MET: Workload aware elasticity for NoSQL

Francisco Cruz
Jodo Paulo

Francisco Maia
José Pereira

Miguel Matos ~ Rui Oliveira
Ricardo Vilaga

HASLab - INESC TEC and U. Minho
[fmcruz,fmaia,miguelmatos, rco,jtpaulo,jop,rmvilaca]@di.uminho.pt

Abstract

NoSQL databases manage the bulk of data produced by
modern Web applications such as social networks. This
stems from their ability to partition and spread data to all
available nodes, allowing NoSQL systems to scale. Unfortu-
nately, current solutions’ scale out is oblivious to the under-
lying data access patterns, resulting in both highly skewed
load across nodes and suboptimal node configurations.

In this paper, we first show that judicious placement of
HBase partitions taking into account data access patterns
can improve overall throughput by 35%. Next, we go beyond
current state of the art elastic systems limited to uninformed
replica addition and removal by: i) reconfiguring existing
replicas according to access patterns and ii) adding replicas
specifically configured to the expected access pattern.

MET is a prototype for a Cloud-enabled framework that
can be used alone or in conjunction with OpenStack for the
automatic and heterogeneous reconfiguration of a HBase de-
ployment. Our evaluation, conducted using the YCSB work-
load generator and a TPC-C workload, shows that MET is
able to i) autonomously achieve the performance of a man-
ual configured cluster and ii) quickly reconfigure the cluster
according to unpredicted workload changes.

1.

Cloud Computing is the current trend in systems design and
conception. The Cloud is a complex environment composed
of various subsystems that, although different, are expected
to exhibit a set of fundamental features: high availability,
high performance and elasticity.

While high availability and high performance are com-
mon goals to all systems, elasticity is specific to the Cloud
environment and closely tied to the pay-as-you go model.

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Eurosys’13 April 15-17, 2013, Prague, Czech Republic

Copyright © 2013 ACM 978-1-4503-1994-2/13/04. .. $15.00

183

Elasticity can be defined as the ability of a system to grow or
shrink its resource consumption according to demand. It is
still an open challenge and a topic of a considerable amount
of recent research [18, 24].

The ability to adjust resource consumption according to
demand, favors the pay-as-you-go model and improves re-
source utilization. In addition, current Cloud providers make
available their infrastructure (IaaS), platform (PaaS) or soft-
ware (SaaS) to multiple customers in a multi-tenant envi-
ronment. Therefore, optimal resource utilization becomes an
even greater concern, since if one customer is using more re-
sources than needed, it may impact the performance of other
customer’s applications, resulting in poorer overall perfor-
mance. From a Cloud provider’s perspective, the ability to
dynamically optimize resource usage according to the con-
tracted level of service is fundamental to the business model.

In this paper, we focus on the elasticity of a specific com-
ponent: the data store, often referred to as NoSQL databases.
These databases have been designed to take advantage of
large resource pools and provide high availability and high
performance. Moreover, these databases were designed to
cope with resource availability changes. For instance, it is
possible to add or remove database nodes from the cluster
and to have the database handle such change transparently.
Even though NoSQL databases can handle elasticity, they
are not autonomously elastic: an external entity is required
to control when and how to add or remove nodes.

Ideally, nodes would be added to the cluster when it is
under heavy load, in order to maintain service levels, and
removed in the opposite case, to reduce costs. Currently,
these operations are mainly a manual task that motivated
some recent research work striving for elasticity in NoSQL
databases [13]. Briefly, the approach is to gather system-
level metrics such as CPU usage, memory consumption and
disk load, and then add or remove nodes from the cluster
according to demand. This is an important step towards
autonomous elasticity of NoSQL databases.

Simply adding and removing nodes is insufficient. In fact,
current approaches consider that all nodes of a NoSQL clus-
ter share identical, and thus homogeneous configurations.
But in practice, different applications have different access
patterns, which may even change over time. In addition,

NoSQL databases assume data partitioning, meaning that
even within an application there may exist data hotspots.

As our experiments show, fine tuning the available param-
eters of a NoSQL database on a per node basis, significantly
boosts overall performance, specially when considering the
workload characteristics. Consequently, the heterogeneity of
data access patterns should be taken into account to optimize
the use of available resources.

In this paper, we present the design and implementation
of MET, an elastic system that not only adds and removes
nodes, but also heterogeneously reconfigures them accord-
ing to the observed workloads. We achieve this by lever-
aging on an existing aaS system as the basic provider of
elasticity. We expose new database engine metrics regarding
workload’s access patterns, which are constantly monitored
along with the IaaS nodes. This information feeds our deci-
sion component that then performs online cluster reconfigu-
ration as needed.

Contributions. 'We make three main contributions.

First, we propose a heterogeneous configuration of NoSQL
databases and, using a standard benchmark for NoSQL
databases, we show that it outperforms the default homo-
geneous setting. Second, we present the design of MET, an
elastic system that not only adds and removes nodes, but also
reconfigures them in a heterogeneous manner according to
the workload’s access patterns. Third, we validate MET’s
design, showing that it is able to autonomously achieve the
performance of a manually configured heterogeneous clus-
ter and also quickly reconfigures the cluster according to
unpredicted workload changes.

Roadmap. The rest of this paper is organized as follows. In
Section 2 we present a brief overview of NoSQL databases
and, in particular of HBase. Next, in Section 3 we moti-
vate our work showing how a heterogeneous configuration
of HBase clearly outperforms the default homogeneous one.
In Section 4 we describe MET’s design, we describe its im-
plementation in Section 5 and present the experimental eval-
uation in Section 6. Related work is analyzed in Section 7
and Section 8 concludes the paper.

2. Background

NoSQL databases run in a distributed setting with tenths to
hundreds of nodes. The application data is partitioned and
these data partitions are assigned to the available nodes ac-
cording to a data placement strategy. This strategy is depen-
dent on the specific NoSQL database used.

In the remainder of this paper we focus on HBase, which
has a hierarchical architecture [25] and is one of the most
successful and widely used NoSQL database[11]. Previous
studies indicate that HBase is the best choice to handle
elasticity [13].

184

2.1 HBase

Inspired by BigTable [6], HBase’s data model implements
a variant of the entity-attribute-value (EAV) model and can
be thought of as a multi-dimensional sorted map. This map
is called HTable and is indexed by the row key, the column
name and a timestamp. A H7able may have an unbounded
and dynamically created number of columns, which are
grouped into ColumnFamilies. Data is maintained in lexi-
cographic order by row key. HBase provides a key-value
interface to manipulate data by means of put, get, delete,
and scan operations. Write operations are atomic and imme-
diately available to any subsequent read.

The row range of a HTable is horizontally partitioned into
Regions and distributed over different nodes, named Region-
Servers. Data partitioning can be either manual or automatic.
The automatic partitioning of a HTable occurs when it grows
to a parametrized size by default 250MB. Moreover, the as-
signment of Regions to RegionServers recurs to a random-
ized data placement component. The strategy followed by
this component is to evenly distribute the load of the cluster
based on the number of Regions, i.e. ensuring every Region-
Server has the same number of Regions.

Each Region is stored as an appendable file in the Hadoop
Distributed File System (HDFS) [3], whose instances are
called DataNodes. Usually, RegionServers are co-located
with DataNodes to promote the locality of the data being
served by the RegionServer. It is important to note, how-
ever, that when a cluster rebalacing is triggered, a Region
may be assigned to a RegionServer not co-located with the
DataNode responsible for that Region’s data, thus negatively
impacting access performance. This problem can be reduced
by means of data replication or by using an operation called
major_compact that is automatically or manually triggered.
After a cluster rebalancing, this operation presents the only
way to restore data locality at the expense of merging all Re-
gion’s files into a single new file. This new file is then stored
in the co-located DataNode.

