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Abstract: A good representation of a simple polygon, with a desired degree of approximation
and complexity, is critical in many applications. This paper presents a method to achieve a
complete Circle Covering Representation of a simple polygon, through a topological skeleton,
the Medial Axis. The aim is to produce an efficient circle representation of irregular pieces, while
considering the approximation error and the resulting complexity, i.e. the number of circles.
This will help to address limitations of current approaches to some problems, such as Irregular
Placement problems, which will, in turn, provide a positive economic and environmental impact

where similar problems arise.
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1. INTRODUCTION

Problems that deal with the positioning of pieces in a
given region without overlap, while having the objective of
finding the best placement positions in order to minimize
waste, require adequate representations for their geometry.
Nesting problems are defined as an Irregular Piece Place-
ment problem (IPP), inside one or multiple containers, in
a non-overlapping condition, while aiming to reduce waste.
The difficulty of these problems grows exponentially with
the number and complexity of the pieces. Using an efficient
geometrical representation can reduce the complexity of
the geometrical component of the problem, allowing for
a intensified focus on improving the other components of
the problem. An efficient representation might also enable
to explore new ways of approaching a problem, such as
dealing with free-rotations, or computing overlaps with
a simple formula. A geometrical representation, such as
the one that is presented on this paper (Circle Covering),
can be used to address these limitations (overlap com-
putation and free-rotations) in Nesting. Circle Covering
(CC) consists in representing pieces by sets of overlap-
ping circles (whose areas when summed approximate the
original piece area), aiming to achieve a certain degree of
approximation while minimizing the necessary number of
circles, and allows taking full advantage of any possible
rotation, enabling easy and fast overlap computation.

The remainder of this section presents a description about
the motivation for this work, an overview of the main ob-
jectives and ends with the research contributions. The sec-
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ond section, presents a literature review, making reference
to various representation forms, the third section relates to
the proposed approach for circle covering, and following it,
in the fourth section, the computational experiments and
the results obtained. The last section is the conclusion and
future work.

1.1 Motivation

As previously mentioned, the CC approach is useful to
tackle the limitations of problems such as the IPP prob-
lem, regarding the admissible orientations and the com-
putational expense of overlaps. Addressing these issues
in the geometrical component of the IPP problem allows
its combinatorial component to be tackled by alternative
approaches. The improvement of current geometric rep-
resentations will have relevant impact on scientific areas
on many industrial applications, both in economic and
environmental levels.

1.2 Contribution

Many industrial applications (leather, furniture, garment)
aim to find the most efficient placement of a set of pieces
with irregular outlines inside a container, in order to
minimize waste. While on some industries (furniture and
textile) technological constraints and specific characteris-
tics impose limits on the allowable orientations, on other
industries (leather, metal sheet cutting) the pieces can
rotate freely. The methods that allow the efficient position-
ing of pieces in order to minimize waste require adequate
geometric representations, which can represent pieces with
a certain degree of accuracy, and are the least compu-
tationally expensive as possible. The CC representation
allows alternative approaches to be developed in order to



tackle the complexity of positioning the pieces, addressing
current limitations of state of the art algorithms, and im-
proving results. An efficient representation enables prob-
lems with greater complexity to be tackled, and explore
novel solutions to currently unsolved problems.

This work has a relevant impact at different levels, since
all industries with similar problems will benefit from it,
having a positive economic impact (cost reduction) and
also an environmental impact (less waste, energy and raw
material consumption).

2. LITERATURE REVIEW

Problems that need to tackle with geometry require ade-
quate selection of a geometrical representation of pieces.
The selected representation should be suited to the specific
geometrical characteristics of the main problem. Grid and
polygonal representations (Bennell and Oliveira, 2008) are
among the most commonly used geometrical representa-
tions. Another type of representations is based on de-
composing pieces into simpler shapes. An example of this
type of representation is the decomposition into primary
shapes, which is used together with Phi-Functions (Stoyan
et al., 2004) to compute the relative distance between
pieces. A less commonly used method is the representation
of a piece by a CC having a set of circles with same size
or different sizes. Usually CC approaches have equal sized
circles, however, since the goal is to achieve the minimum
number of circles, while minimizing the approximation
error, it can only be achieved by using circles with uneven
radius. An example of a CC application can be found in
wireless sensor networking (WSN) problems (Huang and
Tseng, 2005), where the objective is to ensure that a given
region is completely covered by a signal (with a minimum
Quality of Service), without weak points. (Huang and
Tseng, 2005) also describes related problems to the CC
problem and WSN, such as the Art Galery problem, and
Robotic Systems Coverage.

