
Hash-chain Based Authentication for IoT Devices and
REST Web-Services

António Pinto1 and Ricardo Costa2

1 GCC, CIICESI, Escola Superior de Tecnologia e Gestão de Felgueiras, Politécnico do Porto
and INESC TEC, Porto, Portugal

apinto@inesctec.pt
2 GCC, CIICESI, Escola Superior de Tecnologia e Gestão de Felgueiras, Politécnico do Porto,

Portugal
rcosta@estgf.ipp.pt

Abstract. The number of everyday interconnected devices continues to increase
and constitute the Internet of Things (IoT). Things are small computers equipped
with sensors and wireless communications capabilities that are driven by energy
constraints, since they use batteries and may be required to operate over long
periods of time. The majority of these devices perform data collection. The col-
lected data is stored on-line using web-services that, sometimes, operate without
any special considerations regarding security and privacy. The current work pro-
poses a modified hash-chain authentication mechanism that, with the help of a
smart-phone, can authenticate each interaction of the devices with a REST web-
service using One Time Passwords (OTP). Moreover, the proposed authentica-
tion mechanism adheres to the stateless, HTTP-like behavior expected of REST
web-services, even allowing the caching of server authentication replies within a
predefined time window. No other known web-service authentication mechanism
operates in such manner.

1 Introduction

The Internet of Things (IoT) can be seen as a distributed network of devices that inter-
act with human beings and with other devices [1, 2]. New applications for such devices
appear on a daily basis and these, typically, use sensors to collect data. The IoT is
expected to become a key source of big data and analytics [3]. Example sensors are ac-
celerometers, gyroscopes, magnetometers, barometric pressure sensors, ambient tem-
perature sensors, heart rate monitors, skin temperature sensors, GPS, video cameras,
microphones, among others.

A possible classification of IoT devices can be done with respect to their commu-
nication capabilities. The adopted reference scenario is depicted in Figure 1 and com-
prises three types of sensors. Type A sensors are characterized by requiring a specific
Wireless Sensor Network (WSN) gateway, typically from the same manufacturer of the
devices, and by being built for ultra low power operation. These run on (coin shaped)
batteries and minimize wireless communications in order to expand their lifetime. The
security, authentication and confidentiality of the collected data is achieved by means of
pre-built, per device, cryptographic encryption keys that are exchanged with the WSN



gateway upon initial set-up. Type B are characterized by being more autonomous, not
requiring a gateway, and by being able to interact directly with the on-line central server.
These are either connected to a power outlet or run on batteries with larger capacity,
which are also recharged more frequently (daily or more). The security, authentication
and confidentiality of the collected data can be achieved by any available mechanism.
Type C are characterized by requiring a type B device in order to upload the collected
data to the on-line central server. These use short range wireless communication capa-
bilities, such as Bluetooth, to communicate with a type B device that has standard IP
connectivity. The security, authentication and confidentiality of the collected data can
be achieved by any mechanism available in the type B device.

InternetHome wireless network

wireless sensor network

Type A
Type AType AType A

WSN
Gateway

WiFi AP +
Internet GatewayType B

Type B

Type B
or

Type C

Type B

RESTful
 web server

Fig. 1. Adopted reference scenario

The data collected by all these sensors tend to be personal, sensible and private. The
privacy and control over the collected data was already addressed by the authors with
the Sec4IoT framework [4]. Nevertheless, the need to assure that the collected data is
always maintained within the control scope of the Sec4IoT framework, an end-to-end
device authentication mechanism is required.

The paper is organized in sections. Section 2 describes and compares the work of
others that is related to ours. Section 3 describes the proposed authentication mecha-
nism and performs its security validation. Section 4 describes the experimental set-up,
the implemented authentication prototype and presents the obtained results. Section 5
concludes the paper.

2 Related work

REST is a distinct way of deploying web-services that is becoming quite common due
to its simplistic and HTTP-like behavior. The key REST principles are threefold: 1) ex-
plicit use of HTTP methods; 2) stateless; and 3) resources must be named using URLs
(Uniform Resource Locators). The hyped stateless operation of a REST server may not
be completely possible, especially if one considers clients authentication and authenti-
cated sessions management. Current solutions make use of standardized HTTP related
authentication mechanisms, such as Basic and digest access authentication [5], or of
Open standard for authentication (OAuth) [6,7], or use proprietary, in-house developed,
solutions.



