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Abstract. This paper explores the usage of unmanned aerial vehicles (UAVs)
to acquire remotely sensed very high-resolution imagery for classification of an
agrosilvopastoral system in a rural region of Portugal. Aerial data was obtained
using a low-cost UAV, equipped with an RGB sensor. Acquired imagery
undergone a photogrammetric processing pipeline to obtain different data
products: an orthophoto mosaic, a canopy height model (CHM) and vegetation
indices (VIs). A superpixel algorithm was then applied to the orthophoto
mosaic, dividing the images into different objects. From each object, different
features were obtained based in its maximum, mean, minimum and standard
deviation. These features were extracted from the different data products: CHM,
VIs, and color bands. Classification process — using random forest algorithm —
classified objects into five different classes: trees, low vegetation, shrubland,
bare soil and infrastructures. Feature importance obtained from the training
model showed that CHM-driven features have more importance when com-
paring to those obtained from VIs or color bands. An overall classification
accuracy of 86.4% was obtained.

Keywords: Agrosilvopastoral systems - Unmanned aerial vehicles *
Photogrammetric processing - Superpixels - Random forest

1 Introduction

Employing unmanned aerial vehicles (UAVs) in environmental monitoring activities is
increasing, with a wide range of applications in forestry [l], agriculture [2], and
grassland monitoring [3]. This remote sensing platform provides high flexibility by
enabling superior temporal and spatial resolutions [4] with lower costs, in medium and

small projects, when compared to traditional remote sensing platforms [5].

In the classification process of data, collected by UAVs, it is essential to select the
best machine learning algorithm. There are three common algorithms being used in
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remote sensing: (1) random forest; (2) support vector machines; and (3) artificial neural
networks. The selection of the most appropriate method is dependent on the type of
problem being solved. In case of having multiple features but limited records, support
vector machines might work better. In case of having a considerable number of records
but less features, Neural Networks present better prediction/classification accuracy [6].
On the other hand, Random forest is a type of ensemble classifier that produces
multiple decision trees by using a random subset of training samples and variables. It
can handle high data dimensionality and multicollinearity swiftly and is insensitive to
overfitting [7]. Indeed, random forest is widely used in remote sensing applications,
being applied to urban vegetation mapping [8], land use and land cover mapping
[9, 10], grassland classification [11] and tree species classification [12—14].

This study aims to classify an agrosilvopastoral system using a random forest
algorithm and data driven from photogrammetric processing of UAV-based RGB
imagery. Agrosilvopastoral systems can be defined as a collective name for land-use
systems, which include the woody component (trees and/or shrubs), crops and cattle.
Essentially, these systems are associated to a model of production and conservation
centered on silvicultural practices and agricultural activities [15]. According to Nair
[16] agrosilvopastoral systems “include the use of woody hedgerows for browse, mulch
and green manure as well as for soil conservation”.

This paper is structured as follows: the next section presents the study area,
describes the UAV used and related imagery acquisition process. Methods used for
imagery segmentation, features extracted, and the classification algorithm are also
presented; Sect. 3 presents and discusses obtained results. The last section has some
conclusions and describes steps towards future developments.

2 Materials and Methods

2.1 Study Area

The study area is located in north-eastern Portugal (41°22/43.8”N, 7°35'00.8"W) and is
composed of trees (mainly Pinus Pinaster and Castanea Sativa Mill.), shrubland
communities (Cytisus striatus), low-land vegetation and crops, such as grassland and
potatoes, along with bare soil areas and some men-made infrastructures. An area
overview is presented in Fig. 1. Pine trees are present in both the north and east
sections of the study area, with some small trees located in the central section. Two
chestnut plantations are also present: one located in the central section and a smaller
plantation in the north section. Regarding shrubland communities, those are located
throughout the study area, being prevalent around its boarders. Low-land vegetation is
mainly located in the south section and is composed of grassland and a potato plan-
tation. Bare soil areas are spread throughout the study area, some covered by dry
vegetation — mostly in between pine trees and shrubs — and some granite stones near
man-made infrastructures. As for the latter, they represent a smaller area in the south
and southwest sections of the study area and are used mainly as livestock
accommodations.
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Fig. 1. General overview of the study area. Coordinates in WGS84 (EPSG:4326).