Other type of problem dealing with circles is circle packing,
where a given set of circles needs to be packed inside a
container, without overlap. Although this problem is not
directly related to ours, it is presented here to expose its
differences. (Huang et al., 2006) refers to using a fixed size
circular container while (Kubach et al., 2009) changes to
a strip or rectangle, depending on either addressing the
Strip Packing problem or Knapsack problem, and (Birgin
and Sobral, 2008) addresses the problem of finding the
smallest container that can contain the specified items.

One paper that has a problem similar to ours is (Zhang and
Zhang, 2009), which presents a method that approximates
a component by a set of circles, where three algorithms
represent distinct approaches to generate the minimum
number of circles, with a given approximation accuracy.
The bisection algorithm approximates the outline using
circles, not ensuring circle covering of the whole piece,
only the outline. The three step algorithm starts from each
convex edge, placing the circles until the whole outline
and inside of the piece is covered. The last algorithm is an
improvement of the second, using a gap between the circles
that places them a small distance apart, while ensuring
that the gap is small enough to prevent the overlap of the
pieces. In (Imamichi, 2009), several packing problems are

Figure 1. The Medial Axis of a piece.

described, such as circle/sphere packing and its variations,
in different containers, rectangles, circles, and spheres in
higher dimensions. It is also presented several distinct
references to non-linear programming, in order to solve
irregular strip packing problem.

There are many ways to compute possible placement
points for circles inside a polygon, since we have an infinite
number of placement positions to chose from. In order to
find the best placement positions, it is desired to reduce
the region that contains them, as much as possible, by
excluding points of inferior quality. Circles have centers
in high quality placement positions when those circles
cannot be contained by any other circle, and still comply
with the requirement of not exceeding the outline. An
important tool useful for defining these inner points (that
are equidistant to at least two points on the outline of a
two-dimensional piece) is the Medial Axis (MA), which is
a type of Topological Skeleton. An example of a MA is
shown in 1. One method that allows to compute the MA
is presented in (Yao and Rokne, 1991), but a more detailed
description can be found on a technical paper by (Edwards,
2010). It allows the construction of the MA from simple
polygons, returning only straight lines on the skeleton of
convex polygons, and returning a set of straight lines and
parabolic arcs from irregular polygons, i.e. non regular
and non convex polygons. Unfortunately, this method is
iterative, leading to increased numerical precision errors
with the higher complexity of the pieces.

3. CIRCLE COVERING APPROACH

The proposed approach to compute the CC allows the
complete coverage of a simple polygon by a set of uneven
circles, which fully covers its outline and its interior.

The main difficulty that arises when generating a circle
covering is the difficulty to achieve a low approximation
error, with the lowest number of circles. Some details
can be deduced beforehand, such as: the position of the
center of the circles cannot be outside of the outline of the
enclosed polygon, and that better results are achieved if
each circle covers the maximum possible area. This means
that each circle should have the highest possible radius
without exceeding the admissible distance outside of the
enclosed piece. For this purpose, placing the circles on the
MA will lead to a low number of circles. This allows a
significant reduction in the number of possible placement
positions for the circle centers. An iterative process derives
the circles directly from the MA. The parabolic arcs, which
are generated at the concave vertices, are approximated
by straight edges to simplify the process. Since a high
number of circles has a negative impact on performance,
it is desirable to keep the number of circles generated at
its minimum.
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Figure 2. A bone of the skeleton (dashed line) and part of
the outline of the piece.

3.1 Iterative Algorithm

The algorithm works upon each bone of the skeleton
individually. It operates using the distances to the outline
(R1 and R2, also referred as radiusl and radius2) at the
extremities of the bone and the length of each bone (D).
Distances R1 and R2 are measured perpendicularly to the
edge of the outline, since a circle that is touching the
outline, in only one point, has its center contained in the
same line (perpendicular to the outline) that contains the
contact point. An example can be seen in Fig. 2.