Parameters. Both HBase and HDFS have many configura-
tion parameters[11]. For HBase, there are two configuration
parameters that most significantly affect the performance of
the cluster:

® block cache size - sets the amount of main memory avail-
able for caching blocks from Regions;

® memstore size - sets the amount of main memory avail-
able for updated data, before being flushed to disk.

These two parameters are expressed in terms of a percent-
age of the total java heap space' allocated to a RegionServer
and allow to give more privilege to read or write operations,
in a continuous fashion.

Other important configuration parameters include: the
block size of the block cache and the handler count. The

! Their sum should not exceed 65% of the total java heap space [11]

former defaults to 64KB with lower values favoring random
read operations. The latter controls the number of threads
available to answer incoming requests and defaults to 10.

Other parameters allow to adjust the behavior of the
garbage collector or the write buffer sizes. In addition,
HBase allows for the use of compression algorithms that
greatly reduce the disk I/O and network traffic between Re-
gionServers and DataNodes.

3. Heterogenous performance analysis

In NoSQL databases, data is distributed across the cluster,
thus each node is responsible for a subset of data. In clear
contrast to relational databases (both single node and dis-
tributed), in NoSQL databases the co-location of data parti-
tions in the same node, which are usually queried together,
is no longer needed because:

e there is no clear relationship between data from different
entities, and data is de-normalized;

e computation is done on the client side, for instance
queries joining two data partitions do not take advantage
of data co-location;

e NoSQL databases do not provide atomic multi-item op-
erations, thus atomic inter-node operations are not a con-
cern.

The fact that data is fairly unrelated and can be highly
partitioned across the NoSQL cluster, allows for a rebalanc-
ing of the cluster to maximize performance without further
concerns, such as data locality for join operations. In order
to achieve it, NoSQL databases often require extensive fine
tuning. These configuration tasks are typically manual and
dependent on the administrator’s expertise. Usually, the sys-
tem administrator will analyze the expected workloads and
homogeneously configure the cluster nodes to cope with the
expected load with best performance. Such a configuration
takes into account the overall cluster performance and each
node in the cluster is configured identically. However, differ-
ent applications have different data access patterns and even
within the same application there may exist data partitions
that are hotspots while others are seldom accessed.

The heterogeneity in access patterns should therefore be
taken into account during distribution and data partitioning.
Moreover, regardless of the application they refer to, data
partitions with similar access patterns should be placed in
the same physical nodes configured specifically and exclu-
sively to serve them. The heterogeneity in access patterns
leads to a heterogeneous cluster, i.e. with different node con-
figurations, optimized to achieve better performance under
the expected workloads. For instance, in HBase by increas-
ing the block cache size (see Section 2) we can have one
RegionServer optimized for read operations, and thus assign
read intensive data partitions (or Regions) to that Region-
Server. For clarity of presentation, we can refer to nodes as
RegionServers or data partitions as Regions. This difference

185

in nomenclature depends on whether we are referring to our
algorithms that are independent of the implementation, or
whether we are referring our prototype, which is based on
HBase.

In the following we set up an experiment that validates
our intuition and further motivates the rest of the paper.

31

We evaluated HBase in a multi-tenant environment using
YCSB [8] as a workload generator configured with differ-
ent, but simultaneous workloads. The reason to use differ-
ent workloads simultaneously, is to simulate a multi-tenant
setting as expected in a Cloud environment. YCSB provides
six pre-configured workloads that simulate different applica-
tion scenarios. In order to achieve a overall read/write ratio
of approximately 1.9:1 [7], we modified the configuration
parameters of two workloads, namely of Workload B and
WorkloadD. We used the following workloads:

Workload description

WorkloadA: readProportion=50%; updateProportion=50%;
Application scenario: session store recording recent ac-
tions;

WorkloadB: updateProportion=100%; Application sce-
nario: stocks management;

WorkloadC': readProportion=100%; Application scenario:
user profile cache, where profiles are constructed else-
where (e.g., Hadoop);

WorkloadD: readProportion=5%; insertProportion=95%;
Application scenario: logging/history;

WorkloadE: scanProportion=95%; insertProportion=5%;
Application scenario: threaded conversations, where each
scan is for the posts in a given thread (assumed to be clus-
tered by thread id);

WorkloadF': readProportion=50%; readmodifywritePro-
portion=50%; Application scenario: user database, where
user records are read and modified by the user or to record
user activity.

All workloads were initially populated with 1,000,000
records, except WorkloadD. This workload simulates a
logging/history application that produces a very fast growing
log, thus it was initially populated with 100,000 records.
Overall, the cluster starts with around 7GB of data and
during a 30 minute run it grows, on average 6GB.

With the exception of WorkloadD with only one data
partition, each of the remaining workloads has four data
partitions (Regions in HBase) of the same size. The keys
were drawn from YCSB’s hotspot distribution, with 50%
of the requests accessing a subset of keys that account for
40% of the key space. In terms of the load distribution on
each data partition, it means that one partition is a hotspot
(34% of the requests), other partition has an intermediate
load request (26%), and the remaining two have few but
evenly distributed requests (20% of the requests each).

3.2 Experimental setting

In all experiments, one node acts as master for both HBase
and HDFS, and it also holds a Zookeeper instance running
in standalone mode. Our HBase cluster was composed of 5
RegionServers, each configured with a heap of 3 GB, and
5 DataNodes. 1t is noteworthy that the RegionServers were
co-located with the DataNodes with a replication factor of
2.

We used two other nodes to run the YCSB workload gen-
erators: WorkloadA, WorkloadB and WorkloadC in one
node, WorkloadD, WorkloadE and WorkloadF' on the
other. All workloads were configured to run for 30 minutes
with a ramp-up time of 2 minutes. In addition, all workloads
were run with 50 threads each except for WorkloadD with
5 threads. Likewise, there were no limitations imposed on
the throughput of each workload except for WorkloadD
with a target throughput of 1500 operations per second. We
have imposed these limits to WorkloadD so that all scenar-
ios had identical conditions and were not, therefore, overly
influenced by a too rapid growth of data. In our first ex-
periments data grew so fast that far exceeded the capacity
of our 5 RegionServer cluster, which would then negatively
impact the performance of other workloads (multi-tenancy).
This behavior was observed especially in the Manual —
Homogeneous strategy explained below.

All nodes used for these experiments have an Intel i3 CPU
at 3.1GHz, with 4GB of memory and a local 7200 RPM
SATA disk, and are interconnected by a switched Gigabit
local area network.

3.3 Placement and configuration strategies

We defined three different strategies representative of dif-
ferent data placement and node configurations, namely:
Random — Homogeneous, Manual — Homogeneous
and Manual — Heterogeneous.

Random-Homogeneous: This strategy represents the reg-
ular behavior of HBase with a manual, homogeneous con-
figuration of nodes and using the out-of-the-box randomized
data placement component that evenly distributes data par-
titions across all cluster nodes. Because it is random, it as-
sumes uniformity on the number of requests per data parti-
tion. Besides the necessary optimization of the default con-
figuration parameters of HBase, we also configured the two
parameters that allocate a percentage of the available mem-
ory for read and write operations (block cache size and mem-
store size, respectively; see Section 2). We adopted a direct
mapping between these two parameters and the overall read-
/write ratio. That is, we assigned 60% of memory to the
block cache size for read operations and, 40% to memstore
size for write operations.

