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Summary. This paper discusses the problem of learning a global model from local
information. We consider ubiquitous streaming data sources, such as sensor net-
works, and discuss efficient learning distributed algorithms. We present the generic
framework of distributed sources of data, an illustrative algorithm to monitor the
global state of the network using limited communication between peers, and an
efficient distributed clustering algorithm.

1.1 Introduction

Data are distributed in nature. Nowadays, detailed data for almost any task
are collected over a broad area, and streams in at a much greater rate than
ever before. In particular, advances in miniaturization, the advent of widely
available and cheap computer power, and the explosion of networks of all kinds
gave life to inanimate things. Simple objects that surround us are gaining
sensors, computational power, and actuators, and are changing from static,
inanimate objects into adaptive, reactive systems. Sensor networks and digital
social networks are present everywhere (Kargupta et al., 2004).

Examples of network data include smart grids consisting of millions of
automated electronic meters. The meters would generate an overwhelming
amount of distributed data that can be handled with emergent techniques:
data streams management and processing approaches. A key characteristic of
smart grids is the intelligent layer that analysis the data produced by these
meters allowing companies to develop powerful new capabilities in terms of
grid management, planning and customer services for energy efficiency. The
development of the market with a growing share of load management incen-
tives and the increasing number of local generators will bring new difficulties
to grid management and exploitation. Present monitoring systems suffer for
the lack of machine learning technologies that can modify the behavior of
monitoring systems based on the sequence patterns arriving over time. From
a data mining point of view, a smart grid forms a network (eventually decom-
posable) of distributed sources of high-speed data streams. The dynamics of
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data are unknown; the topology of network changes over time, the number of
meters tends to increase and the context where the meter acts evolves over
time. This way, several data mining tasks are involved: prediction, cluster
analysis (profiling), event and anomaly detection, correlation analysis, etc.
All these characteristics constitute challenges and opportunities for applied
research in distributed data mining. The requirements of near real-time anal-
ysis for multiple time horizons and multiple space aggregations make these
analyses an even harder research challenge.

In this work we focus on clustering, one of the most used data mining tech-
niques. The goal in cluster analysis is the assignment of a set of observations
(or objects) into groups so that observations in the same group are similar in
some sense.

The paper is organized as follow. In Section 1.2 we present the distributed
network framework and an illustrative example about distributed reasoning.
In Section 1.3, we present a distributed clustering algorithm for sensor net-
works. In the context of this work, a cluster is defined to be a set of sensors.
The key characteristic of the proposed algorithm is that each sensor processes
locally their own data, and communicate with neighbours in order to learn a
global view of the network. The last section concludes the paper by presenting
the lessons learned.

1.2 Network Data Model

The goal of our study are networks of interconnected nodes. Nodes, or sensors
or peers, are sensing the environment measuring some quantity of interest.
Individually, each peer has a local and limited information about the environ-
ment. If sensors communicate, the network might have a global perspective of
the environment. Figure 1.1 illustrates this context.
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Fig. 1.1. A network of interconnected nodes. Circles represent sensors, edges rep-
resent communication paths.
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1.2.1 The framework

Network topology is the organizational hierarchy of the interconnected nodes.
Different network topologies can affect throughput, but reliability is often
more critical.

A common structure is the star network, where all nodes are connected to
a special central node, the coordinator. This is the typical layout found in a
wireless sensor networks. Another popular layout is the mesh network, where
each node is connected to an arbitrary number of neighbours in such a way
that there is at least one traversal from any node to any other. The main
purpose of a mesh network is fault tolerance.

Routing is the process of selecting network paths to carry network traf-
fic. Some popular routing schemes are: unicast: delivers a message to a single
specific node; broadcast: delivers a message to all nodes in the network; any-
cast: delivers a message to a group of nodes, typically the ones nearest to the
source.

In data-mining problems, a user runs queries over the data produced by
the sensors. A query is defined over the data produced by all the sensors:

n

Query = Q(|J 51)

i=0
We can consider two types of queries:

1. One-shot queries: What is the current state of the network?
2. Continuous queries: Track and monitor the state of network at any time.