2.2 Data Acquisition

Aerial data acquisition was made using the DJI Phantom 4 (DJI, Shenzhen, China). It is
cost-effective multi-rotor UAV equipped with a Global Navigation Satellite System
(GNSS) receiver and a 12.4 MP RGB sensor mounted in a 3-axis electronic gimbal
[17]. Its remote controller, which serves as ground station, enables the connection to a
smartphone. Depending on the objective, there are different applications to perform
image and video acquisition for this UAV model. In this study, it is intended to perform
an autonomous flight to acquire aerial imagery for photogrammetric processing. As
such, mission planning and data acquisition was done using Pix4Dcapture (Pix4D SA,
Lausanne, Switzerland) in an Android smartphone: it enables the user to define an area
to survey, setting different parameters, such as flight height, camera angle, UAV speed
and images’ overlap.

The UAV-based imagery acquisition was conducted in 21 May 2017 at 3 PM
(GMT). A single-grid flight was performed at a flight height of 100 m from the take-off
point, covering a 255 m X 150 m area. The RGB sensor was point towards a nadiral
position, with a front overlap of 80% and a side overlap of 70%. These parameters were
chosen based on previous studies [18]. A total of 102 images were acquired in four
minutes, with a ground sample distance (GSD) of approximately 4 cm.
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2.3 Photogrammetric Processing

The acquired UAV-based RGB high-resolution imagery was subjected to pho-
togrammetric processing. This step was achieved using Pix4Dmapper Pro (Pix4D SA,
Lausanne, Switzerland), which can transform a set of images into point cloud data
using Structure from Motion (SfM) algorithms, by identifying common tie points.
Moreover, it enables to compute different data products for geodetic analysis. The
processing pipeline of Pix4Dmapper Pro is divided into three main steps: (i) initial
processing, which is responsible for camera position, orientation optimization, com-
putation of tie points, and for creating a sparse point cloud; (ii) point cloud and mesh,
where the sparse point cloud is used, along with the imagery, to compute a dense point
cloud; and (iii) DSM, orthophoto mosaic and index, which is mostly responsible for
providing orthorectified raster outcomes by point cloud interpolation, such as digital
surface models (DSMs), orthophoto mosaics, digital terrain models (DTMs) and
vegetation indices (VIs) [17].

Within the scope of this study the initial processing was conducted using default
parameters: a high point density was selected to generate the dense point cloud, and the
latter was interpolated — by means of the inverse distances weighted (IDW) method
with noise filtering and a sharp surface smoothing approach - to generate the raster
outcomes. The photogrammetric processing generates: (i) a orthophoto mosaic; (ii) a
RGB representation of the acquired imagery; (iii) a DSM that consists in a raster with
altitude information of the above surface objects; (iv) a DTM in the shape of a raster
with altitude information about points that corresponds to ground (some areas where
ground was not directly visible were interpolated); and (v) the selected VIs.

Computed VIs are presented in Table 1. VIs are arithmetic operations using the
different spectral bands. Depending on the sensor, bands other than RGB can be used
(e.g. near infrared) with different narrowness levels [4]. Both RGBVI and GRVI shown
to be good when discriminating vegetation from non-vegetation areas [19, 20]. GBVI,
BRVI, BGVI were included in this study due to the usage of the blue band.

Table 1. Vegetation indices used in this study.