Manual-Homogeneous: In this strategy, we manually bal-
anced data, so hot data partitions would be as dispersed as
possible across all nodes. Furthermore, since configurations

186

are homogeneous data partitions were distributed so that the
number of read/write requests would be evenly balanced
across all nodes. In order to do this, we conducted an ex-
haustive search to find the best distribution. That meant try-
ing out all possible combinations of data partitions to nodes
that balanced the number of read/write requests across all
nodes. We evaluated 15 possible distributions and we chose
the one that showed better throughput.

Note that this strategy represents one possible distribu-
tion that Random — Homogeneous could achieve. The
configuration parameters are the same as in Random —
Homogeneous, so any performance improvement obtained
is solely due to the data placement.

Manual-Heterogeneous: In order to take advantage of het-
erogeneity in access patterns, this strategy comprises manual
data placement and heterogeneous node configuration. The
objective of this strategy is to cluster data partitions with
similar access patterns. In addition, each node is specifically
configured according to the type of load it is expected to
handle.

The first step to implement this strategy was to observe
the workloads described earlier, in order to understand if
and how we could cluster them according to their access
patterns. Just by looking at the distribution of requests for
each workload, one can easily conclude that Workload A
and WorkloadF have a mix of read/write operations;
WorkloadC' produces only read operations; WorkloadE
is mainly composed of scan operations; while Workload B
and WorkloadD generate almost only write operations.
These observations lead us to our first conclusion: we can
aggregate the workloads into four main groups according to
their access patterns, namely Read/Write mix, Read, Scan
and Write.

The next step is related to the mapping of the data par-
titions to the RegionServers available. Intuitively, the num-
ber of RegionServers to assign each group should be pro-
portional to the number of data partitions it contains. For
instance, if we have a Read group containing 20 data parti-
tions and a Write group containing only 5 data partitions, it
is clear the number of RegionServers to assign to the Read
group should be higher than to the Write group. Our ex-
periments confirmed this intuition. Consequently, in the cur-
rent context we used the following distribution: each of the
groups considered were assigned one RegionServer, except
for the Read/Write group. In fact, this group was assigned
two RegionServers, because it contained 8 data partitions as
opposed to the 4 or 5 data partitions of the other groups.

Once we have the mapping of groups to RegionServers,
we distribute data partitions following an approach similar
to Manual — Homogeneous. In other words, for the data
partitions belonging to the Read/Write group we balanced
data so each of the two RegionServers had a similar load
(i.e. similar number of requests). Once more, we recurred
to an exhaustive search that culminated with the hotspots of

each workload being in different RegionServers, and with
the same number of data partitions in each RegionServer (i.e.
4 data partitions in each one).

After the data placement stage was completed, we then
manually configured each RegionServer taking into account
the load they were expected to handle. For instance, all data
partitions belonging to WorkloadE were assigned to a sin-
gle node with tailored configuration, namely increased block
size (better for sequential reads) and almost all available
memory set for a read workload with only marginal space for
writes. On the contrary, the RegionServer of WorkloadB
and WorkloadD was configured for a write workload.

3.4 Results

Figure 1 shows the throughput for all workloads under
the different HBase strategies detailed above. Each bar in
the plot represents a specific observation in the cumulative
distributed function (CDF) of the results, for instance the
medium shade of gray (50*" percentile) indicates half of the
observations were below that value and the other half above.
All presented results are the consequence of 5 runs.

mg o o got: perc. 1

% 30 S33 751|1 perc. =3 i}

2 25 2oQ 50" perc. ==]

8 og; § $ 251|1 perc. mm

=20 IS Eu§° 5" perc. 8
(SIN)

Total

Workload

Figure 1. Manual strategies results.

It is clear that the Manual — * strategies impact posi-
tively the overall cluster performance. While the M anual —
* strategies improve to some extent the throughput of
WorkloadA, WorkloadB and WorkloadE, most of the

observed improvement is due to the performance of WorkloadC'.

The variance observed in the Random — Homogeneous
strategy, both in each workload individually and in the to-
tal throughput is very high due to the randomness of the
data placement component. As it is possible to observe,
there was one run whose total throughput was close to
Manual — Homogeneous’s result, while in another run
the total throughput is almost half of the mean. This first
comparison confirms that a random data placement, when
the distribution of requests is not uniform, may lead to very
distinct results. As such, we need to carefully distribute
data partitions across the cluster when dealing with a non-
uniform distribution of requests. Otherwise, the performance
of the cluster is left to chance.

Thereby, with a different strategy on data placement and,
accordingly, configuring the nodes for the expected load the
results achieved by the M anual — Heterogeneous strategy
outperforms the two other strategies. As opposed to the

187

Manual — Homogeneous, Manual — Heterogeneous
strategy improves each workload in relation to the other
two strategies, except marginally for WorkloadD. At first
glance it may seem that WorkloadF’s performance is better
under the Random — Homogeneous strategy. This is not
true, since on average WorkloadF’s performance for the
Random — Homogeneous strategy is somewhat lower than
under M anual — Heterogeneous. Nonetheless, due to the
randomness of the data placement component there was at
least one run (90th percentile) whose throughput was higher
than Manual — Heterogeneous strategy.

Regarding the total throughput, M anual— H eterogeneous
more than doubles the result achieved by strategy Random—
Homogeneous, and in relation to M anual — Homogeneous
it improves the result by 35% on average. It is important to
stress that for WorkloadE (majority of scan operations)
the improvement is remarkable: from around 100 scans per
second, to around 1350 scans per second.

3.5 Discussion

From the analysis of these results it is possible to see that
a heterogeneous HBase cluster can outperform the default
configuration, supporting our initial claims. Even when us-
ing a judicious data placement, but still with homogeneous
nodes, the results are worse the M anual — H eterogeneous.
Specifically, NoSQL nodes should not be treated as homo-
geneous entities because it often results in a skewed load
on cluster nodes leading to both poor resource usage, due
to idle nodes, and degraded performance, due to overloaded
nodes. These observations motivate our belief that it is not
sufficient to simply add or remove HBase nodes in order to
have an effective elastic database. Instead, it is necessary to
take into account the database workload and adapt the cluster
accordingly. Unfortunately, combining heterogeneous node
configurations with resource allocation and data placement
is a difficult and error prone task, thus should be automated.

In the rest of the paper, we detail the design and im-
plementation of a mechanism that is able to autonomously
achieve performance results similar to the heterogeneous
configuration and manual data placement, without human in-
tervention.

4. MET Framework

The heterogeneous configuration of a HBase cluster has
proven to achieve much better performance than the alterna-
tives. The downside being it greatly increases the complex-
ity of cluster management. In fact, if the number of nodes
and data partitions increases to the magnitude of hundreds or
thousands, the manual heterogenous configuration of a clus-
ter is impracticable.

As a result, we developed MET: a cloud-enabled frame-
work that can automatically manage, configure and re-
configure a cluster in a heterogeneous fashion, according to
its access patterns. Furthermore, MET equips the underlying

Decision Maker

AN

Monitor

1
—| NoSQL interface |—| laas interface I—

Actuator

NoSQL database

Figure 2. MET’s architecture.

NoSQL database with the ability to be autonomously elastic,
by the addition or removal of nodes specifically configured
to the load they are expected to serve.

