
Ann. N.Y. Acad. Sci. ISSN 0077-8923

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Issue: Data Science, Learning, and Applications to Biomedical and Health Sciences

Evolvix BEST Names for semantic reproducibility
across code2brain interfaces

Laurence Loewe,1,2 Katherine S. Scheuer,1 Seth A. Keel,1,2 Vaibhav Vyas,1 Ben Liblit,3

Bret Hanlon,4 Michael C. Ferris,1,3 John Yin,1,5 Inês Dutra,6 Anthony Pietsch,1

Christine G. Javid,1 Cecilia L. Moog,1 Jocelyn Meyer,1 Jerdon Dresel,1 Brian McLoone,1

Sonya Loberger,1 Arezoo Movaghar,1 Morgaine Gilchrist-Scott,1 Yazeed Sabri,1

Dave Sescleifer,1 Ivan Pereda-Zorrilla,1 Andrew Zietlow,1 Rodrigo Smith,1

Samantha Pietenpol,1 Jacob Goldfinger,1 Sarah L. Atzen,1 Erika Freiberg,1 Noah P. Waters,1

Claire Nusbaum,1 Erik Nolan,1 Alyssa Hotz,1 Richard M. Kliman,7 Ayalew Mentewab,8

Nathan Fregien,9 and Martha Loewe1

1Wisconsin Institute for Discovery, 2Laboratory of Genetics, 3Departments of Computer Sciences, 4Statistics, and 5Chemical
and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin. 6Department of Computer Science,
University of Porto, Porto, Portugal. 7Department of Biology, Cedar Crest College, Allentown, Pennsylvania. 8Department of
Biology, Spelman College, Atlanta, Georgia. 9College of the Menominee Nation, Keshena, Wisconsin

Address for correspondence: Laurence Loewe, Wisconsin Institute for Discovery, Laboratory of Genetics, University of
Wisconsin-Madison, Madison, WI 53715. loewe@wisc.edu

Names in programming are vital for understanding the meaning of code and big data. We define code2brain
(C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand
executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate
modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments,
C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of
computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed
until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming
priorities from diverse individuals and roles of names in different modes of computing to show how naming easily
becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept
for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization
Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving
names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix
using a flipped programming language design approach with some unexpected features and BEST Names at its core.

Keywords: debugging code2brain interfaces; evolutionary systems biology simulations; names of identifiers in code;

ontology computing; programming language paradigms and naming; fundamental modes of computing; flipped

programming language design

Introduction

Naming is hard for humans. Because names capture
a wide variety of information that may serve diverse
purposes, they can be difficult to give or use. If
the information associated with names changes too
quickly, these substantial difficulties can overtax
people’s capacities to track the changes, leading

some to conclude (or hope) that names do not mat-
ter. However, experience shows that names matter
in many contexts where they often convey meaning
critical for decision making. For example, the usu-
ally irritating “thing-speak” (e.g., “this thing is that
thing”) could indicate something wonderful, terri-
fying, or boring, depending on the meaning of these

doi: 10.1111/nyas.13192

124 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/

Loewe et al. BEST Names and semantic reproducibility

context-dependent representations (or implicit
names). Without context, this sentence is mean-
ingless: “thing” could be replaced by random char-
acter labels or randomly chosen, nice-sounding
words. Random character labels are dangerous
names if their meaning is not clearly documented
elsewhere, but randomly chosen nice-sounding
words are even more dangerous, as they rarely
prompt readers to look up the actual meaning.

The main difficulty with implicit names such
as “thing”—their ambiguity outside of a specific
context—makes it difficult for others to exactly
reproduce in their brains the information intended
by the speaker. Content-to-context mismatches are
not uncommon in programming and significantly
degrade the quality of code2brain (C2B) interfaces
discussed below (Fig. 1A). Such situations exem-
plify a distributed storage problem, where informa-
tion travels at a finite speed (or not at all) and thus
might not be locally available at a time when it would
be needed to make a difference. When a brain does
not receive new relevant content and has no reason
to believe that the old content is now invalid, then
it will intuitively apply the old content, assuming
(wrongly) that it is up-to-date. Cache invalidation
is the problem of letting that brain know that there
is a reason to believe that this old content is no
longer valid, and, therefore, the brain should trigger
an update of the relevant content. This is a diffi-
cult problem because, in some instances, the rele-
vant information (e.g., contexts, backgrounds, and
type definitions) is never sent or received and hence
travels at speed zero, as if the units in a distributed
storage system were completely isolated. As noted
by Phil Karlton,1,2 “There are only two hard things
in computer science: cache invalidation and naming
things.”

As noted above and illustrated in Figure 1B, these
two problems are different sides of the same coin,
causing acute and sometimes chronic confusion in
research when independent discoveries of the same
phenomenon by different researchers lead to diver-
gent naming efforts. This is widespread in biology,
releasing floods of confusing synonyms. Beyond the
heroic effort of disambiguation, researchers often
have to work for a long time before a new phe-
nomenon or entity is understood well enough to
give it a nonconfusing name agreed upon by every-
body (i.e., everybody’s brain cache contains the
same map from name to meaning). Without such

a name, communicating meaning from one brain
to another, or achieving “semantic reproducibil-
ity,” is very difficult.3,4 We define all misinforma-
tion in situations with less-than-perfect semantic
reproducibility (e.g., omissions, biases, contradic-
tions, heterogeneities, ambiguities, and other dis-
torting factors) as “semantic rot.”

Here, we argue that naming is far from triv-
ial, even though it often appears so. It is essential
for the semantic reproducibility of computational
models in biology and for increasing the efficiency
with which code can be written, understood, and
reused. Trivializing naming in science might result
in temporary increases in efficiency but can perma-
nently obscure essential meanings, making it some-
times very difficult to determine the trustworthi-
ness of results. We propose the Evolvix BEST (Brief,
Explicit, Summarizing, Technical) Names concept,
developed for simplifying name resolution. To place
BEST Names as a concept into its larger context,
we discuss the role of naming in several funda-
mental modes of computing to help identify and
prevent naming-related bugs. To investigate links
of BEST Names to related work in ontologies, we
identify “ontology computing” as defining a Turing
machine derived from the functional (here called
“Form Filling”) fundamental mode of comput-
ing. In Supporting Information (online only), we
present reasons showing why precise naming of any
nontrivial type is difficult for a group of commu-
nicators. We build on definitions of names, items,
types, and contexts to argue that naming can quickly
become infinitely complex and has its own version
of the halting problem. Thus, despite the frequently
expressed desire that names ought to be clear, pre-
cise, and descriptive, this aim is only attainable
for names that represent relatively simple entities.
Next, we present an overview of conflicting nam-
ing priorities, which require trade-offs that sub-
stantially complicate naming (or add to confusion)
but would be easier to reconcile by defining corre-
sponding dialects using the BEST Names concept.
We tested this in a series of naming tasks while
developing Evolvix and found that BEST Names
substantially eased the tension between conflict-
ing naming priorities. The nature of these priori-
ties was further revealed by analyzing feedback on
questions designed to improve the naming pro-
cess (see mini-survey in Supporting Information,
online only). In order to inspire more experimental

125Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

BEST Names and semantic reproducibility Loewe et al.

Figure 1. (A) C2B interfaces for writers and readers of computer programs are critical for computational science and the correct
use of big data. The power of computational modeling for understanding the natural world has long been known and is essential for
analyzing big data. Still, many scientists have been slow to engage with computational models. We suggest that the C2B interfaces
assumed by many programming languages might carry a significant part of the responsibility as they may induce too much confusion
for many scientists who are not trained computationally. It is not easy to design good C2B interfaces and near impossible to do so in
isolation because of the curse of knowledge, which is difficult to escape for designers of programming languages (who need advanced
programming skills to implement any language). This curse makes people forget how difficult the first steps were. As a result, they
struggle to simplify problems appropriately for beginners. The only way of avoiding the resulting breakdown of communication
is to debug the C2B interfaces of diverse potential user groups by comparing a language designer’s ways of expressing (syntax) an
intended meaning (semantics) to be implemented in a language with the meaning inferred by diverse readers of the code. This
process is costly, as it involves talking a lot about communication errors in hypothetical programming scenarios of no immediate

126 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

Loewe et al. BEST Names and semantic reproducibility

biologists (and other noncomputing profession-
als) to use computational approaches, we sought
to improve the naming process and developed
a set of forms (Supporting Information, online
only) to improve the quality of names. We report
on various naming experiences and argue for an
unconventional Flipped Programming Language
Design approach when aiming to write a long-term
backward-compatible programming language for a
broad audience. This requires identifying a clear and
intuitively understood way of expressing (i.e., the
syntax for) the meaning of the concepts used in a
program (i.e., the semantics). In Flipped Program-
ming Language Design, much emphasis is placed
on upfront debugging of the C2B interface of a lan-
guage by heavily involving users in the design pro-
cess before the pillars of the syntax and semantics
of a language are locked in by implementation. The
result is a much clearer, cleaner, and simpler lan-
guage structure than achievable without such strong
user participation.