Vegetation index Equation Reference

Red Green Blue vegetation index | pGRV = Green’-BluexRed | Bendig et al. [21]

(RGBVI) Green’ + BluexRed

Green-Red vegetation index (GRVI) | gryT = Green-Red Tucker [22]

Green + Red

Green-Blue vegetation index GBVI = Green-Blue

(GRVI) Green +Blue

Blue/Red pigment index BRVI = %lug Zarco-Tejada et al. [23]
e

Blue/Green pigment index BGVI = (]}?’lue Zarco-Tejada et al. [23]
reen

To have height information from the above ground objects, a CHM was calculated.
This process was achieved by subtracting the DTM to the DSM [24], as presented in
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(1). As such, altitude difference in both models is used as surface features height. QGIS
raster calculator, a free and open source Geographic Information System (GIS) was
used in this operation.

CHM = DSM — DTM (1)

Moreover, the orthophoto mosaic was converted to a different color space — the hue
saturation and value (HSV) color space [25].

2.4 Data Processing and Classification

The simple linear iterative clustering (SLIC) algorithm [26] was used to segment
images into multiple superpixels. By applying superpixels oversegmentation to an
image, compact and uniform groups of pixels that have similar characteristics are
formed [27]. The orthophoto mosaic was used in this process.

Then, a dataset was created with properties obtained from the different available
data products, divided into three categories: structural, spectral and color. As a struc-
tural product, the CHM was used. Spectral products were composed by the five
computed VIs. Color products are composed of the red, green, blue and the hue (from
HSV) bands. Therefore, only the pixels from each cluster were considered for data
extraction. Then, four features were extracted from each product: the mean, maximum,
minimum and standard deviation. To avoid potential outliers, minimum and maximum
features were estimated using the 10% lower and higher values, respectively.

Considering the knowledge from the study area, each cluster was classified in five
classes: (I) trees, encompassing forest trees and trees for agronomic purposes; (ii) low
vegetation, composed of grassland and seasonal agriculture plantations; (iii) shrubland,
which considers the shrub communities existing in the area and some shrubs located in
forest canopy gaps; (iv) bare soil, encompassing areas with little to no ground vege-
tation and dry vegetation; (v) and infrastructures, composed of man-made buildings
and stone walls. This process was achieved in QGIS by converting the super pixel
objects to a polygon shapefile.

With the segmentation done, the features extracted, and data classified, a random
forest model was trained for classification purposes. Data was divided into 75% for
training and 25% for classification. Feature importance was also evaluated. For accu-
racy assessment, different metrics were evaluated, namely: producer accuracy, user
accuracy, and the overall accuracy. Producer accuracy is obtained by the percentage of
how many objects on the map are correctly labeled, including errors of omission and
user accuracy is obtained by the percentage of all objects that were correctly identified,
encompassing errors of commission.

3 Results and Discussion

Some of the digital products obtained through the photogrammetric processing — CHM,
RGBVI, BGVI, BRVI, GBVI, and GRVI - are presented in Fig. 2. Differences between
the computed VIs and the CHM height are clearly visible. The photogrammetric



Classification of an Agrosilvopastoral System Using RGB Imagery 253

processing was done in about 1 h 30 m, using a workstation with two Intel® Xeon® CPU
E5-2680 v4, 128 GB RAM, two Nvidia Quadro M4000 and 1 TB SSD.

7350.240'W 7°350 240
g

7°350.240W

Fig. 2. Generated structural and spectral products in a color-coded representation. Top (left to
right): CHM, RGBVI, and BGVI. Bottom (left to right): BRVI, GBVI, and GRVI. Coordinates in
WGS84 (EPSG:4326).