Figure 2 depicts MET’s design that relies on three main
components: Monitor, Decision Maker and Actuator. The
Monitor and Actuator components can interface with a
NoSQL database directly (through the NoSQL interface)
and with an JaaS$ (through the IaaS interface). The Decision
Maker interacts with the Monitor and Actuator components.

Giving a brief overview, the Monitor component gath-
ers important statistics of the running cluster and periodi-
cally passes them to the Decision Maker component. This
component can be considered the core of MET. Basically,
it tries to converge to the same results as the Manual —
Heterogenous strategy (see Section 3) in an automated
way. In that regard it follows a set of stages. The first step
involves deciding wether the load cluster is acceptable based
on the metrics delivered by the Monitor. If the cluster is
overloaded or underloaded, then it is decided how many
nodes must be added or removed from the cluster, respec-
tively. Closely matching the process described in M anual —
Heterogenous strategy, this component then classifies each
data partition by type of access, clusters them into groups,
and proportionally determines the number of nodes to at-
tribute each group. After that, for each group a greedy algo-
rithm tries to evenly balance the load in each node. Finally,
the Decision Maker tries to convey the best way to bring the
previously configured cluster to the new computed configu-
ration. This final output is then passed to the Actuaror that
actually implements it in the running cluster. In the follow-
ing subsections we will describe in detail each component
and the algorithms used.

188

. —————— | Statistics collection [€————
Monitor
Is cluster Yes
StageA load
acceptable?
Need to
Decision StageB add/remove
Maker nodes?
Yes No
Distribution Distribution
algorithm(Current algorithm(Current
state, new cluster StageC state, current
size) cluster size)
OutputComputation
StageD (Current Distribution,
Optimized Distribution)
— A\
Actuator

Take Action

Figure 3. MET’s flow chart with particular emphasis on the
Decision Maker component.

4.1 Monitor

The Monitor component gathers information about the cur-
rent state of the cluster (Figure 3). Periodically, it collects
and maintains data over several cluster metrics at two differ-
ent levels: system metrics and metrics specific to the NoSQL
database. System metrics are CPU utilization, I/O wait and
memory usage. With regard to NoSQL specific metrics,
this component needs to keep track of several metrics per
node and per data partition. The metrics collected from the
NoSQL database must be enough to know the access pat-
terns of the workload. MET uses the total number of read,
write and scan requests as well as each node locality index.
In this regard, the locality index measures the percentage of
data that is locally accessible at each node. In other words,
it measures the amount of data owned by the node that is
locally stored thus not requiring to be fetched through the
network when queried.

In order to account for temporary load spikes that could
result in poor decisions, we used exponential smoothing [5]
coupled with storing only the observations after each Actu-

ator’s action. For each monitoring interval, the last observa-
tion is the most important, exponentially decreasing in im-
portance till the first observation. Periodically, all retrieved
metrics are delivered to the Decision Maker component.

4.2 Decision Maker

The Decision Maker component is responsible for deciding
what actions to take when the cluster is considered to be in a
sub-optimal state. As depicted in Figure 3 it works following
four different stages.

4.2.1 Determine the current state of the cluster
(StageA)

StageA (Figure 3) begins with the periodical delivery by the
Monitor component of gathered statistics about the current
state of the cluster. Based on those statistics, the Decision
Maker has to decide whether the load of each node in the
cluster is acceptable or not. By acceptable, we mean that the
system metrics provided are within certain defined thresh-
olds. Example values for these thresholds are evaluated in
subsequent sections.

If the cluster is healthy, the Decision Maker remains in
StageA (Y es branch of StageA). Otherwise, three data struc-
tures are populated to be used in StageB that is immediately
initiated. Such data structures are: i) firstTime variable
that states whether it is the first time StageB is going to run
or not; ii) subOptimal N odes variable which represents the
percentage of nodes in a sub-optimal state; iii) remove vari-
able that states whether the cluster is under or overloaded.

4.2.2 Decision algorithm for adding and removing
nodes (StageB)

In StageB (Figure 3), the main task is deciding if it is neces-
sary to add or remove database nodes from the cluster, and
if so how many of them following Algorithm 1.

A particular case arises if it is the first time StageB is run-
ning (firstTime input). If this is the case, MET distributes
data partitions and heterogeneously configures the current
cluster from scratch in what we call an InitialReconfigura-
tion. This only happens once.

In subsequent iterations, if the cluster is still in a sub-
optimal state, we decide to add or remove nodes. Because
we are unable to determine a priori how many nodes we
need, those nodes are iteratively added in a quadratic fashion
and removed linearly. A quadratic strategy enables a fast re-
sponse to demand increase by allowing to reach a sufficient
number of nodes on a logarithmic number of iterations. That
is, the algorithm starts by suggesting the addition of 1 node,
and in the following iterations, 2, 4, 8 nodes and so forth,
until the load in the cluster is acceptable. Conversely, it re-
moves only 1 node in each iteration, also until the load in
the cluster is acceptable. Of course, this strategy may incur a
higher provision of temporary resources than necessary. For
example, supposing that there is the need for the addition
of 8 new nodes. We would only need 4 iterations to reach a

189

Algorithm 1: Decision Algorithm to add or remove
nodes

Data: nodesToChange < 1

Input: subOptimalNodes, firstTime, remove

Result: result

/* number of nodes to be added or removed from the
cluster */

begin

if subOptimalNodes > SubOptimal N odesT hreshold

then
result < nodesToChange

L nodesToChange <+ nodesToChange * 2

else

if firstTime then
result < 0

| // InitialReconfiguration

else
if remove then
result < —1
L nodesToChange < 1
else
result <— nodesToChange
L nodesToChange <— nodesToChange * 2

return result

end

sufficient number nodes, but we would have added 15 nodes
in the process. In the meantime, if there was not another in-
crease in demand, we would need 7 more iterations to lin-
early remove nodes until the desired 8 nodes with a total of
11 iterations. On the contrary, if we were adding nodes lin-
early we would be needing 8 iterations to achieve the desired
cluster size. This means that it would take twice as long to
reach a point where the number of nodes would be enough
to handle the load (from 4 iterations to 8). On the other hand,
this also means that we need 3 more iterations to shrink the
cluster to the needed size. By using this quadratic strategy
we privilege availability and a fast response to sudden load
increase.

It should be noted however, that from our experience
in the case it is the first time the algorithm is invoked,
but the number of sub-optimal nodes is already more than
SubOptimal N odesT hreshold we proceed straightaway to
the addition of nodes. This threshold is a MET parameter
and should be configured according to each system charac-
teristics.

Finally, the Decision Algorithm computes the number of
nodes to be added or removed from the cluster, and passes it
to the Distribution Algorithm in the form of a target cluster
size. If there are nodes to be added or removed a new cluster
size is computed and passed as a parameter to the next stage.
If not, the current size of the cluster is passed as a parameter.

4.2.3 Distribution algorithm (StageC)

The Distribution Algorithm corresponds to StageC of the
Decision Maker’s component (Figure 3) and is in fact di-
vided in three parts: classification; node grouping; and as-

signment. Note that this stage is only reached if the cluster is
in sub-optimal state. Even if StageB’s result states that there
is no need to add or remove nodes, the fact that StageC is
running means that a cluster reconfiguration should be at-
tempted in order to improve cluster health.