Naming and reproducibility in science

Semantic rot degrades scientific reproducibility at
great cost to the scientific enterprise, resulting in
mislabeled cell lines, irreproducible data analyses,
and many other problems.5,6 Preclinical biomedical
research in the United States produces an estimated
$28 billion worth of studies that are probably
irreproducible for a variety of reasons, with about
$7 billion (approximately 25%) caused by issues
of data analysis and reporting.5 Statistical irrepro-
ducibility,7,8 poor study design, and other major
problems notwithstanding, experience suggest
that omissions, shortcuts, and confusingly labeled
names of variables and functions in analysis
programs substantially contribute to the problem.
As a result, many computational models and their

results require a large and often prohibitive amount
of work to build upon, even if they are reproducible
in principle.9,10

While bitwise reproducibility in virtual machines
solves some problems,4 it does not address many
of the floating point challenges of science (e.g.,
Ref. 11) and does not contribute much to the seman-
tic reproducibility needed for extending previous
computational work in a meaningful way. In fact,
mere bitwise reproducibility tempts researchers to
accumulate inessential complexity that can lead to
the extinction of a line of work, as they omit critical
information on how to extend their models. Such
excessive complexity occurs when too many compli-
cated systems build upon each other in nonintuitive
ways and make the overall composition impenetra-
ble for finite brains working in finite time. This is
caused by too many indirections that make it dif-
ficult to keep track of what is represented by what,
resulting in the danger of scientists standing on the
shoulders of giants whose feet are slowly sinking
into a swamp of irreproducibility. This can happen
if computational results depend on long chains of
approximations that build on each other and are
difficult to check because it is not obvious which
precise sets of elements (or numbers) are referred
to by a given name. Such problems are also easily
created by complex bioinformatic workflows, where
results depend on the precise version of a tool with
a given name, motivating the development of tools
to address this problem.12

A related problem is reinvention. Science thrives
on venturing into the unknown while building
on previous results. However, important results in
related disciplines can have unrecognizable names,
and, hence, researchers often reinvent instead of
standing on the shoulders of a giant on the other
side of a naming fence.

relevance to those who do the most important work for improving clarity. The goal is to highlight the blind spots in the designer’s
brain that tempt to prematurely accept a type system that does not well reflect the reality of those who might use the language. Poor
C2B interfaces are caused by (brain) cache inconsistency, which makes naming difficult as every communicator stores local name
definitions that are easily outdated. (B) Similarly, cache inconsistency can easily occur when collaborating in the Cloud. In one
example, Alice and Bob collaborate in the Cloud, and file changes get lost because there is no shared naming convention (loosely
based on an actual scenario observed, to our surprise). (C) In another example, Alice and Bob are able to efficiently exchange files
without data loss, after agreeing to a shared naming convention (illustrating how naming and cache invalidation are two sides of one
coin). In biology, these problems involve longer timescales and more collaborators, as all naming starts at independent locations
with new observations. Accumulating enough observations results in naming confusion that forces a choice of costs: pay explicitly
to standardize names (ensure cache consistency) or implicitly by losing research results to semantic rot. Hence, experts at the NIH
recommended the development of tools that support naming.65

127Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

BEST Names and semantic reproducibility Loewe et al.

Naming challenges for integrating models
in evolutionary systems biology
Mechanistic evolutionary systems biology (Evo-
SysBio)13 requires the integration of numerous
diverse and complex computational models, each
challenging enough to justify publication(s) and,
hence, often built by different researchers using dif-
ferent tools. Some of these EvoSysBio models can
be easily built by modularization approaches that
explicitly wire only the connections between mod-
els, hiding inside details irrelevant for model inter-
actions. Other models concern different subsystems
that nevertheless interact in a shared physical space,
which require synchronizing all parts from all mod-
els that access this shared space, such as a cell or
an ecosystem. Technically, such models can also
be built using a modularization approach; how-
ever, since almost everything in cells is connected
to almost everything else, the cost of a modulariza-
tion approach increases dramatically for large num-
bers of subsystems in a shared space: two models
with five shared parts may only require five send–
receive channels for each model (20 connections
with potentially distinguishable events). However, it
is never really possible to stop tinkering with them
as biologists keep adding new biochemical path-
way models that add to our understanding of a cell.
There is a multiplicative element inherent to such
scales: adding the 101st model will require commu-
nicating changes in a commonly shared molecule,
such as adenosine triphosphate, the cell’s energy cur-
rency, with 100 other models that could also affect
its amount, requiring at least 100 explicit wirings in
two directions. These considerations have inspired
proposals to put the semantics of molecules in their
name,14 so that combining different pathways in
simulations of a cell becomes easy, as the same
molecules in a shared physical space have identical
names—as in a namespace.

The BEST Names approach presented was
inspired by this very use case, as the range of biolog-
ical systems amenable to rigorous mechanistic evo-
lutionary systems biology analyses13 will be greatly
reduced if no efficient methods can be found for
fighting semantic rot from problems such as poor
naming. Naming is trivial for three items, doable
for 300, and then quickly becomes a swamp of com-
plexity for larger numbers of items. This problem is
compounded by the inessential complexity of poor
computational tools that produce results that are

mostly right enough (for the use cases of those who
wrote them), but do not support building deeper
computational hierarchies. Using such approximate
tools without integrated error handling degrades
research to finding needle-like errors in haystacks
of data, robs researchers of the time to make gen-
uine discoveries, and forces them to engage in costly
and frustrating naming exercises to determine if a
result should be labeled “reliable” or “numerical
artifact.”

Recently, a model has been constructed for sim-
ulating all molecules in a single cell.15–22 Produc-
ing this one-cell model required a large team and
much time and effort: data bases were constructed
for storing names, synonyms, and literature refer-
ences. From this material, the actual list of parts was
collated for simulation. This is not only a naming
problem because all these entities require a name in
the simulations, but also because they are known by
many synonyms that require some form of entity
resolution to merge them into a single identity, if
that is indeed what they are within a cell. Entity reso-
lution is the well-known computational problem of
identifying matches between records that look very
different. Like the general problem of naming itself,
entity resolution comes in many guises, such as tax-
onomic species description, ontology construction,
library organization, linking, and others.

At the core of these naming activities is the goal of
unambiguously identifying a given entity or mean-
ing in a way that makes it easy to reference. An
important difficulty in such work is illustrated in
Figure 2 using a simple example of a biochemical
toy model, where careless naming can easily derail
simulation results. Briefly, the homologous enzyme
called amylase (one of about 150 synonyms) is pro-
duced by human saliva cells and bacterial cells,
each with their own genetic regulation.23–29 Both
cell types break down starch, which is identical to
amylum in the bacterial model. If they meet in the
human digestive tract, the bacteria may grow (and
produce more amylase), while human cells would
be too slow for growth on the time scale of a meal.
The separate gene regulation networks of both cell
types require strict separation of amylase produc-
tion, while both process the same substrate, starch
(i.e., amylum). Resolving the naming problems in
this example by hand is simple, but the same prob-
lems easily spiral out of control at the level of a
cell, with its hundreds of thousands of types of

128 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

Loewe et al. BEST Names and semantic reproducibility

Figure 2. The challenge of combining independently developed models in systems biology, sometimes using different nomencla-
tures for the same entity (e.g., starch and amylum), or the same name for rather different entities (amylase is either under human
or bacterial control resulting in very different time courses, as bacteria grow much faster than human cells23–29). Here, we illustrate
a hypothetical scenario, where a model of starch breakdown in human saliva (A) was independently developed from a model of
amylum breakdown by bacteria (B). How starch is broken down during human digestion can be better understood if researchers
integrate these models (C), which could happen either by building a “supermodel” that manually wires each relevant change from
one to the other or by combining them into a common namespace and letting the compiler do the wiring by interpreting the
semantics encoded in the names of the simulated parts.

molecules. The biggest challenge is to determine
whether any simple omissions, as shown in Fig-
ure 2, hide among thousands of reactions that have
been wired manually. This challenge of tracking syn-
onyms is what the BEST Names concept has been
designed to address efficiently, without the overhead
of external databases. The diverse dialects enabled
by BEST Names can be used to implement diverse
naming strategies that prioritize different aspects of
the named entity, while all pointing to the same
single point of reference. Such simple (but not nec-
essarily small) name trees are a powerful tool for
linking complex simulation models unambiguously

to real-world entities (or at least highlight potential
problems). If one single name is like a single thread,
BEST Names can easily be woven into an extremely
strong rope with many threads that will hold under
many circumstances.

In online Supporting Information, we discuss
why naming is essentially an infinitely complex
problem with many diverse priorities that could
benefit from being addressed one after another (each
deserving a dedicated name, if needed). This avoids
the need to satisfy complicated trade-offs and dif-
ferent audiences all at once by either attempting
to find the “perfect name” or choosing a random

129Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

BEST Names and semantic reproducibility Loewe et al.

Table 1. Questions on aspects of naming complexity

Aspect of naming Property of Modified by Affects Potential questions Potential answers

Explicitness Part, whole User relevance and
ease; authority
defines standards

Users How many interesting
details from lower levels
of content are packed
into the Name?

List some or all elements of
the set that is being
named

Clutter Whole As above Users How many uninteresting
details from lower levels
of content are included?

Listing the elements of
subsets of subsets . . .
makes for tedious
reading, even though it
increases precision (see
“Form Filling” mode of
computing)

Audience
(intended)

External Experience of the
naming authority,
feedback

Perceptive naming
authorities

How will the names be
used? As predicted by
the authority?

Differ for different
authorities

Audience (actual) External Quality and usefulness
of names

Perceptive naming
authorities

Which names are
accessible for actual
users? Which support
exists (dictionaries,
name trackers,
immutability, etc)?

Differ for different
authorities and may also
depend on the audience
(e.g., if allowing for
different BEST Names
dialects)

Mode of
computing
(Table 2)

Whole, external Machine type Names users,
authority

Which modes of
computing are used for
naming? Is it allowed to
mix modes when
naming, despite the
potential confusion?

Name contains any address
from a locally linear
space, or all content, or
content fragments, or
any queries for element
subset conditions, or a
mix

Assigning Whole, external Item or pattern for
which type is
unknown

Authority, users Is the Name assigned to an
Item or Pattern that is
observable in the real
world? What is the most
appropriate name for
this content?

Searching for good names
can take time. Resulting
names can be temporary
or local until they are
centrally standardized
(to avoid distributed
naming)

Inventing Whole, external Invented type for
which no real-world
equivalent is known

Authority, users Which name best describes
the properties of a Type
or Pattern that is not
observable (i.e.,
Fiction)?

Types exist without items.
They are either made up
or not yet identified.
Their names reflect
properties

Naming authority External Local, distributed, or
global users

Naming process;
users

Who names newly found
content? Who can list all
local names in a context,
and how many at a time?
Who names the
authority and how is it
found?

Authorities can be context
defined (address)-,
self-appointed-,
other-appointed-,
self-naming-,
other-naming-, local-,
distributed-, global-,
absolute-, etc.

Label purity Whole Naming authority Stability Pure names are pure labels
without any other
meaning. How
independent is the name
from anything that is
being named?