The overall training accuracy, using random forest algorithm, was of 99.33%.
Superpixels object size varied approximately from 5 m? to 90 m* As for features
importance (Fig. 3), spectral features (VI-based) were the most relevant (35%), fol-
lowed by color features (34%) and color features (31%). However, when individually
analyzing each feature, the most relevant is CHM’s mean value (10.8%), followed by
CHM’s maximum value (10.5%) and the blue band mean value (7.5%). By analyzing
each digital outcome individually, CHM has the highest importance (32%). The VI
with higher feature importance was the GRVI (12%). Considering color features, both
blue and red bands had the higher importance (11% and 9%, respectively). When
regarding feature parameter type (i.e. mean, maximum, minimum, and standard devi-
ation) the mean value showed the higher percentage (34%), followed by the maximum
(29%), minimum (23%) and, lastly, the standard deviation (14%).

A confusion matrix with the random forest classification results is provided in
Table 2. The overall accuracy was 86.4%. Producer accuracy was higher for low vege-
tation class (91%), followed by tree class (90%), bare soil (86%), shrubland (79%) and
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infrastructure class (73%). User accuracy was higher for low vegetation (94%), followed
by tree class (93%), infrastructure (89%), bare soil (84%), and shrubland (77%).
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Fig. 3. Feature importance obtained from the random forest training process.

Table 2. Confusion matrix, with user accuracy, and producer accuracy for all classes, based on
the number of detected superpixels.

Trees | Low Shrubland | Bare Infrastructure | Producer | User
vegetation soil (%) (%)

Trees 433 0 37 9 0 90.40 92.72
Low 0 |94 5 4 0 91.26 94.00
vegetation
Shrubland 26 3 255 36 1 79.44 77.04
Bare soil 8 2 33 269 0 86.22 84.33
Infrastructure 0 1 1 1 8 72.73 88.89

Feature importance measures shown a high value for the structural variables.
Spectral VIs did not show greater importance, except for GRVI, being GBVI and
BGVI the VIs with the lower importance. Among color features, blue and red bands
shown the higher importance, with hue band from HSV color space not presenting a
high importance. In the study of Melville et al. [11], a DSM was used, along with
spectral bands driven from an hyperspectral sensor for grassland communities classi-
fication and similarly to this study, structural features had higher importance when
compared with spectral features. As for feature parameter type, the mean and maximum
were the most important: both presented more discrepancies between the different
classes. As for minimum and standard deviation features, they shown lower impor-
tance. This can be related to the similarities of these features in all classes. For example,
a superpixel object with a tree and a small portion of soil can present the same
minimum value as an object from the soil class.
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Regarding classification results (Table 2), some confusion between tree and
shrubland classes was observed. This can be explained by the height similarity between
some younger pine trees and shrubs, as well as the difficulty of photogrammetric
techniques in penetrating the canopy [18], which results in wrong CHM estimates. As
such, situations where shrublands are located in canopy gaps can be classified as being
a tree. Furthermore, some soil objects were classified as shrub. These were related with
objects located in shadowed areas. As for infrastructure results, these can be explained
with the low number of objects representing this class (it was the less represented
class), showing some imbalance in the dataset. The final classification image and its
reference are presented in Fig. 4.
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Fig. 4. Ground-truth classification (a) and random forest classification (b) of the study area.
Coordinates in WGS84 (EPSG:4326).

4 Conclusions

This paper demonstrates the usefulness of random forest algorithm for classification of
photogrammetric products obtained from UAV-based RGB imagery in an agrosil-
vopastoral system. Results indicated that UAV-based RGB imagery provides enough
detail to classify different vegetation and non-vegetation objects. Moreover, encour-
aging accuracies were obtained in the random forest classification of the evaluated
classes, being this a suitable approach for the characterization of agrosilvopastoral
systems. The dataset used in this study shown to be effective for this purpose. Still,
some concerns towards feature type selection must be considered in future studies.
Future developments should rely in exploring data acquisition in different flight
heights, to obtain the best compromise towards data acquisition time and results
accuracy. Other aspect is to explore other UAV-based imagery type, such as multi-
spectral and thermal infrared imagery. Multispectral sensors can acquire data from
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other near infrared regions of the electromagnetic spectrum, which combined with
temperature, may improve the classification results.
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