The HTTP protocol supports several authentication mechanisms [8] in order to con-
trol the access to pages and other resources. This solutions make use of the 401 status
code and the WWW-Authenticate response header [5]. In form-based authentication,
developers, instead of relying on authentication at the protocol level, can make use of
web-based applications or HTML code embedded into their web pages. They can use
INPUT elements in HTML Forms to request the client’s credentials (User and Pass-
word) as a normal part of their web application. The Open standard for Authentication
(OAuth) [6, 7, 9] provides a method for a web application to grant third-party access
to their resources without, actually, sharing their clients credentials. In [10] the au-
thors propose the use of a token based approach for authentication in REST-based web
services. Their proposal consists in extending the HTTP authentication to include a
UsernameToken as a secondary password verification. This would allow providers to
customize their own authentication according to their specific need, improving flexibil-
ity and security, and introducing the possibility of the server challenging the client in
order to authenticate it. The key advantage of this solution was lost as it addresses the
same shortcomings of the first HTTP Digest authentication, as does HTTP1.1.

Table 1. Related work comparison

Solution Data Mutual Replay MiTM 3rd Auth. OTP
enc. auth. resistant resistant parties control

Basic N N N N N HTTP N
Digest Y N N N N HTTP N
Digest 1.1 Y Y Y Y N HTTP N
OAuth Y N Y Y Y App N
AuthToken Y N Y Y N HTTP N

Table 1 compares the solutions identified as related to ours. For instance, the ver-
sion 1.1 of the HTTP digest authentication performs data encryption (2nd column),
authenticates both server and client (3rd column), resists attacks that resend previously
exchanged messages (4th column), is secure against eavesdropping and Man in The
Middle (MiTM) attacks (5th column), does not require trust third parties (6th column),
the authentication is performed at the HTTP layer (7th column) and has no support for
OTP (8th column). Regarding the authentication control, it can either be controlled by
the web server (identified in the table with HTTP) or by the web-service (identified with
App). None of the presented solutions supports transaction control by means of OTP.
The authors believe that such OTP per transaction approach is the one that better suites
the REST design philosophy.

3 Minimalist Authentication Mechanism

The proposed Minimalist Authentication Mechanism (MAM) requires a secure client
register procedure, deployed as a secure web page (HTTPS), that is assumed to be in
operation. The secure register procedure will enable the secure generation and exchange



of a per device secret (Asec). The proposed algorithm implies that any request made by
clients to the server must comprise, aside other parameters, the client identification
and an OTP. A, per device, set of OTPs is generated with the login procedure. The
login is initiated when the client calls the login procedure made available by means
of a REST-based web-service. The client computes the non-guessable random value
nonceA1, calculates both the cli n2 and the Time values and passes them as parameters to
the login procedure. The nonce generation function is assumed to be secure. Time value
is obtained by rounding up the current time in intervals of 10 minutes. The server will
compute a local n2 value using a secure hash function over nonceA1, n1 and the Time
value. The computed n2 value, if equal to the cli n2, will be used to create the initial
security token (tk0). After the generation of the initial token, tokens tk1 to tk512 will
be calculated by using the cryptographic hash function over the previous token. Both
server and client will store the set of 512 tokens to be used as OTPs, in reverse order, in
the subsequent 511 requests of that client. Such will enable anti-replay protection and
prevent both man-in-the-middle and Denial of Service (DoS) attacks. Additionally, and
due to the fact that the server returns both the seedTime and the token tkTime

512 to the client,
both server and client are mutually authenticated.

The way the OTPs are obtained depends on the type of sensor (Figure 1). On the
one hand, type B sensors have the required capabilities, in terms of wireless communi-
cations, CPU and available battery lifetime, to perform a complete login by themselves.
At the end of the login procedure, the device will have a set of OTPs to be used in the
subsequent requests to the REST web-service. On the other hand, both Type A and C
require additional devices in order to complete a successful login procedure. Currently,
type A devices require a specific WSN gateway, whereas type C devices require a paired
smart-phone.

In the proposed solution, a smart-phone will be used to complete a successful login
and to obtain a set of OTP which will then be sent to the type A or C sensor by any means
available in the sensor. Such will avoid two major drawbacks of the current solutions.
Firstly, the WSN specific gateway will no longer be required as it can be replaced by
a existing wireless Access Point (AP) with Internet connectivity. Secondly, none of the
cryptographic material to be stored on the sensors, the set of OTPs, can be used to
perform a new login in the system. A sensor login procedure that will authenticate the
smart-phone is assumed to be in operation. Nevertheless, the REST web-service does
not take part in the sensor/smart-phone authentication procedure.