Names can depend on
storage location,
content, context, type,
or specifics of these.
Pure names are free
from any interpretation
other than “label of
content” (like a
collision-free hash key
pointing to content)

Note: Many aspects of naming contribute to its complexity: a multitude of competing perspectives and potential criteria, whose
importance is often only clear with hindsight. To help navigate naming complexity and facilitate more conscious naming decisions,
we present some questions of potential interest. An exhaustive list is beyond the scope of this study and would also have to investigate
address-names, relative names, naming-ambiguity, brevity, name-usage-complexity, name-search-complexity, maturity, namespaces,
absurdity, versioning, intuition, standardization, and many other aspects that can affect the Whole name, only a Part of the name,
or something External to the character-sequence of the name itself (as indicated in the column “Property of”). In this table, “users”
refer to persons or programs that use a name that had been given by a naming “authority.”

130 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

Loewe et al. BEST Names and semantic reproducibility

name, accepting a misleading name or remaining
blissfully unaware about how confusing the cor-
responding name actually is for others (see also
Table 1).

BEST Name dialectsa

A brief overview of BEST Names is provided in
Figure 3 and in the acronym itself, describing four
dialects reflecting different types and levels of exper-
tise in any area:

� Brief for Busy power users who value brevity

to reduce typing
� Explicit for Expert developers expecting ease of

writing and reading
� Summarizing for Starting students who need a cheat

sheet
� Technical for Technical standards linked to, as

needed

More dialects can be defined as needed, but only
the Explicit Name is essential, as it provides the
best compromise between readability and brevity
(and is similar to the single name that other lan-
guages accommodate; thus, BEST Names do not
enforce a rigid naming scheme). All SynonymNames
within a dialect, as well as all BEST Names dialects
within a namespace, point to the same uniquified
StableMeaning (StM), which is defined by Stable-
Content that represents all relevant semantic details
(denotational semantics, structural semantics, alge-
braic semantics, operational semantics, or any other
approach to semantics, as defined by the context,
implementing the StableContent associated with
a BEST Name). Exactly one StM (pointed to by
names) links to exactly one StableContent that is

aBEST Names were first presented in 2014, contributing
to discussions on reproducibility,3 and then in 2016 at the
“Workshop on Data Science, Learning, and Applications
to Biomedical and Health Sciences,” held on January
7–8, 2016 at the New York Academy of Sciences (https://
sites.google.com/site/dslabhs2016/proceeding-papers).30

We have been developing and using BEST Names
throughout that time. Our work in developing Evolvix as
a user-friendly model description language with a focus
on biology spans algorithm development and simulation
work aiming for a deeper understanding of specific
biological systems.13,31 BEST Names have been inspired
by, benefitted from, and served well in the overall mission
of Evolvix to make accurate modeling more accessible.

unchangeably linked to its version information and
a uniquifying hash-code to ensure that it follows the
DRY on a SPOT principle (Don’t Repeat Yourself
on a Single Point Of Truth).

Technically, BEST Names in a given namespace
are managed in a data structure that provides a
local key-value map of each name to its unique
StableContent. If BEST Names synonyms in such
a namespace map to more than one uniquified StM,
then a naming conflict has occurred (see homo-
graphs in Fig. 3). A local collection of StMs pro-
vides the equivalent of a BEST Names dictionary.
Various efficient data structures now exist to sup-
port dictionary-type collections that maintain a use-
ful degree of order.32 See earlier work on BEST
Names for a draft of important implementation
functionality.3

Precursors of the BEST Names concept
After the first introduction of BEST Names,3,30

closer inspection revealed precursors that had
inspired its development. For example, we used
something similar in the evolution@home project
Simulator00533–37 for disentangling the longer
meaning of observed modeling variables from the
Brief Names used in concise simulation reports,
which demonstrates that equivalents of BEST
Names could be used in other languages, albeit requ-
iring additional implementation work.

A combined variable name had previously been
proposed to make it easy to see simultaneously
which equations in systems biology models an iden-
tifier might refer to and what the actual biological
meaning was.38

While not exactly an identifier in code, languages
such as General Algebraic Modeling System (GAMS;
https://www.gams.com) or Python have simple syn-
tactic additions that allow recording the equivalent
of a Summarizing Name; Python’s DocString can
also handle arbitrarily large texts and has in ReStruc-
turedText a powerful documentation system.39 Sys-
tems for combining code and documentation have
a substantial history, which includes tools that pro-
cess a mix of code and comments into a presentation
optimized for readability.40

The long history of complex naming efforts
in biology repeatedly inspired diverse dialects
for coordinated naming of new discoveries. For
example, naming epidemiological Ebola virus
samples41 recently defined dialects equivalent to

131Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

https://sites.google.com/site/dslabhs2016/proceeding-papers
https://sites.google.com/site/dslabhs2016/proceeding-papers
https://www.gams.com

BEST Names and semantic reproducibility Loewe et al.

Figure 3. BEST Names can simplify naming in complex biological models, if all names and synonyms in a context are consistently
mapped to exactly one StableMeaning (StM) as implemented by pointing to one StableContent. The insert shows what goes wrong
if two BEST Names trees that should be separated happen to not be, due to a naming conflict: in that case, the synonym “B” would
ambiguously map to two StMs. There is no point in biology to have computers automatically resolve this, because by the time a
computer reaches this point, it will have completed the part that is most difficult for humans: finding the needle in the haystack
where this miswiring actually occurred.

Brief (“Abbreviated name”), Explicit (“Shortened
name”), Summarizing (“Full name”), and Technical
(“<DEFINITION LINE>” and “GenBank Acces-
sion Number”).

BEST Names in more detail
BEST Names capabilities in a modeling language
would make it easy to highlight the problems in the
abovementioned amylase example (Fig. 2), so that

132 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

Loewe et al. BEST Names and semantic reproducibility

researchers could manually fix them efficiently and
no longer have to search for them like a needle in
a haystack. Computers cannot fix these problems
easily, but they can highlight them easily by using
ideas like the BEST Names concept.

An ideal name conveys the essence of a semantic
unit to readers and allows them to maintain focus
by avoiding disturbances in reading flow, such as the
need to look up meanings or excessive visual clutter
from unnecessary explanations. Readers at different
levels of familiarity with the underlying concepts
will require different details to protect the readabil-
ity of a code. The conflicting needs of a diverse user
base are impossible to meet with just one way of
representing names: this conflict is best resolved
by providing multiple identifiers for the same sta-
ble meaning. Thus, for developing Evolvix, we have
given up the goal of finding single names that work
for all users. Instead, we will use BEST Names explic-
itly to enable communication between diverse audi-
ences by supporting dialects corresponding to users’
natural usage and topic familiarity. As all dialects
must unambiguously map to identical StMs rep-
resented by corresponding uniquified names, there
must be no doubt about what a particular identifier
might mean at any given point in time. Key dialects
are described next (Fig. 3).

Overview of dialects
Brief Names. Brief Names are for experts or spe-
cialists who use certain functions so much that they
value the option to memorize more and type less.
The Brief dialect values brevity over readability. An
effort should be made to use common abbreviations,
associations, and mnemonics, while eliminating as
much semantic ambiguity as possible.

Explicit Names. Explicit Names are for program-
mers who prefer something that is both short and
memorable. They do not need introductory infor-
mation as they are past the beginner’s stage and
now look for more efficient coding. Any explicit
naming scheme should exploit opportunities for
combinatorial regularity as much as possible to sim-
plify learning. Explicit Names should combine the
strengths of Brief and Summarizing Names.

Summarizing Names. Summarizing Names are
for beginners who often need to learn related under-
lying concepts. These names must be as didactic,
precise, and explanatory as possible and should be

field tested on beginners to improve clarity. The
emphasis of Summarizing Names must be an intro-
ductory presentation that avoids unnecessary jar-
gon. Examples that “describe what the name stands
for” can be found in the online Supporting Infor-
mation (see Figure S3 in Supporting Information
for the Brief Dictionary of the Project Organization
Stabilizing Tool (POST) system).

Technical Names. Technical Names are for
experts and should reflect the name of the corre-
sponding semantic unit in an appropriate ontol-
ogy. They should enable a technically literate reader
to quickly identify key concepts at hand without
knowledge of other syntactic details, which are irrel-
evant to the problem domain.

Synonyms. Synonyms can be defined in arbitrary
quantities for any BEST Name, as long as they do
not create naming conflicts (an identifier pointing
to more than one StM). The position of “first syn-
onym” is special in that it must hold the default
identifier that will be used when a representa-
tion of its StM is requested in the corresponding
dialect.

Mixed use. Mixed use must be possible at all times
for BEST Names, such that any identifier from any
dialect can be used in any sequence that would be
permitted when using only one dialect. The integrity
of identifiers must be respected by any implemen-
tation in the sense that identifiers can occur as
fractions of other identifiers without causing name
clashes.

Translating between dialects. Translating bet-
ween dialects should be easy for any system imple-
menting BEST Names, such that any synonym from
any dialect enables access to (1) all synonyms of its
StM in all dialects, (2) all data and functions in its
StM, and (3) at least one form of linkable ID that
facilitates quick StM access for external code.

Preferred synonyms are used for representing the
dialect in output (there can only be one preferred
synonym per dialect). Unpreferred synonyms are
fully recognized as preferred synonyms, but are not
actively used when producing output in their dialect.
The resulting name trees of all StMs must always
remain independent (Fig. 3).

Defining new dialects. Defining new dialects for
special purposes is encouraged, as long as they do

133Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

BEST Names and semantic reproducibility Loewe et al.

not compromise other required functionality, all
synonyms in all dialects remain unambiguous in
their corresponding namespaces and this can be
checked automatically. In Evolvix, the names of
user-defined dialects are not allowed to consist of
only a single letter (reserved for future expansions
of the Evolvix standardized naming system beyond
“B,” “E,” “S,” and “T”), and must not clash with
any letter-case combination of the names “Brief,”
“Explicit,” “Summarizing,” and “Technical.” We
recommend a similar convention for other systems
adopting the BEST Names concept.