Continuous queries are of particular interest because they are used for moni-
toring purposes, understanding dynamics, detect anomalies and changes.

In the network data model, data is vertically distributed. Answering con-
tinuous queries, requires specific characteristics of the algorithms. Following
Du et al. (2005); Zhu, Setia, and Jajodia (Zhu et al.), the requirements for
processing continuous queries are:

Single pass: process each observation once;
Small space: constant space;

Small processing time;

Reduced communications.

Local approaches are the most efficient ones (Giannella et al., 2004). They
preserve privacy and security issues but require some sort of synchronization
between peers (May and Saitta, 2010).

1.2.2 An illustrative example

In this section, we present an illustrative application of ubiquitous reasoning.
The problem consists of monitoring data produced in a sensor network. The
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Fig. 1.2. The vector space: the gray dots (A,B,C) corresponds to the sensor’s mea-
surements; and the black dot (D) to the aggregation vector. The gray region cor-
responds to the alarm region. The left and central figures illustrates a normal air
condition. The right figure presents an alarm condition, where none of the sensors
is inside the alarm region.

sensors monitor the concentration of air pollutants. Each sensor maintains
a data vector with measurements of the concentration of various pollutants
(CO4, SO, O3, etc.). A function on the average of the data vectors determines
the Air Quality Index (AQI). The goal consists of trigger an alert whenever the
AQI exceeds a given threshold. The problem involves computing a function
over the data collected in all sensors. A trivial solution consists of sending
data to a central node. This might be problematic due to huge volume of data
collected in each sensor and the large number of sensors.

Sharfman, Schuster, and Keren (2007) present a distributed algorithm to
solve this type of problems. They present a geometric interpretation of the
problem. Figure 1.2 illustrate the instance space. Each axis corresponds to
one pollutant. For visualization purposes, we represent only 2 pollutants. The
gray dots corresponds to the sensor’s measurements, and the black dot to the
aggregation vector, the AQI index. The gray region corresponds to the alarm
region. The goal is detect whenever the AQI index is inside the gray region.
In Figure 1.2 we present 3 examples. The first one, all sensors and the AQI
index are outside the alarm region. In the second plot, the AQI index is outside
the alarm region, although one of the sensors is inside the alarm region. The
third plot, illustrate the case where the AQI index is inside the alarm region,
although all sensors are outside the alarm region. These examples illustrate
that information of individual sensors is not enough to make a decision about
the global state of the network. Sensors need to share information to reach a
correct decision.

The method is based on local computations with reduced communications
between sensors. The base idea is that the aggregated function is always inside
the convex-hull of the vectors space (see Figure 1.3 A and B). Suppose that all
points share a reference point. Each sensor can compute a sphere with diame-
ter the current measurement and the reference point. If all spheres are in the
normal region, the aggregated value is also in the normal region. This holds,
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Fig. 1.3. The bounding theorem: the convex-hull of sensors is bounded by the union

of spheres. Sensors only need to communicate their measurements when the spheres
are non-monochromatic.

C

because the convex-hull of all vertex is bounded by the union of the spheres
(see Figure 1.3 C and D). In the case that a sphere is not monochromatic, the
node triggers the re-calculation of the aggregated function. Sensors broadcast
their current measurements, and a new common point is computed.

The algorithm guarantees that any alarm is detected and no false alarms
are signalled. The algorithm only uses local constraints. Mostly only local
computations are required and this minimizes the communications between
Sensors.