Classification: data partitions are divided into groups ac-
cording to access patterns. As stated earlier, we defined 4
groups: read, write, read/write and scan (see Section 3.3).
Using the metrics related to the number of write, read and
scan requests of each data partition, the Classification al-
gorithm assigns each data partition to one of the 4 groups.
The assignment of partitions to groups is parameterized with
threshold values. In MET, such values have been obtained by
experimental observation and are presented in Section 5. In
order to accommodate workload changes, metric values ob-
tained for each data partition are refreshed at the beginning
of every monitoring interval.

Grouping: the number of nodes to attribute to each group
is computed. Each group will be assigned a number of nodes
equal to the division of the number of partitions in that group
by the total number of partitions, and then multiplied by the
total number of nodes available. More formally:

tite ;
| #partitionsing total#nodes

Vg e G:
g total#tpartitions

Assigment: from node grouping and data partition classifi-
cation an assigment of data partitions to nodes is established.
The assignment is done attempting to balance the load and
the number of data partitions in each node. This task falls in
a classical problem called makespan minimization or multi-
processor scheduling, which in turn is related to bin-packing
problems. These class of problems are known to be NP-hard
[14] but there are greedy algorithms that provide good re-
sults in polynomial time. As a result, we used the greedy al-
gorithm proposed in [12], and because we know in advance
all data partitions we could use the variant of this algorithm
that provides better results - Longest Processing Time (LPT).
In short, the makespan minimization problem can be defined
as: there is a set of parallel processors and a set of jobs with a
determined cost; in the LPT version, the algorithm first sorts
the set of jobs by decreasing cost and then assigns the largest
job to the least loaded processor, until there are no jobs left
to assign. In our case, jobs can be translated to data parti-
tions, parallel processors to nodes and the cost of each job to
the number of requests of each data partition.

Furthermore, we added a new constraint to the problem
to also attempt to balance the number of data partitions
assigned to each node. In this regard, the algorithm takes into
account node capacity and establishes a maximum number
of data partitions per node. This maximum value is estimated
by dividing the number of data partitions in the group by the
number of nodes in the group.

190

Algorithm 2: Assignment Algorithm

Data: result + ||

Input: nodeGroup, dataPartitions, max

/* max stores maximum number of partitions per
node. Calculated in order to balance load. */

Result: result

begin

Data: dataPartitions.sort()

/* Sort by number of requests in decreasing
order.

while data Partitions.size() > 0 do

partition < dataPartitions. first()

node < nodeGroup.get Most EmptyN ode()

if node.numberO f Partitions < max then
node.assign(partition)

L dataPartitions.remove(partition)

*/

else
result.add(node)
nodeGroup.markAsFull(node)
/* Node already full.

return result;

end

The assignment algorithm is depicted in Algorithm 2. It
should be noted that it has to be called for each group of data
partitions.

4.2.4 Output Computation (StageD)

Finally, StageD has the responsibility of determining the best
way to achieve the targeted cluster configuration. By best
we mean the one that minimizes node reconfiguration and
data partition moves. As depicted in Algorithm 3, it receives
as input the current cluster distribution and the distribution
suggested by the Assignment Algorithm. The first time this
algorithm runs, it has no information about the current con-
figuration. At the beginning, we consider that the cluster is
homogeneously configured. Thus, the distribution sugges-
tion is passed on to the Actuator. This results in an initially
heavier full cluster reconfiguration (InitialReconfiguration).

In subsequent runs, the algorithm looks at the current dis-
tribution of data partitions per node and tries to match it with
the new distribution. The process of matching distributions
is made recurring to a set intersection algorithm between sets
of partitions. In MET, the set intersection algorithm is a best
effort one. For each set of partitions from the suggested con-
figuration, it tries to find the node that currently holds the
most similar set of partitions. The result is an assignment of
nodes to configurations and sets of partitions to hold.

If there are new nodes added to the cluster, a set of parti-
tions and a configuration type is assigned to these nodes. The
same way, if the targeted configuration does not fully match
the current cluster configuration, new sets of partitions and
configuration types are assigned to existing nodes. The out-
put of this algorithm is a cluster distribution that minimizes
data partitions’ reassignment and nodes’ reconfiguration.

Algorithm 3: Output Computation

Data: result + ||

Input: currentState, optimalState, firstTime

/* Lists of nodes and correspondent sets of data
partitions.

Result: result

begin

if firstTime then

| result < optimalState

*/

else

foreach node € currentState.nodes() do

type + node.type()

set <— node.partitionSet()

opset <+ optimal State.mostSimilar(set, type)
optimal State.remove(opset)
result.add((node, opset, type))

if optimalState # () then

foreach node € currentState.node() do

type <+ node.type()
opset < optimalState.popPartitionSet()

result.add((node, opset, type))

return result;

end

4.3 Actuator

The Actuator component carries out the necessary tasks to
implement the distribution given by the Decision Maker. It is
responsible for the actual addition and removal of database
nodes. On the one hand, if we are using a laaS system it
means first starting a virtual machine, and only after the
NoSQL database. On the other hand, if we are using the
NoSQL database directly it has only to start or shutdown the
respective processes. The Actuator is also responsible for the
individual reconfiguration of nodes according to one of the
possible four groups defined above. In addition, it assigns the
data partitions to those nodes as determined by the Decision
Maker.

S.

MET is available as an open source project.” In the current
prototype we used HBase as the NoSQL database and Open-
Stack as the laa$ platform. OpenStack has gained wide sup-
port both from the community and enterprises, and is matur-
ing very quickly [17].

At the implementation level MET has two main parts. It
is composed by a Java module and a Python module. The
pivotal module is written in Python and comprises the core
of the Decision Maker, Monitor and Actuator components
of MET. The Java module is used to gather HBase statistics
through the HBase Administrator interface within the Moni-
tor module of MET.

Implementation

Monitoring: The Monitor component gathers data about
CPU usage, memory usage and I/O wait of the various nodes
through Ganglia [16]. Regarding the metrics specific of

Zhttps://github.com/fmaia/MeT

191

HBase, we collect them through JMX from each Region-
Server, namely: the total number of read, write and scan
requests; the number of requests per second; and an index
that measures the data locality of the blocks in the co-located
DataNode. 1t also retrieves some metrics of each data par-
tition like the number of read, write and scan requests. The
number of scan requests is not available in HBase thus we
modified it to calculate and export this metric. All this data is
retrieved by MET’s Java module, which interfaces with the
Python module through Py4J [10]. The monitoring intervals
are configurable. It is possible to define Ganglia requests
periodicity and data history size. Similar to Decision Maker
parameters, these are also defined in a properties file.

Decision Maker parameters: In order for the Decision
Maker to work, some parameters must be set. Firstly, the
classification task of Section 4.2.3 requires a set of thresh-
old values to define types of partitions. Four groups were
defined. Data partitions are classified according to the fol-
lowing criteria: i) read, if more than 60% of total requests are
read requests; ii) write, if more than 60% of total requests are
write requests; iii) scan, if more than 60% of read requests
are scan requests; iv) and read-write in every other case. Sec-
ondly, SubOptimalNodesT hreshold must be configured.
In our experiments this threshold was set to 50% of the clus-
ter. This means that if half of the cluster is under heavy load
MET will proceed straightway to the addition of a new node.
From our experience, this parameter should be set to 50%,
because when most of the nodes in the cluster are under
heavy load there is no benefit in the reconfiguration of the
cluster without adding new nodes. Moreover, if the cluster in
question is subjected to very sudden peak loads it should be
adjusted to less than 50% for a faster response to increased
demand.