StableMeaning, StableNames, and StableCon-
tent. An StM is the underlying meaning repre-
sented by all of its BEST Names synonyms. StMs
can map to any concepts or details from an ontol-
ogy or be defined by the local context. StMs can
be further documented in associated info texts.
The abstract StMs that BEST Names point to can
be more fine-grained than the concepts typically
used in ontologies. Ultimately, StMs are defined by
combining whatever definition of semantics the lan-
guage compiler will associate with them by provid-
ing corresponding StableContent (e.g., the oper-
ational semantics of the code they point to, the
structural semantics of the data they point to, and
the notational semantics of names or other text
details that document meaning in human read-
able form). StableNames (see Fig. 3 for composi-
tion) are the tangible representations pointing to
abstract StMs, which are implemented by the Stable-
Content that represents all relevant semantic details
(denotational, structural, algebraic, operational, . . .
semantics as defined by the context). This mirrors
the simple, intuitive, real-world interpretation that
a name is a box; meaning is what is inside.

Experiences with BEST Names

So far, we have a number of naming projects,
either ongoing or near completion, which have used
the BEST Names concept extensively, including a
renaming of the 16 Boolean truth functions and of
aspects of fundamental modes of computing. The
most elaborate use case produced the StabilityCodes
of the POST system presented online as Supporting
Information.

The potential of BEST Names
We focused on biological synonyms in model-
ing, but complicated naming trade-offs exist else-

where in programming, as also discussed in another
thorough analysis.42 Trade-offs vary substantially,
hence BEST Names do not require synonyms
for all four common audiences defined here, nor
for all words in a language or variables in a
program.

BEST Names can act much like glossaries in text-
books: they do not define all words, but collect
those most likely to trouble target audiences and
guide their interpretation and usage in a partic-
ular context. Knowledgeable readers do not have
to use glossaries, but for newcomers they extend a
warm welcome into the field. Similarly, BEST Names
can offer flexible support for any of the four com-
mon audiences and may accommodate more spe-
cialized audiences via the definition of additional
dialects.

The only requirement is that at least one name is
mapped to each StM; all else is optional. This makes
BEST Names no more difficult than naming in other
programming languages, yet it offers the flexibility
to include more representations of meaning from
different perspectives and thereby increases seman-
tic reproducibility.

Deeply integrating this simple and versatile con-
cept into the syntax, parser, and compiler of a lan-
guage could further simplify various forms of name
processing (e.g., when formatting for different pur-
poses). As the general design of Evolvix (http://
evolvix.org) is being reviewed to incorporate expe-
riences from previous language implementations43

before committing to a specific implementation, we
continue to find BEST Names useful for finding
short, medium, or long keywords for beginners and
experts.

The potential of implementing BEST Names in
the core of a general-purpose programming lan-
guage can be substantial. BEST Names can help
find better names during development and thus
ease refactoring. Allowing for dialects had a notice-
able liberating effect in discussions of Evolvix syn-
tax design, substantially affecting long-term design
decisions. The BEST Names design is one of many
examples where the biological background that
drives the development of Evolvix inspired a feature
that makes Evolvix a programming language that is
particularly attentive to the needs of biology. The
needs of biology are likely to present more oppor-
tunities to improve general-purpose programming
capabilities.

134 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://evolvix.org
http://evolvix.org

Loewe et al. BEST Names and semantic reproducibility

Table 2. Ontology computing and other modes of computing affect the role of names in programs and bugs

Modes of computing

Storage space

navigation

Content data

(longer term) Code changing data

Execution data

(shorter term) Role of names Bugs related to names

Structured

Commanding

Store data and

computing

instructions in a

sequence of memory

locations, then

follow the sequence

of instructions (may

include conditions

and loops) and load,

manipulate, or save

data accordingly to

get solutions.

Arrays

In its most basic form,

all content is stored

in a very long array

of bits or bytes that is

subdivided in

various ways.

Array elements

The content of array

elements contains

the data that are

being processed.

Variable names can

be seen as more

readable names for

memory addresses.

Code sequences

Some of the available

data are changed by

executing sequences

of commands in

scripts or functions.

Starting pointer

Execution of all

computing starts by

following a pointer

to a well-defined

function or script,

which will point to

the next one, until

the task is completed

(or interrupted).

Array locations

Names are human

readable labels

pointing to a

fixed-size box

position with

content of interest in

storage space. Much

work goes into

storing content

exceeding fixed box

sizes.

Pointer bugs

Variable names

pointing to the

wrong box usually

return the wrong

content. Function

names pointing to

the wrong address

lead to bugs or

security holes. If

content does not fit

the allocated box,

names become

misleading and the

underlying

assumptions of the

code are violated.

Functional Form

Filling

Define the names of all

wildcards (that can

be replaced by

anything), the

content of all forms,

and the inputs to

replace the

wildcards. Execution

replaces wildcards in

forms by filling in

specified input in the

given order.

Namespace

All possible names for

wildcards and forms

build a namespace

that can be used for

storing anything,

irrespective of size.

Forms

All content is

represented as forms

that contain a

combination of

previously filled-in

content and

wildcards

Fills

Forms are modified by

filling the places of

wildcards with

specified content.

This can create new

forms to fill.

Starting forms

Filling the initial forms

with initial content

triggers the rewriting

of all other forms in

specified order to

deliver the last

rewritten form as

output.

Abstract roles

Names identify

patterns in dynamic

content with widely

varying sizes. Thus,

costs of using static

names or retrieving

content may be

unpredictable.

Replacing bugs

Consequences of too

many substitutions

executed on top of

each other can be

unintuitive. Bugs

occur when the

formal definitions

specify unintended

substitutions.

Ontological

Dictionary Defining

A special variant of

form filling, where

the entries of an

ontology are

wildcards, and their

definitions are

forms, possibly using

other wildcards.

Computing is

defined as replacing

all wildcards to get a

fully explicit

definition for a

dictionary entry.

Namespace

All possible character

sequences for entries

of the ontology’s

dictionary define its

namespace. A

position in space is

occupied if a name

definition is

provided.

Conditional

definitions can

provide subspaces

for resolving

ambiguities.

Term definition

A term name is

equivalent to a

storage address,

where the content

matter behind the

name is given by its

definition. If context

dependent, this

houses multiple

definitions, as found

in dictionaries for

words used in

different contexts.

Cross links

A term defined by

other terms that are

defined by still other

terms creates a

network of links that

defines the code to be

executed. Cross links

easily create parallel

and/or recursive

structures that can

make it as difficult as

the halting problem

to know which

definitions are

circular (leading to

infinite loops).

Retrieving term

definitions

Each explicit definition

computes a full

execution tree. The

levels of nesting

equivalent to

generalized

computing depend

on how many

definitions are

expanded or

contracted. Aiming

to compare similar

terms from

independent

ontologies of the

same area thus easily

defines data

structures too

complex to complete

comparisons.

Definitions

Names are keys to

dictionaries and

ontologies. Naming

is complicated by the

large shared

name-spaces, often

with controlled term

lists to minimize

accidental

ambiguities. For

defined ambiguities,

all conditions for

resolving the

ambiguities are

given.

Ambiguity bugs

Naming errors cause

two major problems:

accidental ambiguity

in use (from typos or

sloppy use of terms

in other definitions,

resulting in dead

pointers) and a

mismatch between

the name and

definition used for a

given term (by

ignoring key C2B

interfaces in users).

Such naming errors

can result in dead or

misguided links,

contradictions,

unnecessary

ambiguity, and

circular definitions

that obscure

meaning.

Logical Solution

Isolating

Declare the input of all

potential solutions,

then apply all

relevant constraints

to distinguish actual

solutions from

nonsolutions.

Sets

Sets can store elements

and subsets. Thus,

the identities of

existing sets, subsets,

and elements define

a nested storage

space.

Elements

Elements can be either

basic or composite,

where the latter

define data in the

form of subsets.

Query logic

Sequences of nested

queries that

successively narrow

down an original

broad set of

solutions until the

final answers are

isolated.

Requirements

It is often faster to start

execution with the

ultimate

requirements and

proceed by

evaluating only those

needed to meet

these. Forward

execution often

computes unneeded

details.

Query results

Names identify

combinations of sets

and elements

directly or indirectly

specified using some

logic formalism;

great for querying

sets, but not for

numerical

computing.

Set content bugs

Poor name choices

make it difficult to

determine the

boundaries of sets

queried; errors occur

when elements are

included that should

be omitted and vice

versa. Poor naming

of infix operators

with perplexing

precedence rules can

further obscure the

content of a set.

Continued

135Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

BEST Names and semantic reproducibility Loewe et al.

Table 2. Continued

Modes of computing

Storage space

navigation

Content data

(longer term) Code changing data

Execution data

(shorter term) Role of names Bugs related to names

Concurrent network

traffic

Define the network by

listing all nodes, all

links between them,

and all actions

affecting the

network. Simulate

time by executing all

ongoing actions

concurrently to

change the network

until it represents the

solution.

Nodes, links

The space of networks

is defined by

possibilities for the

existence of nodes

that store data to be

acted on with other

nodes; whether

concurrency is

physical or

conceptual is

irrelevant.

Stable network

between actions

Data are stored in

those nodes and

links that exist

locally. This inherent

locality is difficult to

recognize in some

algorithms, but it

conceptually exists in

all networks.

Concurrent patterns

Many actions executed

by nodes form

repeatable patterns

of change in their

local memories.

Describing

concurrent patterns

efficiently in code

can take many forms.

Transient states

Concurrent patterns

are defined as

possibilities realized

only when the

necessary content is

in place. The initial

state of networks

determines

possibilities, making

forward simulations

a method of choice.

Labels in transition

systems

Names of nodes and

actions define

implicitly the links

that govern the

simulation of

concurrent processes

that might interact.

It can be challenging

to track relevant

names when they are

created dynamically.

Tracking bugs, typos

If minor changes in

names create major

effects and no

support exists for

catching typos, then

naming bugs rewire

networks to become

misleading.

Concurrent

networks are harder

to debug, if

identifiers can

change meaning

with contexts.

Physical world

Physics framed as

computing (to learn

from its stability):

store matter in space

and define how

sequences of actions

allow it to change

over time. Use

energy as transient

storage that affects

what happens next.

Space

Positions in 4D

space–time define

potential storage

places with limits for

the amount of

content matter that

can be stored there.

Each 4D position

can be seen as an

implicit name.

Matter

Content can be seen as

networks of specific

atoms that occupy

given positions in 4D

space–time. Each

content matter can

be an implicit name.