1.3 Clustering Distributed Data Sources

Clustering is the most popular technique for data understanding. The basic
idea behind clustering streaming data sources is to find groups of sources that
behave similarly through time, which is usually measured in terms of the dis-
tance between the data series or the data distribution. Let X be a sensor node
producing observations x; at each time step i¢. The goal of an incremental
clustering system for streaming data sources is to find (and make available at
any time 4) a partition C(¢) of data sources, where data sources in the same
cluster tend to be more alike than data sources in different clusters (Rodrigues
et al., 2008; Gama, 2010; Rodrigues et al., 2011). We propose a local algorithm
to perform clustering of sensors on ubiquitous sensor networks, based on the
moving average of each node’s data over time. L2GClust has two main char-
acteristics. On one hand, each sensor node keeps a sketch of its own data. On
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Algorithm 1: The Monitoring Threshold Functions Algorithm (sensor
node).

begin
Broadcast Initial position ;
Compute an initial reference point ;
foreach new measurement do
Compute the sphere with diameter defined by the current
measurements and the reference point and check its colour;
if sphere non monochromatic then
Broadcast the actual measurement;

L Recompute a new reference point;
if new messages with current measurements from other sensors
received then

L Recompute the reference point;

the other hand, communication is limited to direct neighbours, so clustering is
computed at each node. The moving average of each node is approximated us-
ing memoryless fading average, while clustering is based on the furthest point
algorithm applied to the centroids computed by the node’s direct neighbours.
This way, each sensor acts as data stream source but also as a processing node,
keeping a sketch of its own data, and a definition of the clustering structure
of the entire network of data sources.

In this work we search for a definition of k clusters of sensor nodes, with k
previously known by the system. Although this simple example lacks some of
the common characteristics of real-world scenarios (e.g. unknown number or
clusters or unbalanced data), its extension is straightforward. If the number
of clusters to find is unknown, each node could search for a clustering with
different number of clusters. As only centroids are transmitted and used as
single points (as if operating with ensembles of clusters), there’s no need to
know how many points come from each node; all centroids that are received
are included in the clustering as single points. For unbalanced data (in terms
of the assignment of nodes to clusters) we believe that the convergence would
take longer but deeper analysis is required in future work.

1.3.1 Local data stream sketches

As previously stated, we consider that each sensor produces a univariate
stream of data, and we want to define a clustering structure for the sen-
sors, where sensors producing streams, which are alike, are clustered together.
Hence, we should consider techniques that project each sensor’s data stream
into a reduced set of dimensions that suffice to extract similarity with other
sensors. These estimates can be seen as the sensor’s current view of its own
data, giving a sign of where in the data-space this sensor is included (Ro-
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drigues et al., 2010). One-way to summarize a data stream x is by computing
its sample mean ji,, and standard deviation 6,. Our approach is to keep track
of the moving average of each sensor, as an estimate of the sample mean of
most recent data.

Memory-less fading average.

Each sensor produces data continuously. Given this, each sensor s is respon-
sible of keeping its own estimate of the sample mean (ji) in a online fashion.
Moving averages are usually easy to compute, if we can keep a small buffer
of data points (Rodrigues et al., 2010). However, in such resource-demanding
scenarios, this is seldom the case. Nonetheless, sum-based statistics computed
on sliding windows can be approximated by weighting the sums using fading
statistics (Gama et al., 2013). The a-fading sum S; (i) of observations from
a stream « is computed at time Vi > 0, as: Sy (1) = 2;+ @ x S5 o(i—1), where
Sz.0(0) = 0. In the computation, a (0 < a < 1) is a constant determining the
forgetting factor of the sum. This way, the a-fading average at observation
Vi > 0 is then computed as: My o (7) = S]\‘]&(SZ)) , where Ny (i) = 1+ax Ny (i—1)
is the corresponding «a-fading increment, with N, (0) = 0. An important fea-
ture of the a-fading increment is that: lim; 1+ oo No<1(7) = ﬁ Each value of
«, which should be close to 1 (e.g. 0.999), will converge to sliding windows of
different sizes. This way, at each observation i, N, (i) gives an approximated
value for the weight given to recent observations used in the a-fading sum.