Type A sensors run on ultra low power hardware, use small sized batteries and
communicate periodically in order to save power. The size of the OTPs set must be
adapted to each case. For instance, if a sensor communicates with the server once per
hour, it will require 24 OTPs per day, 167 per week, or 672 OTPs per month. The REST
web-service will have a set of URLs that will enable the login procedure to reply with
sets of OTPs of different sizes and using different secure hash functions.

3.1 Security analysis

The Automated Validation of Internet Security Protocols (AVISPA) [11] tool was used
to perform the security validation of the proposed authentication mechanism. The AVISPA
tool performs the automated validation of security protocols described in High Level



Protocol Specification Language (HLPSL) [12]. HLPSL enables the description of both
the protocol and the required security properties, such as secrecy and authentication.
AVISPA adopts the Dolev-Yao intruder model [13] where the intruder is in complete
control of the network. Our HLPSL specification is available online3.

The client-server communication confidentiality is obtained by means of a pre-
shared secret between that specific client and the server. This pre-shared secret is as-
sumed to be available on the client and on the server and to be refreshed frequently. For
instance, such pre-shared key may be refreshed upon every client successful login. If
an attacker obtains a capture of the exchanged messages, and while being able to obtain
the nonceA1 and cli n2 values, these are the result of one way hash functions. Meaning
that eavesdropping attacks are not possible.

An attack such as a man-in-the-middle attack is only possible if the pre-shared key
is compromised. The proposed solution assumes that this key is secure. Nonetheless, the
pre-shared key is never transmitted on the link an is assumed to be a result of a specific
pre-shared key creation procedure that may be triggered by the user whenever he wants
to, by means of a user management web site requiring a two-factor authentication.

Despite the fact that both sides make use of random values to generate or verify an
authentication token (tk512), these values are never exchanged in clear text. The only
value exchanged between client and server, besides the authentication token, is the seed
value. The seed value is, in turn, the result of a secure hash function. Neither entity can
force the other in to generating a specific seed or authentication token. Meaning that
attacks that are based in key control are also not possible.

The proposed solution makes use of the the nonceA1 that is assumed to be securely
generated and only used once. If a second request is received with a repeated nonce
value, the server will ignore the request and, thus, reject replay attacks.

DoS attacks are based on overwhelming a server with requests so that it is not able
to respond to legitimate requests. The proposed solution, uses the Time value, rounded
up to 10 minute intervals, so that all requests sent by the same client within this time
interval (up to 10 minutes) will have the exact same reply. Due to being a REST-based
solution, it can easily be deployed within a Content Delivery Network (CDN) [14], i.e.
such reply could be cached, making it very difficult to perform a successful DoS attack.
This approach limits the number of per device successful logins to one authentication
per time period of 10 minutes. This is a drawback of the proposed solution but the time
period can be reduced and fined tuned to each implementation.

4 Experimental results

The prototype was developed using Java and the Netbeans Java IDE. The Web appli-
cation ARchive (WAR) file was built and deployed on a Glassfish 4.1 server, running
on a 64 bit Linux system (kernel 3.18.8-201.fc21.x86 64) with 8GB of memory and a
dual-core Intel Pentium G645 2.9GHz processor. All results shown in this section were
obtain by running multiple sets of 1000 executions each. SHA-256 and SHA-512 where
the selected secure hash algorithms, from the list of the algorithms available in the Java

3 Available at http://www.estgf.ipp.pt/˜apinto/mawr.hlpsl



language, mainly because the remaining ones are currently considered insecure by mul-
tiple sources. Stevens demonstrated a collision attack on the MD5 algorithm [15] and
Liang, et. al, later presented an improved collision attack to the same algorithm [16].
The SHA-1 algorithm was also demonstrated to be less complex that the initial expec-
tation. In particular, Wang et al. demonstrated that the theoretical number of 280 hash
operations that where assumed to be required to find a collision could be reduced to a
lesser value of 269 operations [17].

Table 2. Request processing capabilities by the server

Digest algorithm Requests/sec Request (ms)
SHA-256 207.5 4.7
SHA-512 211.3 4.8

Table 2 shows the average number of requests processed per second and the average
time required by the server to process one request, for both the SHA-256 and the SHA-
512 secure hash algorithms. As can be seen, a user login procedure takes approximately
5ms to be completed and the server is able to process about 210 requests per second.
While there is a difference between the results obtained using different secure hash
algorithms, this difference is very small can be neglected.

The bandwidth usage tend to be slightly more (approx. 8% more) when using the
SHA-512 secure hash function. If we consider that login procedure, described in the
previous section, returns the token tk512 that is the result of the used hash function and,
evidently, will be larger when using the SHA-512 when compared to the use of SHA-
256. The remaining elements of the messages exchanged between server and client are
of equal size and independent of the secure hash algorithm that was used.