Time

Time can be seen as all

potentially occurring

action patterns

defined by how they

would change

implicitly named

matter in space,

contingent on all

conditions being

met. Each timed

localized specific

potential action

pattern can be seen

as an implicit name.

Energy

Energy can be seen as

the present-time

enabler selecting

some of the many

potential actions by

meeting their energy

requirements. Thus,

each timed localized

specific potential

action pattern that

has been enabled can

be seen as an implicit

name (usually called

“historic event”).

Energy is temporary

storage as it only

exists in transit.

Coordinates,

alternatives

Physics defines four

basic types of

implicit names

(timed position,

content matter,

potential, and

executed actions).

These run the

physical Universe

and suffice also for

concurrent

Networks Traffic.

The implicit types

enable infinities of

combined derived

names for more

complex patterns (or

“traits”).

Delineation bugs

Lower level implicit

names like relative

positions can

generate attempts to

access elements

beyond the limits of

an array; such bugs

can be hard to find

without automated

help. As

communicators can

dynamically

(re)name anything at

will, naming is

superinfinitely

complex and extra

care is needed for

agreeing on the same

delineations.

Note: Columns highlight parallels between the modes of computing given in rows, such as (imperative) Structured Commanding,
Functional Form Filling, Ontological Dictionary Defining, Logical Solution Isolating, Concurrent Network Traffic, and the Physics
World (matter–energy in space–time). This very foundational view enables a new perspective on the role of names in each mode of
computing and the opportunities and dangers names present for all programmers. While proofs show that infinite time and resources
allow each mode of computing to accomplish any task another mode can do, in practice each mode greatly simplifies some types of
tasks, but not others. Names were chosen to provide a fresh perspective on these tasks, some of which are particularly fundamental
to computing (Structured Commanding, Form Filling, Solution Isolating, and Network Traffic). Most general-purpose languages
combine aspects from these fundamental modes of computing to facilitate the efficient implementation of diverse complex scenarios,
but support for some aspects is often retrofitted or limited. A more streamlined and thorough integration of fundamental modes of
computing could simplify programming and the construction of many derived modes of computing such as Ontology Computing
(derivable from Form Filling) or simulating the Physics World (derivable from Network Traffic).

Ontology computing, BEST Names use
cases, and naming in fundamental modes
of computing

Table 2 describes four fundamentally different
modes of computing (MOs) that have been proven
to be equivalent in their computational power (but
not equally useful for all problems). In this con-
text, it is possible to define ontology computing as
a derivation of functional programming. We delib-
erately chose unconventional names to help readers
think about these MOs in new ways and to identify
the role of names (and naming bugs) specific to the
corresponding computation.

BEST Names can be seen as a simple entity-
resolution forwarding device, such as an alias or
link, as known for a long time in programming lan-
guages (e.g., typedef in C++), albeit with the same
rights as the original name.

BEST Names are not made to be computationally
complete, such as the big ontologies in biomedical
science (e.g., SNOMED and UMLS)44–54 and others
that support ambiguity resolution, which requires
the management of conditional environments and
essentially makes these ontologies Turing complete.

Many ontologies also allow for synonym
resolution. For example, SNOMED and NIH

136 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

Loewe et al. BEST Names and semantic reproducibility

UMLS44,45,50,52 (https://www.nlm.nih.gov/research/
umls/; http://www.ihtsdo.org/snomed-ct), with
their metathesaurus and semantic network, are
designed to help medical professionals quickly
navigate medical synonym complexity in stressful
situations by listing frequently used synonyms
and all their alternative meanings. Such real-world
demands require support for synonyms that are
clear to humans, but ambiguous for computers,
since decisions in a clinical context leave little time
for formal synonym resolution. Thus, such systems
necessarily support multiple levels of synonymy.52

In contrast, BEST Names can only minimize
ambiguity by asking modelers to review all names
that appear not to be unambiguous (see definition
12 and definition 14-3 in Reference 52 for potential
definitions). As in other ontologies, these richer
synonym resolution tools require maintaining
additional systems as they allow ontologies to be
transformed into full Turing machines, as pointed
out in Table 2. Thus, the comparison of ontologies50

can be an undertaking that is as predictable as the
halting problem, if the ontologies are not trivial
and contain significant ambiguity52 or circular
definitions.

Powerful ontology systems are the tools of choice
if a relevant ontology already exists (e.g., at http://
protegewiki.stanford.edu/wiki/Protege_Ontology_
Library), but that is not always the case when
building smaller systems biology models. In fact,
these smaller models might aim to link to different
ontologies in order to properly identify the various
parts in the system they model. In this case,
BEST Names can facilitate linking to entries in
other ontologies by allowing these to be added as
synonyms. However, enforcing semantic types and
relations is beyond the scope of the BEST Names
concept and best accomplished by a corresponding
virtual machine or type-checking compiler.

When the BEST Names concept was first pre-
sented, the problem of semantic reproducibility was
highlighted.3,4 BEST Names address this problem,
in part, since different synonyms can communicate
different semantic aspects, but all have to point to
exactly one StM. The strength of BEST Names is that
all of them can be used interchangeably in the syn-
onym namespace as long as they remain unique (or
have been uniquified, i.e., artificially made unique
by appending a pure name long enough to guarantee
uniqueness).

Their use case focuses on the diversity of bio-
logical names in modeling, which requires a sim-
ple and near ubiquitous way of entity matching on
the basis of limited information. Since this type
of match is done before executing a program, it
is easier to involve users in providing more help-
ful information. We aim to facilitate the efficient
meaningful combination of different models devel-
oped by different researchers. A similar aim is driv-
ing diverse work in the systems biology modeling
community.13–22,55,56 It also motivated the devel-
opment of the concept of “semantics-based adapt-
able interface modularity,”14 which shares with the
BEST Names concept the idea of actively managing
names to enable the efficient merging of models.
Both methods aim to find common stable mean-
ings from different models, thus allowing the names
from both models to be treated as synonyms.

The synonym problem is being addressed by
diverse frameworks for data integration.57–62 For
example, entity matching can be interpreted as
identifying synonyms from different sources.57,60

There are certainly many problems in biology where
more database-intense approaches of entity reso-
lution are appropriate; however, the BEST Names
concept appears to be much more lightweight and
easier to use from within source code. Provenance
systems can also resolve synonym naming difficul-
ties by tracking various names of items in different
contexts (see the new W3C PROV standard with
formally defined semantics63). Again, the full com-
plexity of allowing for arbitrarily nesting groups of
user-defined provenance information, as allowed by
the PROV standard, can be seen as a separate pro-
gramming language in itself; such complexity does
not always help to solve the much simpler problem
of “unambiguous synonyms only.”

Naming is complicated, and various other discus-
sions have indicated many reasons,1–3,12,14,17,30,38–72

such as BEST Names do not aim to solve all nam-
ing problems (a task almost as complex as describ-
ing the world), but they do aim to help the writers
and users of code to navigate the trade-offs that are
a necessary part of any attempt to communicate
semantics by choosing a name. Also, the possibility
to link to an StM that is frozen in time and could
thus be stored and reactivated as needed creates the
possibility to use ideas from the Nix functional pro-
gramming language,66 in order to further improve
long-term backward compatibility.

137Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
http://www.ihtsdo.org/snomed-ct
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

BEST Names and semantic reproducibility Loewe et al.

Perspective: code readability, stability, and
flipped programming language
design

The decision to support BEST Names through-
out Evolvix and all its simulation and model-
ing aspects3,30,31 has prompted revisits of bigger
naming questions in languages: how to remove
the danger of absolute names, separate pure
from impure names, construct ontologies, inte-
grate imported data, facilitate local naming by
independent authorities, and improve support for
associated information texts, meta-data, and liter-
ate programming.1–3,14,30,39–42,52–72 Writing readable
code is an art.69 We have come to think that BEST
Names can help improve the state of this art.

The BEST Names concept was inspired by the
very real need of modelers to find a way to track the
meaning of the many variables in systems biology
models.3 We also realized that newcomers prefer
longer names, whereas power users do not like to
type that much (and it is surprising how quickly
newcomers can turn into power users, simply by
repeating the same task many times). The comments
we gathered in our small informal survey on nam-
ing seem to confirm these length preferences (see
online Supporting Information). If unresolved, this
fundamental tension will relegate any language to
be either a basic beginners’ language or short and
fast code for power users, remaining forever cryp-
tic to everybody else. This naming tension is likely
to keep blocking the path of beginners’ languages
from developing into power-user tools, thus adding
inessential complexity71 to computational biology’s
necessarily heterogeneous audience. BEST Names
provide a systematic way of resolving this tension.

Using this conceptual tool, we have been aim-
ing to design a language that is powerful enough
for sophisticated computation biology, yet simple
enough to have a gentle learning curve and inviting
enough for biologists who would otherwise never
dream of modeling or programming. Eventually, we
discovered that, despite the mantra of professional
programmers to “use the right language for the
job,” we could not find a general-purpose program-
ming language that was designed by biologists for
biologists facing biology’s complexities. While there
exists a wide variety of specialized tools and domain-
specific languages (e.g., see http://SBML.org), none
provides a long-term backward-compatible plat-

form for reliable computing in biology, as needed for
making progress in evolutionary systems biology at a
reasonable speed.13 It is not impossible to use other
general-purpose languages, and in principle com-
putational biologists could also use machine code as
they did initially. However, the success of scripting
languages like Python has shown that higher level
abstractions tend to make programmers much faster
when writing code. Evolvix can provide additional
levels of abstraction that greatly simplify repetitive
general-purpose programming tasks in the context
of biology. For biologists, such efficiency means
built-in support for importing diverse data, ana-
lyzing sequences, comparing statistics, modeling
replicators (that could be nested), and simulating
chemical reactions, ecological systems, and popula-
tion genetics—all within a single model that is easy
to modify and provides enough numerical accu-
racy for tracking extremely rare events (and auto-
matically highlights when higher precision may be
needed). In contrast, currently, biologists either pro-
gram around the lack of such features in a general-
purpose language, start to write tools that address
their needs, or simply pick another question. Thus,
current computational biologists spend much of
their time fighting inessential complexity71 to the
detriment of research time.

