM by Fairfield et al. (2010).

SLAM has been widely used in ground field robotics, but ts use in
underwater environments is not so widespread. The sub-sea domain is
arguably one of the most difficult environments for the use of SLAM
techniques, mostly due to the lack of natural features. This is particular
evident for underwater unstructured environments. In addition, the
sub-sea sensors, such as sonar or cameras, used to extract these
features or navigation landmarks provide very weak or ambiguous
sensory information. The detection of underwater features is a field
which has obviously been given some attention by different authors.
For example Aulinas et al. (2011) addressed this issue by using optical
camera images, and Aulinas et al. (2010); Woock (2012) focused on the
use of sonar images. Makumder (2001) developed the concept of blob,
used to refer to an entity which is repeatedly, consistently and
invariantly detected by a sensor in a spatial region. This is in a way a
generalization of the concept of a feature which can accommodate a
large number of characteristics. It also facilitates the modelling of
unstructured sub-sea landmarks, and their inclusion in a generalized
probabilistic model.

The real-time requirements for actual implementation in AUVs are
in fact quite challenging, especially due to the low processing power
available in such kind of vehicles, and most of the so far proposed
SLAM algorithms for underwater vehicles can't cope with that.
Moreover, the lack of natural features sometimes requires beacons or
other artificial features to be deployed on site. One of the first instances
of a deployable underwater implementation of the SLAM algorithm
was presented by Williams (2001). Similar EKF-based approaches
followed as for example the work by Williams and Mahon (2006);
Roman and Singh (2005); Koh et al. (2009). Fairfield and Wettergreen
(2008) also presented some work using PF-based algorithms for SLAM.
Moreover, there has been a significant work on developing SLAM
solutions for artificial man-made structured environments. Examples
of this are what was presented by Ribas et al. (2008); Burguera et al.
(2010). Sometimes the use of artificial features can be quite challen-
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ging, or even some times not possible. In such situations the use of
featureless SLAM methods like Bathymetric SLAM or Scan Matching
can be very interesting.

8.2. Bathymetric SLAM

In the context of underwater Terrain Based Navigation featureless
SLAM approaches become very relevant, as they do not require to
explicitly identify or track any features. Instead, such approaches use
only raw sensor measurements and thus, making them generally
applicable to unstructured environments. Bathymetric SLAM tries to
use sonar data measurements to build a surface terrain map, and use
this map to bound the vehicle navigational error.

Roman and Singh (2005) first proposed the use of bathymetric data
with SLAM methodology, using an EKF to enforce consistency between
the vehicle navigation data and the acoustic mapping data. The
Bathymetric Particle SLAM (BPSLAM) filter, a variation of the DP-
SLAM filter, was introduced by Barkby et al. (2009a) as another
alternative for a featureless SLAM approach based on bathymetric
data. Building up on previous work by Fairfield et al. (2007); Fairfield
and Wettergreen (2008), the BPSLAM consists on a RBPF for the
estimation step, together with an efficient gridded map representation
of the space, that maintains a single estimate of seabed depth in each
grid cell, along with its uncertainty. It has been shown that BPSLAM
improves navigation and map consistency when compared with
navigation methods that do not implement any form of map-based
localization. Further improvements and alternative map representa-
tions to the original algorithm were developed by Barkby and Williams
(2009b); Barkby et al. (2011a), (2011b). Later, Kim and Sang (2011)
introduced a computationally efficient SLAM algorithm, able to the
elevation changes in undulating terrain and simultaneously localize the
vehicle's position relative to the map. Stuckey (2012) proposed an EKF-
based Selective Bathymetric SLAM algorithm to improve the naviga-
tional accuracy of underwater vehicles.

8.3. Scan matching

Scan matching is a technique that estimates the robot's relative
displacement between two poses by maximizing the overlap between
range scans normally gathered with a laser or sonar sensor. On a purely
geometrical perspective, scan matching can be also interpreted as the
problem of finding the rotations and translations that maximize the
overlapping of two sets of acquired data. Several scan-matching based
techniques have been proposed in the literature, both in man-made
structured environments and partially structure natural environments,
with encouraging results. A rather complete overview in the field was
made by Mallios et al. (2014).

Several scan matching algorithms exist, being the most popular
variations of the Iterative Closest Point (ICP). However, it should be
noted that other approaches exist, like the one proposed by Censi
(2006), making use of a Generalized Hough Transform. It has been
noted that original ICP approaches don't explicitly provide an uncer-
tainty estimation but several authors tried to address this issue.
Researchers from both the Universitat de Girona and from Heriot-
Watt University have consistently published various articles regarding
the problem of SLAM based on Scan Matching techniques. The
interested reader should refer for example to the works by
Hernandez et al. (2009a), (2009b); Zandara et al. (2013); Mallios
et al. (2009). Recently, the simultaneous use of two complementary
EKFs has been proposed. This novel approach was proposed by Mallios
et al. (2010), on which one EKF is responsible to estimate the local
robot motion during a scan, so that motion-induced distortions
affecting the scans can be compensated. On the other hand, the second
EKF is used to estimate the global trajectory of the vehicle.
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9. Summary

In this state-of-the-art survey, different approaches and aspects of
bathymetry-based Terrain Based Navigation for underwater vehicles
have been covered. We started with an overview of the different
navigation methods for AUVs and discussed the general TBN problem.
Roughly, there are two distinctive methods to solve the matching
problem between maps and measurements: the Gradient based
approach, and the Search-area method. Gradient methods use terrain
measurements directly as navigation input but require the computation
of terrain gradients, which hasn't been considered very interesting. On
the other hand, search-area methods have been widely used in the
literature, and only the outputs of a correlation-based matching
function are used as navigation input.

After that, we described the different sonar sensors that can be used
to obtain terrain measurements. and provided an overview on the most
significant real-time implementations that can be found on the
literature. The state-space models and Bayesian Estimation algorithms
were presented. The most successful implementations of underwater
TBN have achieved meter-level performance by utilizing high accuracy
inertial navigation systems together with high quality sonars and
terrain maps. In recent work it was also shown that similar accuracies
can be attained even when using lower grade inertial sensors. Initial
approaches for underwater TBN were focused on the use of MBE,
mostly due to its intrinsic properties like large swath. Nonetheless,
numerous studies were also performed where lower accuracy bathy-
metric sensors, like DVL sensors and even single beam altimeters, were
able to deliver fairly accurate results.

While the Terrain Based Navigation estimation problem is partially
solved, there are still some challenges that remain to be addressed.
Robust estimators able to deal with multi-modality scenarios, when
using sonar with a small number of beams, have already been proposed
for aerial vehicles, but this is still an open problem for underwater
environments. An interesting way to improve TBN accuracy may also
consist on finding optimal routes that gather the maximum of
information coming from the terrain sensor. Furthermore, a complete
framework that deals with the use of features for relative positioning
and control, like pipelines and harbour walls, together with terrain
profiles can also be of great interest.

Application for underwater TBN are still limited by the need for an
a priori map, but when this is not the case concurrent mapping and
navigation methods are required. Despite some of the research already
presented, the use of SLAM in unstructured environments, such as
natural terrains, is still an open question. Finally, TBN algorithms that
minimize the use of sonar could also be extremely interesting for many
military applications.
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