1.3.2 Local clustering of stream sources

The goal is to have at each local site an approximation of the global clustering
structure of the entire sensor network. Each sensor should include incremen-
tal clustering techniques which operate with distance metrics developed for
the dimensionally-reduced sketches of the data streams. Also, and although in
several real-world scenarios this is not true, we should not assume the sample
mean of each sensor to be correlated with its physical location and connectiv-
ity, as the matching between data clusters and physical clusters is a promising
strategy for sensor network comprehension, so we should not bias the cluster-
ing solution (Rodrigues et al., 2010). Given the simple sketch definition, the
dissimilarity between two sensors x and y is the absolute distance between
their sample means, d(z,y) = |ftz — fiy].

Neighbourhood interaction.

Each sensor x is not only able to sketch its own data in a dimensionally-
reduced definition (the fading average M, ), but it is also able to interact
with its neighbouring nodes 7,. The main characteristic of our approach is
that, at each new observation ¢ produced by sensor x, instead of sending its
own sketch M, , to its neighbours 7;, the node sends its own estimate of the
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global clustering C, (7). Note that, with this approach, each node needs to
keep an estimate of the global cluster centers C,(i) ~ C4(i). This estimate
can be seen as the sensor’s current view of the entire network which, together
with its own sketch, gives a sign of where in the entire network data-space
this sensor is included.

At first observations, each sensor node x has only access to its own sketch
My (7). However, with neighbour nodes broadcasting their approximations
of the global clustering structure Cy (), Vy € 1, node = suddenly has access
to several data points which are believed by other nodes to be the real cluster
centers. Let P, (i) be the complete set of clustering definitions {C; () |j € 1.}
received by node x between observations x;_1 and x;. The set of points used
in the clustering step includes: fi,, the node’s own sketch; C,(i — 1), the
node’s approximation of global cluster centers (computed before observation
x;); and Py (i), the centroids sent by node’s direct neighbours. Therefore, C(7)
is computed by clustering the set of points {My (i)} UCy(i — 1) U Py(3).

The idea behind this step is to aggregate all the locally defined centers and
apply a clustering procedure on these centers, considering them as points for
the clustering. This way, next time this sensor uses or transmits its estimate
C. (1) of the global clustering structure, it is already updated with its most
recent sketch and neighbours’ information.

Fig. 1.4. The two main local steps in L2GClust. In the left figure, each node receives
data from direct neighbours. Each node recomputes their centroids and send the new
centroids to the neighbour nodes (right figure).



1 Distributed Reasoning 9
Furthest-point clustering.

In the general task of finding k centers given m points, there are two major
objectives: minimize the radius (maximum distance between a point and its
closest cluster center) or minimize the diameter (maximum distance between
two points assigned to the same cluster) (Cormode et al., 2007). The Furthest
Point algorithm (Gonzalez, 1985) gives a guaranteed 2-approximation for both
the radius and diameter measures. It begins by picking an arbitrary point as
the first center, ¢, then finding the remainder centers ¢; iteratively as the point
that maximizes its distance from the previously chosen centers {ci,...,¢i—1}.
After k iterations, one can show that the chosen centers {ci,cs, ..., cx} rep-
resent a factor 2 approximation to the optimal clustering (Cormode et al.,
2007).

This strategy gives a guaranteed definition of the cluster centers, computed
by finding the center k; of each cluster after attracting remainder points to
the closest center ¢;. Since we are applying clustering to cluster centroids, we
are in fact merging clustering definitions, a known technique which has been
argued to give good results (Cormode et al., 2007).

1.4 Conclusions

In this paper, we have discussed the problem of learning global models from
distributed local information. We have presented a clustering algorithm for
data streams generated on wide sensor networks producing high speed data,
from a dynamic (time-changing) environment. The algorithms run locally in
each node of the network, processing their own data and communicating ag-
gregated data to its neighbours. This is an important characteristic in several
applications, because it preserves user’s privacy. A good characteristic of the
proposed systems is the ability to adapt to resource-restricted environments:
system granularity can be defined given the resources available in the net-
work’s processing sites. The proposed algorithms reduce both the dimension-
ality and the communication burdens, by exploiting limited computational
resources at each local sensor.
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