These inefficiencies motivated the decision to
transform the special-purpose modeling language
Evolvix (efficiently simulating mass-action system
time series31) by adding general-purpose program-
ming capabilities without sacrificing clarity, expres-
sivity, or long-term backward compatibility (see
http://evolvix.org). The discovery of BEST Names
was an important milestone in this effort, since
it allows a language to support noncomputational
biologists and comp-bio power coders equally
well—thereby removing a fundamental objection
to the question of whether such a language can
be designed at all. With this fundamental tension
resolved, there is no reason not to construct dif-
ferent dialects for maximizing the access of user
groups with diverse needs to Evolvix functionality.
Simultaneously, this responds to the NIH Data and
Informatics Working Group’s call for naming sup-
port systems72 that address substantial and ongoing
globally distributed naming challenges, where biol-
ogists face the problems highlighted in Figure 1B
over the time span of years (e.g., recent Ebola
outbreaks41), decades (e.g., Enzyme Classification

138 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://SBML.org
http://evolvix.org

Loewe et al. BEST Names and semantic reproducibility

numbers), or centuries (e.g., taxonomy). Other
disciplines could easily benefit from naming sup-
port too.b

Since long-term backward compatibility is essen-
tial for enabling biology students of future gen-
erations to build on the models developed by
students today, one of the first Evolvix requirements
is to find a way of measuring progress toward this
goal such that it enables a balance between the fol-
lowing two extremes: (1) enforce strict control over
the Evolvix standard and its implementation, only
allowing for code that builds on concepts that are
tried and tested. While this is great for stability, it
creates so many constraints on a development envi-
ronment that it frustrates most computational biol-
ogists, who are looking more for opportunities to
innovate than for ways to lock down code. For them,
a stimulating research environment is important
and requires a flexibility not easily reconciled with
the long-term stability needed for Evolvix. However,
they would probably use the opportunity to publish
their code if this was made simple by an appro-
priate package and documentation infrastructure.
(2) Allow innovations to flow freely to address the
abovementioned problem. This replaces one prob-
lem with another, as the path of innovation is not
predictable. If all innovative ideas worth testing also
have to become stable software packages for the long
term, then the resulting inessential complexity71 will
quickly destroy the system (and has done so for
many legacy languages). Simplicity is to be highly

bFor example, in mathematics, it has been observed that
the “number of systems of terminology presently used in
graph theory is equal, to a close approximation, to the
number of graph theorists.”74 This might stem from an
emphasis on axioms and formal results, requiring a clear
view of the structure of operations; naming is compar-
atively less important. A mathematician illustrates this
way of thinking by pointing out that from a strictly log-
ical point of view, it would not matter if “points” and
“lines” were called “frogs” and “kumquats” (see p. 397
in Ref. 75). Thus, to maximally reduce clutter from nam-
ing, many mathematicians prefer single letter variables
that maximize brevity at the expense of readability for
nonexperts. The resulting multiplication of synonyms,
near synonyms, and homographs leads to steeper learning
curves for beginners and extra work for experts compar-
ing results. BEST Names could reduce costs of names in
mathematics just as in biology.

valued in a standard. Designing Evolvix for simplic-
ity is as much about what is not included as about
what is. Thus, innovations should be easy to pro-
pose and easy to thoroughly review to keep the core
of Evolvix simple.

To this end, we have been developing the Stabi-
lizingZone in the POST system (see online) using
the BEST Names approach. It provides a framework
for moving source code from less stable levels
(MockupModel, NewNonfunctional, Operate-
sOften, PreProbing, and QualityQuest) gradually
toward more stable levels (ReviewedRelease,
StableSource, and TrustedTested). The latter are
reserved for tools that have been (1) thoroughly
reviewed, (2) tested by long-term production use,
and (3) are backed by mature scientific theories (see
Summarizing Names in Supporting Information
for details of this design.)

When developing with BEST Names for the long
term, discipline and review are essential to avoid
quickly cluttering namespaces with ad hoc names
by misappropriating good names for general con-
cepts to define much narrower terms (making them
unavailable for a backward-compatible unambigu-
ous standard). While name clashes are difficult to
produce with long names (which are also diffi-
cult to spell right), competition for Brief Names
is fierce and requires careful balancing. To enable
such long-term developments for Evolvix keywords,
all letter sequences that start with a whitespace
have been reserved as such—following the lead
of LLVM’s argument about enabling long-term
growth of keywords (http://llvm.org/docs/LangRef.
html#identifiers). Thus, Evolvix breaks with the
programming language tradition of reserving key-
words and instead reserves selected punctuation
prefixes. Given the impact of such a requirement on
users, we used the Flipped Programming Language
Design approach (Fig. 4) to find the ideal symbol.
This approach proved itself by ruling out tempting,
but visually complex, alternatives before settling on
a simple, unobtrusive symbol that is already widely
used (e.g., in domain names): the dot. The only dif-
ference is that it directly prefaces all user defined
item names in Evolvix without exception. It enables
the use of BEST Names for keywords in Evolvix.

This also provides a clean slate for renaming
everything in a programming language and lifts dis-
cussions with users to a new level about what might
be useful to them. This new perspective motivated

139Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://llvm.org/docs/LangRef.html#identifiers
http://llvm.org/docs/LangRef.html#identifiers

BEST Names and semantic reproducibility Loewe et al.

C
om

m
un

ic
at

io
n

B
ar

ri
er

C
om

m
un

ic
at

io
n

B
ar

ri
er

Teach

Teach

Clear grand ideas

Many idiosyncracies

implements
faster without
interruptions
from users,
but is unaware
of ambiguities,
idiosyncrasies,
and other problems
that frustrate
users ...

Language
designer Users

have to learn
what is given

and suffer
idiosyncracies,

ambiguities,
and inessential

complexities they
cannot change.

Many eventually
decide that

“programming
is not for me.”

Language
designer Users

do not have to suffer
idiosyncracies, ambi-

guities, and inessential
complexities over the

long term if a
few of them

are willing to
help the lang-

uage designer
 in removing as
many problems

as possible from the
language by sharing their
confusions, preferences,

interpretations, and ideas before
 implementation starts (when many

things can no longer be changed
except by implementing a new language).

D
es

ig
ne

r

Ambiguities

Frustration

A Conventional programming language design

B Flipped programming language design

!!
!

... ?

D
es

ig
ne

r

or ?

is also a user,
familiar with
user problems,
and has developed
enough language
design details
so users can
detect confusing
syntax when
discussing
example code.
Reviewing clarity before
implementation lock-in is
the essence of the “flip”: a
language designer learns
from users and removes many
idiosyncrasies before implementation.
The curse of knowledge will inevitably
trip up even the best designers unless they talk to potential users of their language. Users must bring a remarkable amount of patience for such work!

res
U

res
U

Figure 4. The Flipped Programming Language Design approach. (A) Most programming languages are designed by advanced
programmers aiming to solve important types of problems in a better way; usually implementation is urgent and capabilities allow
coding to start early. Few take the time to collect enough user and expert feedback during language design to break the curses of
knowledge and ignorance. These curses make designers oblivious to idiosyncrasies and important missing features that frustrate
both beginners and experts using the language. Many changes can be added after implementation starts, but fundamental redesigns
are often prohibitively costly (e.g., Fig. 1A, changing names of logic operators). (B) Flipped Programming Language Design turns the
tables in important ways by putting language designers in the hot seat (red) tasked with minimizing previously unnoted problems
in language proposals as highlighted by users. Delayed implementation allows fundamental redesigns where needed. As an example
from a different field, consider the 1940 Tacoma Narrows Bridge. Designs could have been changed before implementation, if
more would have been known about “exceptional winds.” After construction, nothing could be done until it collapsed (see film
at https://archive.org/details/SF121). It is often more difficult for a language designer to anticipate how a programming language
for biology will be misread or fail than to solve such problems (as judged from several dozen redesigns of Evolvix); thus, repeated
rounds of rigorous review by users and experts are critical. Not all words and concepts in a language need maximal scrutiny, but
basic concepts and operators certainly do.

us to develop the Flipped Programming Language
Design approach (Fig. 4) capturing many of the
important experiences and values of our design pro-
cess, and ensuring that development of the Evolvix
architecture is driven by its mission to make accu-
rate modeling easy. Approaches exist for engaging

users, (e.g., Agile programming and use-case driven
design) and inviting user input to language devel-
opment (e.g., Python PEP proposals, or regular user
meetings held by the Titanium Project73).

BEST Names provide a powerful tool for incor-
porating user feedback, especially when combined

140 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

https://archive.org/details/SF121

Loewe et al. BEST Names and semantic reproducibility

with Flipped Programming Language Design to
enable a much better integration of feedback from
multiple rounds of reviews by users across dis-
ciplines and levels of expertise. Candid reviews
(formal or not) can balance the language trian-
gle of keeping simplicity, increasing expressivity,
and reproducing the semantics of today’s code for
future researchers. We developed naming forms to
help identify and assess candidate keywords for
such long-term use in code (see online Supporting
Information).

Poorly chosen names are a big problem in biology,
whether misleadingly labeling keywords and vari-
ables in programs or test tubes in the laboratory.5

But while programmers perfect their logic skills
and biology students hone their experimental tech-
niques, students in the humanities invest their time
in developing the craft of clear and graceful writ-
ing. Attempting to combine all three with learning
statistics and other essential modeling skills for sim-
ulating biological pathways is overtaxing and ineffi-
cient. This approach might be compared to starting
a journey by beginning to assemble the necessary car
from scratch. Such requirements will limit model-
ing quality. The division of labor in constructing
cars may be analogous to a separation of concerns
that could greatly improve the quality and use of
quantitative models. Ideally, biological modeling is
mostly about biology, just as driving cars is mostly
about the journey and not about building the car
(see online Supporting Information).

Our experiences with naming suggest that edi-
tors with a clear grip on the semantics of English
have much to contribute to the clarity of pro-
gramming languages designed for a broad audi-
ence (see online Supporting Information). Just
as the Plain Writing Act of 2010 (http://www.
plainlanguage.gov/) helps to guide word choices to
simplify the communication of complex laws and
regulations, a programming language with a well-
crafted set of BEST Names can make computational
biology more accessible. Our domain expertise in
navigating the language triangle and the opportu-
nity to design general-purpose programming capa-
bilities (Table 2) for Evolvix from scratch provide
a unique opportunity. Applying the Flipped Pro-
gramming Language Design approach may result
in the first general-purpose programming language
designed by biologists for biologists facing biology’s
complexities. It may even be useful elsewhere, as

everything can be added later to a programming
language, except simplicity.