Although we do not envisage that classification parame-
ter values can take different values, this may not be the case
for other parameters. Consequently, each one of these pa-
rameters is configurable in a properties file.

Taking actions: Addition and removal of virtual machines
from the HBase cluster is done through the OpenStack inter-
face by the Actuator. With regard to node reconfiguration,
HBase does not currently provide a mechanism to allow
online reconfiguration of a RegionServer. That means that
every reconfiguration of a RegionServer implies its restart.
As a result, a full reconfiguration of the cluster is a very
costly operation. Bringing the whole cluster down for a full
reconfiguration would reduce the amount of time needed for
the full reconfiguration, but it would also mean that dur-
ing that period, all data would be unavailable. Therefore,
we use a strategy to incrementally reconfigure the Region-
Servers while maintaining data availability, although with a
lower overall throughput. This strategy redistributes the Re-
gions from the RegionServer that is going to be reconfigured
across the remaining nodes that have not been reconfigured
yet. Then, when there are no Regions left in the Region-

Server, it is restarted with the new configuration. Finally, the
Regions determined by Decision Maker are assigned to it.
If data locality is below 70% for RegionServers configured
for a write workload and 90% for all the others, it invokes
the major_compact operation (as described in Section 2) in
order to reestablish data locality. The difference between
the two values is that data locality is of more relevance to
a read intensive workload and a major_compact operation
is a costly one. Relaxing the condition for write intensive
workloads has the objective of minimizing the load these
operations impose on the system. This process is repeated
for all RegionServer’s reconfigurations.

The concrete values used in our evaluation have been chosen
based on experimental observation and our own experience.
The individual study of all parameters is left out of the scope
of the present paper.

6. Evaluation

This section evaluates MET from three perspectives. First
we assess if MET is able to autonomously converge to a
performance level comparable to that achieved by a Manual-
Homogeneous configuration of an HBase cluster. In this
first step an YCBS workload is used. Secondly, we evaluate
MET’s versatility by exposing MET to a PyTPCC workload
without any kind of customization. Finally, we study MET’s
elastic properties in a Cloud environment.

6.1 Configuration

In the experiments below, every 30 seconds the Monitor
component gathers the metrics and sends them to the Deci-
sion Maker every 3 minutes. The period of 30 seconds is the
same used by other approaches [13], but the Decision Maker
is only invoked after having 6 samples to minimize the im-
pact of sudden spikes and take advantage of the exponential
smoothing algorithm. The HBase configuration parameters
for each group (Distribution Algorithm of Section 4) are de-
scribed in Table 1.

Node profile | Cache size | Memstore size | Block size
Read 55% 10% 32KB
Write 10% 55% 64KB

Read/Write 45% 20% 32KB
Scan 55% 10% 128KB

Table 1. Node configuration profiles.

6.2 Convergence

We started by accessing if MET could autonomously achieve
similar performance to a manual heterogeneous cluster con-
figuration (M anual — Heterogenous strategy). The experi-
mental setting is the same of Section 3. We used the 6 YCSB
workloads described in such section. Then, we configured
a HBase cluster with optimized configuration parameters,

192

40 : , , , ,
_—

o

>

(2]

3

o

5

Q.

=

(@]

=}

e

e

=5 Manual-Homogeneous -]

0 ‘ ManugI-HeterogeneQUS —
0 5 10 15 20 25
time (min)

Figure 4. Evaluation results

homogeneous nodes and using the out-of-the-box random-
ized data placement component (Random — Homogeneous
strategy from Section 3).

After 2 minutes of ramp-up time, we start MET. The
experiment then runs for 30 minutes logging the throughput
from the perspective of the YCSB’s clients.

We then compared the results with runs without MET
for the HBase cluster configured with strategies Manual —
Homogeneous and M anual — H eterogeneous. We picked
the run with the best throughput from both strategies from
the results presented in Section 3. These results are depicted
in Figure 4.

This experiment shows that MET behaves as expected. It
is capable of reconfiguring the HBase cluster on-the-fly and
achieve similar performance to that of a manually config-
ured cluster. Note that for the same cluster and workload,
MET achieves a significant performance increase: it fully
reconfigures a HBase cluster (initially configured with the
Random — Homogeneous strategy) in order to achieve a
distribution of data partitions and node’s configuration iden-
tical to the M anual — Heterogeneous strategy.

The cost of reconfiguration is observable between the 2nd
and 8th minute of the experiment (6 minutes). From this
overall time, the time taken by target cluster reconfigura-
tion calculations and data mapping is negligible. Restart-
ing the RegionServers along with major_compacts are the
time consuming operations. On the one hand, in our set-
ting a major_compact takes roughly 1 minute/GB. On the
other hand, most of the impact of reconfiguration on the ob-
served throughput is due to need to restart RegionServers,
because currently HBase does not allow online reconfigu-
rations. Such feature would allow to greatly decrease this
impact. However, by incrementally reconfiguring each Re-
gionServer we not only provide continuous data availabil-
ity, but we also provide reasonable performance with a min-
imum throughput of 7,500 operations per second. Then, the
throughput quickly rises to 20,000 operations per second by

the 5th minute and maintains this level of throughput until
the reconfiguration is completed by the 8th minute. From
this point, the performance is identical to the Manual —
Heterogeneous strategy. Even taking into account the re-
configuration cost, within less than 15 minutes the cumu-
lated average throughput using MET is greater than the de-
fault HBase with the M anual — Homogeneous data place-
ment strategy carefully defined by the administrator. These
results allow us to state that MET is able to autonomously
reconfigure a running cluster, converging to a cluster config-
uration and performance level similar to that of a manually
configured one.

6.3 Versatility

The goal of this experiment is to assess whether MET could
achieve similar results when using a significantly different
workload. Moreover, without any change to MET or its con-
figuration parameters and without any previous knowledge
about the workload itself.

For this purpose, we chose PyTPCC? an optimized im-
plementation for HBase of the standard OLTP benchmark
TPC-C. Note that, while TPC-C standard transactions are
expected to have full ACID semantics this implementation
offers the isolation semantics provided by HBase: record
level atomicity.

TPC-C benchmark attempts to reproduce the behavior of
any business in which sales’ districts are geographically dis-
tributed along with the corresponding warehouses. There are
a total of 9 tables and 5 different types of transactions, and
the results are measured in transactions per minute (tpmCs).
The default traffic is a mixture of 8% read-only and 92%
update transactions and thus is a write intensive benchmark.

The TPC-C database was populated with 30 warehouses
resulting in a database of 15GB. TPC-C tables were hori-
zontally partitioned following the usual setting for running
TPC-C in distributed databases [21]. In that sense, in our
experimental setting there were 5 warehouses per Region-
Server. Each RegionServer handles a total of 50 clients.

We ran this experiment on a HBase cluster of 6 Region-
Servers, each configured with a heap of 3 GB, and co-located
with 6 DataNodes. Similarly to the previous experiment,
we used another machine as the master of both HBase and
HDFS as well as the Zookeeper instance. PyTPCC'’s clients
were deployed in three other machines amounting to 300
clients (100 client threads per machine), and configured to
run for 45 minutes.

This experiment involved three settings: i) a run with a
Manual — Homogeneous configuration; ii) MET starting
with a M anual — Homogeneous configuration; iii) and an
entire run with the configuration suggested by MET. The
first serves as a baseline and represents the usual way TPC-
C runs. It was obtained experimentally, selecting the one
that offered the best overall throughput (tpmC), as follows:

3 https://github.com/apavlo/py-tpcc/wiki/HBase-Driver

193

Setting Throughput (tpmC)
i) Manual — Homogeneous 25380
ii) MET with reconfiguration overhead 31020
iii) MET w/o reconfiguration overhead 33720

Table 2. PyTPCC average throughput results.