Table 3. Average request processing time required per HTTP authentication mechanism

HTTP Authentication Mechanism Request (ms)
Basic 4,8
Digest HTTP1.0 64,7
Digest HTTP1.1 64,0
MAM (SHA-256) 4,7

Table 3 shows the average processing time for each authentication mechanism made
available by the HTTP protocol. The results show that both digest authentication mech-
anisms supported by HTTP take 64 ms, or longer, on average, to process a client authen-
tication. The insecure basic authentication, that does not encrypt user credentials, was
the only one that obtained processing times similar to those obtained by the proposed
solution.

The results shown in Table 3 were obtained on a system running a 64 bit Linux with
8GB of memory and a dual-core Intel Pentium G645 2.9GHz processor. A HTTP server



was setup in a virtual machine running Linux. The Apache web server was installed and
configured to support the three authentication mechanisms identified. The Linux curl
command was used as the HTTP client. All results shown in this section were obtain
by running 3 sets of 1000 executions each. The proposed solution (MAM) is the fastest
one, requiring only 4,7 ms to conclude. It is even slightly faster that the HTTP basic
authentication.

5 Conclusion

The IoT is becoming the next big technological hype. New services that make use of
IoT devices appear every day. These new services use web-based storage and the IoT
devices are starting to interact directly with such web-storage. Two problems arise from
such a scenario: 1) the privacy and control over the collected data; and 2) end-to-end
authentication for low specked devices. Our previous solution (Sec4IoT) dealt with the
first problem, the later subsisted.

This work addresses the second problem while still maintaining a REST-like API
so it can be integrated within any existing web-service. Moreover, the proposed authen-
tication mechanism does not require trust in third-parties, maintains the authentication
control in the web application and, by requiring low computational power, it can be
deployed in low end IoT devices.

References

1. F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” International Journal of
Communication Systems, vol. 25, no. 9, pp. 1101–1102, 2012.

2. ABIresearch, “The internet of things will drive wireless connected devices to 40.9 billion in
2020,” 2014.

3. G. Press, “It’s official: The internet of things takes over big data as the most hyped technol-
ogy,” 2014.

4. R. Costa and A. Pinto, “A framework for the secure storage of data generated in the iot,”
Advances in Intelligent and Soft Computing, 2015.

5. P. J. Leach, J. Franks, A. Luotonen, P. M. Hallam-Baker, S. D. Lawrence, J. L. Hostetler, and
L. C. Stewart, “HTTP Authentication: Basic and Digest Access Authentication.”

6. D. Hardt, “The OAuth 2.0 Authorization Framework.”
7. D. Hardt and M. Jones, “The OAuth 2.0 Authorization Framework: Bearer Token Usage.”
8. R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Authentication.”
9. E. Jammer-Lahav, “The OAuth 1.0 Protocol.”

10. D. Peng, C. Li, and H. Huo, “An extended UsernameToken-based approach for REST-style
Web Service Security Authentication,” in 2nd IEEE International Conference on Computer
Science and Information Technology, 2009. ICCSIT 2009, pp. 582–586, Aug. 2009.

11. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma,
P. C. Heam, O. Kouchnarenko, and J. Mantovani, “The avispa tool for the automated valida-
tion of internet security protocols and applications,” vol. 5, pp. 281–285, Springer, 2005.

12. Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, J. Mantovani, S. Modersheim, and
L. Vigneron, “A high level protocol specification language for industrial security-sensitive
protocols,” Proc. SAPS, vol. 4, pp. 193–205.



13. D. Dolev and A. Yao, “On the security of public key protocols,” Information Theory, IEEE
Transactions on, vol. 29, pp. 198–208, 1983.

14. M. Pathan, R. Buyya, and A. Vakali, “Content delivery networks: State of the art, insights,
and imperatives,” in Content Delivery Networks (R. Buyya, M. Pathan, and A. Vakali, eds.),
vol. 9 of Lecture Notes Electrical Engineering, pp. 3–32, Springer Berlin Heidelberg, 2008.

15. Stevens, M.M.J., “Fast Collision Attack on MD5,” tech. rep., Mar. 2006.
16. J. Liang and X.-J. Lai, “Improved Collision Attack on Hash Function MD5,” Journal of

Computer Science and Technology, vol. 22, pp. 79–87, Feb. 2007.
17. X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” in Advances in

Cryptology – CRYPTO 2005 (V. Shoup, ed.), no. 3621 in Lecture Notes in Computer Science,
pp. 17–36, Springer Berlin Heidelberg, 2005.