Acknowledgments

We thank James Geller for highlighting complexi-
ties of many current ontology systems and Doug
James, Millard Susman, Payeng Yang, Dinesh
Thangavel, Kurt Ehlert, Iratxo Flores-Lorca, Tanner
Engbretson, Philip Poon, Steve Goldstein, Bob
Mau, David Page, Jerry Yin, Sushmita Roy, Kalin
Vetsigian, Sri Ram, David Anderson, Elaine Alarid,
Jay Warrick, Anusha Dasarakothapalli, John Pool,
Qin Hong, Lea Rogers, Mercy Agyepong, Cassandra
Kozak, and others for helpful discussions on
Evolvix, BEST Names, and Naming from a wide
range of viewpoints. We thank the National Science
Foundation for NSF CAREER Award 1149123 to
L.L. supporting most of this work; the National
Institutes of Health for supporting part of this
work through the NIGMS Training Grant Genetics
T32GM007133 supporting S.A.K., through a
NHGRI training grant to the Genomic Sciences
Training Program 5T32HG002760 supporting
B.M., through a subcontract of the NIGMS Grant
1R01GM086445-01 to L.L. and R.M.K.; the W.I.D.
at University of Wisconsin-Madison for general
support; and for additional support in part by
Air Force Grant FA9550-15-1-0212 and in part
by the Applied Mathematics program project
DE-AC02-06CH11357 of the U.S. Department of
Energy, Office of Science, and Office of Advanced
Scientific Computing Research. Any opinions,
findings, and conclusions or recommendations
expressed in this material reflect those of L.L. and
do not necessarily reflect the views of NSF, NIH, or
other contributors to this work.

Author contributions to conception and design:
L.L. is responsible for the design of Evolvix, BEST
Names, POST, and this study. K.S.S. and S.A.K. pro-
vided substantial conceptual improvements upon
review, especially on early BEST Names and other
Evolvix designs. Experiments and acquisition of
data: L.L. led numerous Naming discussions and
designed the mini-survey for improving the quality
of the Naming process. Everybody else contributed
substantially to debugging the C2BIF by participat-
ing in significant Naming exercises and/or the mini-
survey, and produced some nontrivial insights into
the Naming process. Particular experiments: POST:
L.L., A.P., K.S.S., C.K.J., J.D., E.N., M.G.S., A.M.,

141Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://www.plainlanguage.gov/
http://www.plainlanguage.gov/

BEST Names and semantic reproducibility Loewe et al.

R.M.K., B.L., J.Y., S.A.K., and M.L.; Naming Forms:
L.L., A.Z., R.S., M.G.S., A.P., C.G.J., K.S.S., E.N.,
J.D., and J.M.; Versioning: L.L., S.A.K., K.S.S., A.P.,
C.M., M.G.S., S.L., A.M., C.G.J., Y.S., D.S., and I.P.Z.
Analysis and interpretation of data on Naming and
in mini-survey: L.L., A.P., K.S.S., S.A.K., and B.L.
Drafting of manuscript or revising content: L.L.,
A.P., C.G.J., K.S.S., S.A.K., B.M., B.L., C.M., and
M.L.

Supporting Information

Additional supporting information may be found
in the online version of this article.

� Social contracts about cars and computers
� Naming is a hard problem in science
� Common naming problems in programming

and modeling
� Blacklisting confusing keywords in simulations

of biology
� Uniquified names by versioning or by hashing
� Perspectives on naming from the humanities
� Online references
� Mini survey on improving names
� Naming forms: debugging tools for

Code2Brain interfaces
� A Project Organization Stabilizing Tool

(POST) system for evolving order and stability
from innovation in chaotic environments

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Fowler, M. 2009. Two hard things—quoting Phil Karlton.
Accessed January 05, 2016. http://martinfowler.com/bliki/
TwoHardThings.html.

2. Duggan, R. 2013. Naming things. Accessed January 05, 2016.
http://rossduggan.ie/blog/programming/naming-things/.

3. Loewe, L. & S. Keel. 2014. BEST Names for seman-
tic units to support reproducible modeling. 2014-
07-14 Workshop: reproducibility@XSEDE. In XSEDE14
Annual Conference, Atlanta, GA. https://www.xsede.org/
documents/659353/703287/xsede14_loewe.pdf

4. James, D., N. Wilkins-Diehr, V. Stodden, et al. 2015. Stand-
ing together for reproducibility in large-scale computing:
report on reproducibility@XSEDE. Distributed, Parallel,
and Cluster Computing (csDC). Accessed September 1,
2016. http://arxiv.org/abs/1412.5557.

5. Freedman, L.P., I.M. Cockburn & T.S. Simcoe. 2015. The
economics of reproducibility in preclinical research. PLoS
Biol. 13: e1002165.

6. Freedman, L.P., M.C. Gibson, S.P. Ethier, et al. 2015. Repro-
ducibility: changing the policies and culture of cell line
authentication. Nat. Methods 12: 493–497.

7. Stodden, V., F. Leisch & R.D. Peng, Eds. 2014. Implementing
Reproducible Research. Boca Raton, FL: CRC Press.

8. Stodden, V. 2015. Reproducing statistical results. Annu. Rev.
Stat. Appl. 2: 1–19.

9. Donoho, D.M., A. Rahman, I. Shahram, et al. 2009. 15 years
of reproducible research in computational harmonic analy-
sis. Comput. Sci. Eng. 2009: 8–18.

10. Ince, D.C., L. Hatton & J. Graham-Cumming. 2012. The case
for open computer programs. Nature 482: 485–488.

11. Demmel, J. & H.D. Nguyen. 2015. Parallel reproducible sum-
mation. IEEE Trans. Comp. 64: 2060–2070.

12. Goecks, J., A. Nekrutenko, J. Taylor & T. Galaxy. 2010.
Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research
in the life sciences. Genome Biol. 11: R86.

13. Loewe, L. 2016. Systems in evolutionary system biology. In
Encyclopedia of Evolutionary Biology, vol. 4. R.M. Kliman &
H. Akashi, Eds.: 297-318. Oxford: Academic Press.

14. Neal, M.L., M.T. Cooling, L.P. Smith, et al. 2014. A reap-
praisal of how to build modular, reusable models of biolog-
ical systems. PLoS Comput. Biol. 10: e1003849.

15. Karr, J.R., A.H. Williams, J.D. Zucker, et al. 2015. Summary
of the DREAM8 parameter estimation challenge: toward
parameter identification for whole-cell models. PLoS Com-
put. Biol. 11: e1004096.

16. Karr, J.R., K. Takahashi & A. Funahashi. 2015. The principles
of whole-cell modeling. Curr. Opin. Microbiol. 27: 18–24.

17. Karr, J.R., N.C. Phillips & M.W. Covert. 2014. Whole-
CellSimDB: a hybrid relational/HDF database for whole-
cell model predictions. Database (Oxford) 2014. doi:
10.1093/database/bau095.

18. Sanghvi, J.C., S. Regot, S. Carrasco, et al. 2013. Accelerated
discovery via a whole-cell model. Nat. Methods 10: 1192–
1195.

19. Purcell, O., B. Jain, J.R. Karr, et al. 2013. Towards a whole-cell
modeling approach for synthetic biology. Chaos 23: 025112.

20. Lee, R., J.R. Karr & M.W. Covert. 2013. WholeCellViz: data
visualization for whole-cell models. BMC Bioinformatics 14:
253.

21. Karr, J.R., J.C. Sanghvi, D.N. Macklin, et al. 2013. WholeCel-
lKB: model organism databases for comprehensive whole-
cell models. Nucleic Acids Res. 41(Database issue): D787–
D792.

22. Karr, J.R., J.C. Sanghvi, D.N. Macklin, et al. 2012. A whole-
cell computational model predicts phenotype from geno-
type. Cell 150: 389–401.

23. Salt, W.B., 2nd & S. Schenker. 1976. Amylase—its clinical
significance: a review of the literature. Medicine (Baltimore)
55: 269–289.

24. de Souza, P.M. & P. de Oliveira Magalhaes. 2010. Applica-
tion of microbial �-amylase in industry—a review. Braz. J.
Microbiol. 41: 850–861.

25. Barrett, M.L. & J.K. Udani. 2011. A proprietary alpha-
amylase inhibitor from white bean (Phaseolus vulgaris): a
review of clinical studies on weight loss and glycemic con-
trol. Nutr. J. 10: 24.

142 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://martinfowler.com/bliki/TwoHardThings.html
http://martinfowler.com/bliki/TwoHardThings.html
http://rossduggan.ie/blog/programming/naming-things/
https://www.xsede.org/documents/659353/703287/xsede14_loewe.pdf
https://www.xsede.org/documents/659353/703287/xsede14_loewe.pdf
http://arxiv.org/abs/1412.5557

Loewe et al. BEST Names and semantic reproducibility

26. Sales, P.M., P.M. Souza, L.A. Simeoni & D. Silveira. 2012.
�-Amylase inhibitors: a review of raw material and isolated
compounds from plant source. J. Pharm. Pharm. Sci. 15:
141–183.

27. Schumacher, S., C. Kirschbaum, T. Fydrich & A. Strohle.
2013. Is salivary alpha-amylase an indicator of autonomic
nervous system dysregulations in mental disorders?—a
review of preliminary findings and the interactions with
cortisol. Psychoneuroendocrinology 38: 729–743.

28. Xiao, J., X. Ni, G. Kai & X. Chen. 2013. A review on structure–
activity relationship of dietary polyphenols inhibiting
�-amylase. Crit. Rev. Food Sci. Nutr. 53: 497–506.

29. Koibuchi, E. & Y. Suzuki. 2014. Exercise upregulates sali-
vary amylase in humans (Review). Exp. Ther. Med. 7: 773–
777.

30. Loewe, L., K.S. Scheuer & S. Keel. 2016. Evolvix con-
cept: BEST Names for semantic units increase seman-
tic reproducibility and help combine complex biologi-
cal models. In Workshop on Data Science, Learning, and
Applications to Biomedical & Health Sciences. January 7–
8, 2016, New York Academy of Sciences, NY. https://
sites.google.com/site/dslabhs2016/proceeding-papers.