50% for the cache size; 15% for the memstore size; and
32KB of block size. The second setting begins with the
same configuration as the first one and after 4 minutes we
start MET to reconfigure the cluster. In the third setting, we
used the same distribution and configuration suggested by
MET, but the benchmark was allowed to run for the full 45
minutes without any reconfiguration. Therefore, it represents
the maximum throughput that MET’s configuration could
possibly achieve.

The results, depicted in Table 2, are consistent with
those of YCSB i.e. the heterogeneous setting improves the
throughput of the M anual — H omogeneous one by 33%. In
addition, when comparing the results achieved by MET and
the third setting, the cost of reconfiguration during the ex-
periment is not significant. In fact, around 10 minutes of the
total 45 minutes (that is 23%) are due to the phase of ramp-
up time (4 minutes) and the initial reconfiguration phase (6
minutes). Nonetheless, the overall difference between both
settings is just 8%.

The results obtained in this experiment show that MET
is versatile and is able to achieve good results even in the
presence of substantially different workloads and without
any type of previous knowledge about them.

6.4 Elasticity

The experiments conducted so far show that an informed
(workload-aware) and heterogeneous configuration of a
HBase cluster leads to the best performance. Moreover,
MET is able to autonomously infer and apply such cluster
configuration yielding a performance similar to a manually
obtained configuration.

In these experiments we go a step further and use MET as
an elastic resource manager that adjusts the size of the clus-
ter according to utilization. To this end, we ran a HBase clus-
ter and MET on top of an OpenStack deployment. Moreover,
we compare MET’’s behavior and performance with an exist-
ing system called tiramola [13]. This system, like Amazon’s
Cloud Watch [1] together with Amazon’s Auto Scaling [2],
automatically provides elasticity to NoSQL databases based
on a set of system metrics defined by the client/user of the
system. When those metrics reach a threshold, a new node
is either launched or retracted from the cluster. Meaning,
they are oblivious to the underlying NoSQL system: they
just add/remove nodes from the cluster, they do not recon-
figure nodes, neither they make data load balancing, nor mi-
grate any data from node to node. We compare MET with
tiramola because is the only freely available system.

-

o

3000 : , : : , '

:. MeT ——

© 2500 [Tiramola - i

g 200t]

S

® 1500]

e nl 0 T

g 1000 | s |

S 500 g |

[

a)))) . .

£

3 0 5 10 15 20 25 30
Time (min)

Figure 5. Cumulative throughput of MET and tiramola in
the first phase of the experiment.

For this experiment, the HBase cluster is initially con-
figured with seven virtual machines with 3GB of RAM:
one for the HBase Master, the Hadoop Namenode and the
Zookeeper in standalone mode; the remaining six for Re-
gionServers co-located with Datanodes. In every run the ini-
tial state is identical: 100% data locality; a replication factor
of 2; and data partitions manually balanced on a homoge-
neous configuration of the cluster.

In this experiment, we provided each system with a set of
YCSB workloads that overloads the initial system. The ex-
periment ran for approximately 60 minutes and was divided
in two phases. In the first phase (33 minutes) all clients were
active and we observed the throughput and the number of
nodes in the cluster.

Figure 5 shows the cumulative throughput achieved in
both scenarios. As it is observable, the HBase cluster man-
aged by MET outperforms the one managed by tiramola. By
the end of the first phase MET has completed more 706,000
operations than tiramola, corresponding to a 31% through-
put increase. Note that these results are obtained despite the
initial MET reconfiguration cost (from 4th to 11th minute),
which starts to pay off after around minute 12. Equally im-
portant in a Cloud environment is the amount of resources
required to achieve such throughput. This is depicted in Fig-
ure 6 that shows the throughput evolution (left YY axis) and
the number of machines in each cluster (right YY axis).

MET’s throughput is not only superior to tiramola but
the number of machines is less, requiring 9 machines against
11. Also note that the peak performance achieved by MET
actually corresponds to this scenario maximum achievable
throughput of 22,000 operations/second where all YCSB
clients are saturated.

Interestingly, even though tiramola adds more machines
to the cluster there is no significant increase in throughput
until the 20th minute. This stems from the random balancing
and the degradation of data locality, which are precisely ad-
dressed by MET. MET judiciously balances the cluster and
periodically performs a major compact for the regions loos-
ing locality and the heterogeneous configuration achieved by

194

MET increases the cluster throughput by configuring each
RegionServer accordingly to the workload.

In the second phase of the experiment, we study the sys-
tems under resources underutilization. After the 33th minute
we progressively switched-off some of the YCSB workloads
until there was only one workload active. At minute 33 we
turned off WorkloadE and W orkloadF', then at minute 43
WorkloadB, and finally at minute 53 Workload A leaving
only WorkloadC' running. The experiment results are de-
picted in Figure 6 and workload removal coincides with the
vertical lines in the Figure.

As can be observed, MET quickly detects the lower de-
mand and removes one node from the system. With the pro-
gressive lower demand, this process is repeated until the
number of nodes is equal to the initial cluster. Please note
that, in this experiment we are allowing MET to release ma-
chines each time it detects underutilization, but such behav-
ior is parameterized to avoid, for instance, continuous addi-
tion and removal of machines.

On the contrary, tiramola only releases resources when
every node in the cluster is underutilized. This cannot be
parametrized and is due to the homogeneous nature of the
tiramola managed cluster where removing a single node
can divert the load to other already overloaded nodes. The
differences in throughput between both systems are due to
this behavior, because while MET is terminating one node
and reconfiguring, tiramola is just receiving less requests.

7. Related Work

This work is related with a wide range of research work.
Namely, related with dynamic scale of Cloud applications.
A good range of this related work is present in [24] where
many of the current state of the art efforts towards an elastic
Cloud are referred. In our paper however, we focus on auto-
mated elasticity for NoSQL databases. In this regard, there
are some works worth mentioning.

In [15] and [23], two systems are presented that allow au-
tomated control of an elastic storage system, a distributed
file system and a custom storage system, respectively. These
works, to the best of our knowledge, represent the first at-
tempts on designing true elastic storage systems. The idea
behind these systems is having a control system that gathers
information about workloads (request latency, utilization, re-
sponse time, etc.) and decides whether to start or stop a com-
puting instance.

In order the determine which servers are overloaded/un-
derloaded, the system from [15] measures CPU utilization
while the SCADS director [23] uses a steady-state perfor-
mance model to predict whether a server can handle a par-
ticular workload, without violating a given latency threshold,
according to the workload rate of get and put operations.

In MeT, we use several systems metrics (CPU utilization,
I/O wait and memory usage) that are critical for a storage
system and highly impacts server utilization’s estimation.

25 T T T : T T 12
& MeT —— i
o | #Nodeg --—-----—-- .
: 20 L #Nodes
o 10
) 9
3 8
<
=2 7
[=)
= 6
|_
0 1 1 1 1 1 1 5
0 10 20 30 40 50 60
time (min)
(a) MET

25 — T . : . — 12
Fa Tiramola ——
=} #Nodes 11
o T~ 20 7]
5 X 10 9
'8 K o
Z o 9 2
5 2 5
g 3 & 2
E o 7 §
Z 9 =z
< 6
|_
0 1 1 1 1 1 1 5
0 10 20 30 40 50 60
time (min)

(b) Tiramola

Figure 6. Elasticity experiment.