31. Ehlert, K. & L. Loewe. 2014. Lazy updating of hubs can enable
more realistic models by speeding up stochastic simulations.
J. Chem. Phys. 141: 204109.

32. Sedgewick, R.W. & K. Wayne. 2011. Algorithms. Boston:
Addison-Wesley.

33. Loewe, L. 2006. Quantifying the genomic decay paradox due
to Muller’s ratchet in human mitochondrial DNA. Genet.
Res. 87: 133–159.

34. Loewe, L. 2007. Evolution@home: observations on partici-
pant choice, work unit variation and low-effort global com-
puting. Softw. Pract. Exper. 37: 1289–1318.

35. Loewe, L. 2016. Evolution@home Simulator005 for
Muller’s ratchet. Accessed September 1, 2016. http://
evolvix.org/naming/pre-best-names/simulator005.

36. Loewe, L. & A. Cutter. 2008. On the potential for extinction
by Muller’s ratchet in Caenorhabditis elegans. BMC Evol. Biol.
8: 125.

37. Loewe, L. & D. Lamatsch. 2008. Quantifying the threat of
extinction from Muller’s ratchet in the Amazon molly (Poe-
cilia formosa). BMC Evol. Biol. 8: 88.

38. Loewe, L. 2008. Designing a front-end for Bio-PEPA. In Pro-
ceedings of the 7th Workshop on Process Algebra and Stochas-
tically (PASTA). S. Gilmore & A. Argent-Katwala, Eds.: 1–
5. July 30–31, 2008. University of Edinburgh: Informatics
Forum.

39. Goodger, D. 2016. reStructuredText Markup Specifi-
cation. Accessed September 1, 2016. http://docutils.
sourceforge.net/docs/ref/rst/restructuredtext.html.

40. Knuth, D.E. & S. Levy. 1994. The CWEB System of Structured
Documentation: Version 3.0. Reading: Addison-Wesley Pub.
Co.

41. Kuhn, J.H., K.G. Andersen, S. Baize, et al. 2014.
Nomenclature- and database-compatible names for the two
Ebola virus variants that emerged in Guinea and the Demo-
cratic Republic of the Congo in 2014. Viruses 6: 4760–4799.

42. Liblit, B., A. Begel & E. Sweetser. 2006. Cognitive per-
spectives on the role of naming in computer programs.

In Proceedings of the 18th Annual Psychology of Pro-
gramming Workshop. P.E.A. Romero, Ed.: 53-67. http://
www.ppig.org/sites/default/files/2006-PPIG-2018th-liblit.
pdf. September 2006. University of Sussex, Brighton, U.K.

43. Mandrioli, D. & M. Pradella. 2015. Programming languages
shouldn’t be “too Natural.” ACM SIGSOFT Softw. Eng. Notes
40: 1–4.

44. Major, P., B.J. Kostrewski & J. Anderson. 1978. Analysis
of the semantic structures of medical reference languages:
part 2. Analysis of the semantic power of MeSH, ICD and
SNOMED. Med. Inform. (Lond.) 3: 269–281.

45. Hibbard, V. 1979. What is SNOMed? Med. Rec. News 50:
90–91.

46. Nelson, S.J., L.F. Fuller, M.S. Erlbaum, et al. 1992. The
semantic structure of the UMLS metathesaurus. Proc. Annu.
Symp. Comput. Appl. Med. Care 1992: 649–653.

47. Chen, Z., Y. Perl, M. Halper, et al. 2002. Partitioning the
UMLS semantic network. IEEE Trans. Inf. Technol. Biomed.
6: 102–108.

48. Zhang, L., Y. Perl, M. Halper, et al. 2005. A lexical
metaschema for the UMLS semantic network. Artif. Intell.
Med. 33: 41–59.

49. Cohen, B., Y. Chen & Y. Perl. 2007. Updating the genomic
component of the UMLS semantic network. AMIA Annu.
Symp. Proc. 2007: 150–154.

50. de Coronado, S., M.S. Tuttle & H.R. Solbrig. 2007. Using the
UMLS semantic network to validate NCI thesaurus structure
and analyze its alignment with the OBO relations ontology.
AMIA Annu. Symp. Proc. 2007: 165–170.

51. Fan, J.W. & C. Friedman. 2008. Semantic reclassification of
the UMLS concepts. Bioinformatics 24: 1971–1973.

52. Merrill, G.H. 2009. Concepts and synonymy in the UMLS
metathesaurus. J. Biomed. Discov. Collab. 4: 7.

53. U.S. National Library of Medicine. 2009. Seman-
tic network. In UMLS Reference Manual. http://
www.ncbi.nlm.nih.gov/books/NBK9676/. Bethesda, MD:
National Center for Biotechnology Information.

54. Chen, Y., H. Gu, Y. Perl & J. Geller. 2012. Overcoming
an obstacle in expanding a UMLS semantic type extent. J.
Biomed. Inform. 45: 61–70.

55. Krause, F., J. Uhlendorf, T. Lubitz, et al. 2010. Annotation
and merging of SBML models with semantic SBML. Bioin-
formatics 26: 421–422.

56. Neal, M.L., M. Galdzicki, J.T. Gallimore & H.M. Sauro.
2014. A C library for retrieving specific reactions from the
BioModels database. Bioinformatics 30: 129–130.

57. Doan, A., A. Halevy & Z.G. Ives. 2012. Principles of Data
Integration. 1–520 Waltham, MA: Morgan Kaufmann.

58. Smoot, M.E., K. Ono, J. Ruscheinski, et al. 2011. Cytoscape
2.8: new features for data integration and network visualiza-
tion. Bioinformatics 27: 431–432.

59. Hwang, D., A.G. Rust, S. Ramsey, et al. 2005. A data integra-
tion methodology for systems biology. Proc. Natl. Acad. Sci.
U.S.A. 102: 17296–17301.

60. Gokhale, C.D., S. Doan, A. Naughton, et al. 2014. Corleone:
hands-off crowdsourcing for entity matching. In Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data. pp. 601–612. June 22–27, 2014, Snowbird,
Utah.

143Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

https://sites.google.com/site/dslabhs2016/proceeding-papers
https://sites.google.com/site/dslabhs2016/proceeding-papers
http://evolvix.org/naming/pre-best-names/simulator005
http://evolvix.org/naming/pre-best-names/simulator005
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://www.ppig.org/sites/default/files/2006-PPIG-2018th-liblit.pdf
http://www.ppig.org/sites/default/files/2006-PPIG-2018th-liblit.pdf
http://www.ppig.org/sites/default/files/2006-PPIG-2018th-liblit.pdf
http://www.ncbi.nlm.nih.gov/books/NBK9676/
http://www.ncbi.nlm.nih.gov/books/NBK9676/

BEST Names and semantic reproducibility Loewe et al.

61. vanRenssen, A.S.H.P. 2005. Gellish: A Generic Extensi-
ble Ontological Language – Design and Application of a
Universal Data Structure. Delft: Delft University Press.
http://resolver.tudelft.nl/uuid:de26132b-6f03-41b9-b882-
c74b7e34a07d.

62. Arp, R., B. Smith & A.D. Spear 2015. Building ontologies with
Basic Formal Ontology. Cambridge: Massachusetts Institute
of Technology.

63. Groth, P. & L. Moreau. 2013. PROV-Overview: an overview
of the PROV family of documents. In W3C Note. http://
www.w3.org/TR/2013/NOTE-prov-overview-20130430/;
see also the first-order logic semantics specification [PROV-
SEM]. J. Cheney, Ed. Semantics of the PROV Data Model.
Accessed April 30, 2013. http://www.w3.org/TR/2013/
NOTE-prov-sem-20130430.

64. Pike, R. et al. 1995. Plan 9 from Bell Labs. Comput. Syst. 8:
221–254.

65. Krakowiak. 2009. Naming. Accessed September 1, 2016.
http://proton.inrialpes.fr/�krakowia/MW-Book/.

66. Dolstra, E., A. Löh & N. Pierron. 2014. NixOS: a purely
functional linux distribution. J. Funct. Program. 20: 577–
615.

67. Saltzer, J.H. 1978. Naming and binding of objects. Lect. Notes
Comp. Sci. (Operating Systems Advanced Course) 60: 99–
208.

68. Needham, R.M. 1993. Names. In Distributed Systems. S. Mul-
lender, Ed. Reading: Addison-Wesley.

69. Boswell, D. & T. Foucher. 2011. The Art of Readable Code.
Sebastopol, CA: O’Reilly Media.

70. Preston-Werner, T. Semantic versioning 2.0.0. Accessed
September 1, 2016. http://semver.org/.

71. Raymond, E.S. 2003. The Art of Unix Programming. Reading:
Addison-Wesley.

72. National Institutes of Health, D. DeMets, L. Tabak, et al.
2012. Data and informatics working group report to the
advisory committee to the director. Accessed July 17, 2016.
http://acd.od.nih.gov/Data%20and%20Informatics%20
Working%20Group%20Report.PDF.

73. Yelick, K., L. Semenzato, G. Pike, et al. 1998. Titanium: a
high-performance Java dialect. Concurr. Pract. Exper. 10:
825–836.

74. Stanley, R.P. 2012. Enumerative Combinatorics. Vol. 1, 2nd
ed. Cambridge, NY: Cambridge University Press.

75. Ellenberg, J. 2014. How Not to be Wrong: the Power of Math-
ematical Thinking. New York, NY: The Penguin Press.

144 Ann. N.Y. Acad. Sci. 1387 (2017) 124–144 C© 2016 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

http://resolver.tudelft.nl/uuid:de26132b-6f03-41b9-b882-c74b7e34a07d
http://resolver.tudelft.nl/uuid:de26132b-6f03-41b9-b882-c74b7e34a07d
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430
http://proton.inrialpes.fr/~krakowia/MW-Book/
http://semver.org/
http://acd.od.nih.gov/Data%20and%20Informatics%20Working%20Group%20Report.PDF
http://acd.od.nih.gov/Data%20and%20Informatics%20Working%20Group%20Report.PDF