Besides, our actuator component applies different heteroge-
neous configurations, a departure from previous approaches.

With respect to heterogeneous configuration of compu-
tational instances, in [20] the authors propose a system to
autonomously change virtual machine configurations in or-
der to adjust how resources are allocated. This allows for
a certain virtual machine to be granted more resources if it
has higher demand. In this particular case, the idea was ap-
plied to virtual machines running relational database man-
agement systems. For instance, a certain database manage-
ment system with an heavy workload would be given more
memory, thus boosting performance without impacting other
lighter databases, and improving the overall performance. If
the same resources would be given to every virtual machine,
resources would be wasted and the system would perform
below its actual capabilities. The idea of heterogeneous con-
figuration of a pool of computational instances is similar to
the one we present along this paper. It differs in the fact that
we are dealing at the application level, rather than at the level
of the virtual machine controller.

In [13], elasticity of NoSQL databases is subject to anal-
ysis. Three different NoSQL databases (HBase, Cassandra
and Riak) are tested in order to assess their elastic capabili-
ties. The paper presents extensive experiments that measure
the cost of adding or removing nodes from those NoSQL
systems. It is important to notice, however, that this con-
trol system is restricted to operations such as add or remove
database instances. Data distribution is left as a database
responsibility and all instances are considered equal. Fur-
thermore, tiramola is oblivious to workload information or
any database metric. It relies solely on CPU usage, memory
consumption and other system-level metrics for its decision
model. Similar behavior is obtained by the use of Amazon’s
Cloud Watch [1] together with Amazon’s Auto Scaling [2].
The Amazon Cloud Watch service gathers system metrics
while the Auto Scaling allows a user to define rules based
on such metrics. These rules define what action to take (add
or remove nodes) when certain metric values reach some
thresholds.

195

Finally, there is relevant work on workload-aware parti-
tioning in relational database management systems (RDBMS)
[9, 19, 22]. Although following a workload-aware approach
for database partitioning, the main goal of such works is to
avoid the distributed transactions overhead. Our work fo-
cuses on workload-aware elasticity for NoSQL databases.

8. Conclusions

In this paper, we focused on automated elasticity for NoSQL
databases. Firstly, we motivated our work by looking at pre-
vious approaches and introduced heterogeneous configura-
tions of NoSQL database clusters. Current approaches to au-
tomated elasticity for NoSQL databases look at the differ-
ent cluster nodes as identical entities. Therefore, elasticity is
limited to the decision of adding or removing nodes from the
cluster according to demand. Introducing the possibility of
having cluster nodes configured heterogeneously proved to
allow for better performance and resource usage. Outcome
only possible when taking the workload into account.

Following our motivation tests we designed and imple-
mented MET. The MET framework provides automated
workload-aware elasticity for NoSQL databases. Currently,
our prototype is compatible with HBase and OpenStack as
the underlying IaaS. Our experiments showed that MET was
able to autonomously reconfigure an HBase cluster without
the need to stop it, and achieve similar performance to that
of a judiciously and manually configured one. Furthermore,
we compared the performance of MET with an existing sys-
tem. From this comparison it was possible to see that MET
achieves a cluster configuration that outperforms the cluster
obtained using such approach. On top of that, this result was
achieved with less resources.

There is still room for improvement. Namely, consider-
ing new metrics and policies for node addition and removal.
For instance, with the use of statistical machine learning to
allow dynamic scaling [4]. Moreover, it is also possible to
enhance MET to consider dynamic configurations, even if

such approach adds significant complexity to the reconfigu-
ration process.

Finally, at the time this paper was written, HBase is
preparing to include in its next release a new load balancer.
The new load balancer, StochasticLoadBalancer, intends to
solve some of the problems stemming from the use of a ran-
dom balancer. The use of such load balancer would improve
the results obtained by tiramola however, MET is a step
forward and proposes a refined and workload-aware load
balancer that, under the heterogeneous assumption, would
still achieve better performance.

Acknowledgment

We thank the anonymous reviewers and our shepherd Tim
Kraska for their helpful suggestions. We would like also to
thank to J. M. Valério de Carvalho for his valuable insights
on bin-packing problems.

This work is part-funded by; ERDF - European Regional
Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundagdo para a Ciéncia e a
Tecnologia (Portuguese Foundation for Science and Tech-
nology) within project Stratus/FCOMP-01-0124-FEDER-
015020; and European Union Seventh Framework Pro-
gramme (FP7) under grant agreement n° 257993, project
CumuloNimbo.

References

[1] Amazon.com. Amazon CloudWatch. http://aws.amazon.
com/cloudwatch/.

[2] Amazon.com. Auto Scaling. http://aws.amazon.com/
autoscaling/.

[3] Apache. Hadoop: Hadoop. http://hadoop.apache.org/
(january 2011).

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Communications of
the ACM, 2010.

[5] R. G. Brown. Smoothing, forecasting and prediction of dis-
crete time series. Prentice-Hall, 1963.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
a distributed storage system for structured data. In OSDI,
2006.

[7]1 S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons,
R. Johnson, I. Pandis, and R. Stoica. TPC-E vs. TPC-C: char-
acterizing the new TPC-E benchmark via an I/O comparison
study. ACM SIGMOD, 2010.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC, 2010.

196

[9] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and parti-
tioning. In VLDB, 2010.

[10] Barthélémy Dagenais. Py4J - A Bridge between Python and
Java. http://py4j.sourceforge.net/.

[11] L. George. HBase: The Definitive Guide. O’Reilly Media,
2011.

[12] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 1969.

[13] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos,
and N. Koziris. On the elasticity of NoSQL databases over
cloud management platforms. In CIKM, 2011.

[14] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Com-
plexity of machine scheduling problems. In Studies in integer
programming (Proc. Workshop, Bonn, 1975). North-Holland,
1977.

[15] H.C. Lim, S Babu, and J.S. Chase. Automated control for
elastic storage. IEEE/ACM ICAC, 2010.

[16] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia
Distributed Monitoring System: Design, Implementation And
Experience. Parallel Computing, 2003.

[17] Openstack blog entry: ’openstack foundation up-
date’. http://www.openstack.org/blog/2012/04/
openstack-foundation-update/. [Online; last accessed
July-2012].

[18] D. Owens. Securing elasticity in the cloud. Communications
of the ACM, 2010.

[19] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP sys-
tems. In ACM SIGMOD, 2012.

[20] A.A. Soror, U.F. Minhas, A Aboulnaga, K Salem,
P. Kokosielis, and S. Kamath. Automatic virtual ma-
chine configuration for database workloads. ACM SIGMOD,
2008.

[21] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, 2007.

[22] A.L. Tatarowicz, C. Curino, E.P.C. Jones, and S. Madden.
Lookup Tables: Fine-Grained Partitioning for Distributed
Databases. In IEEE ICDE, 2012.

[23] B Trushkowsky, P. Bodik, A Fox, M.J. Franklin, M.I. Jor-
dan, and D.A. Patterson. The SCADS director: scaling a dis-
tributed storage system under stringent performance require-
ments. FAST, 2011.

[24] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynam-
ically scaling applications in the cloud. ACM SIGCOMM,
2011.

[25] R. Vilaga, F. Cruz, and R. Oliveira. On the expressiveness and
trade-offs of large scale tuple stores. In OTM, 2010.