At the extremities of each bone, we place a circle with
the same radius of R1 and R2 respectively, increased by
a given threshold (or tolerance) value that controls our
approximation error. The threshold can be seen in Fig. 3.
Starting from the biggest circle, the algorithm iteratively
computes the next center position, making sure that the
circles intersect on the outline, until reaching the opposite
circle. The radius of each new circle is easily computed
since it is a linear function that depends on the difference
of both radius and the distance that separates them. This
procedure is the same for every bone except for bones
connected to the outline of the piece. If all the placed
circles cover the bone, then the algorithm stops generating
any more circles, and removes the circle placed at R2.

This procedure can be also presented in the following
pseudocode :

for all bones do
Expand both circles radius by the threshold value
Select biggest circle
repeat
Compute circle and outline intersection
Compute next circle center position on the bone*
Save circle position
until Circles completely cover the bone
end for

* Taking into account that it must also intersect the
previous circle/outline intersection and that the radius
of the circle depends on the position of its center on the
bone.

After repeating the same operation on every bone of the
skeleton, the complete circle covering of a piece can be
achieved. Fig. 4 shows the result when all the bones are
processed, and the CC is generated. The gray area outside
the outline of the piece is the exceeding region that is
covered by the circles.

The algorithm computes every bone of the skeleton in-
dependently, taking into consideration both radius of the
circles at the extremities of the bone, its length and the
threshold that each circle is allowed to expand. An example
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Figure 3. Computed circle placement positions, regarding
a specified threshold.

Figure 4. Circle covering of a triangle.

Figure 5. Complete circle covering of a piece.

of a piece that has the complete circle coverage computed,
using its skeleton, is shown in Fig. 5.

The method that computes the positions of circles on the
skeleton may produce placement positions of circles that
are very close to each other. To reduce the total number of
circles, in pieces that have either too much detail or very
large skeletons, some simplifications were implemented.
One of the simplifications is replacing consecutive edges,
sharing a concave vertex, with nearly the same tangent, by
a single edge. Another simplification, removes inner bones
of the skeleton (i.e., not connected to the outline) that are
smaller than a given length, and joining all the connections
at its extremities into a single common midpoint.

8.2 Partial Circle Covering

An alternative to the complete coverage, the proposed
algorithm also has the capability to fill the piece from the
inside, without any circle exceeding its outline, and with-
out any uncovered region more distant from the outline
than the desired threshold. This is achieved with the same



Figure 6. Partial circle covering of a piece.

procedure as the complete circle covering, but in this case,
the threshold is set as being the outline, and the outline
distance from the MA is reduced by the threshold value.
This has the same effect as reducing the outline of the piece
by the threshold value, and then computing the complete
circle covering. This way, partial circle covering is achieved,
guaranteeing that the outline is never trespassed. This may
be useful for problems where the original pieces have a
perfect fit in the layout. An example of a coverage of this
type, that does not exceed the original piece outline, with
its skeleton, can be seen in Fig. 6.

4. COMPUTATIONAL EXPERIMENTS AND
RESULTS

The first experiments that were made are related to the
increase of the number of circles when the approximation
threshold is low. In order to verify the efficiency of our
approach, four pieces were chosen and tested with an
approximation threshold from 0.25 to 0.01. The results
obtained are summarized on Tab. 1, where for each piece
the first column shows the number of circles used in the
covering, and the second one shows the additional area
related to the original piece area. From this table, it can
be observed that a linear reduction in the threshold leads
to an exponential increase on the number of circles and an
almost linear reduction in the additional area.

Pieces
P1 P2 P3 P4
TH # % # % # % # %
0.25 13 14.1 35 13.2 12 12.1 28 20.6
0.20 14 10.9 37 10.6 13 9.6 29 15.7
0.15 17 8.3 41 7.9 14 7.1 36 12.2
0.10 21 5.5 48 5.2 15 4.4 41 7.9
0.05 31 2.7 70 2.6 25 2.1 61 4.0
0.01 72 0.7 161 0.1 55 0.4 141 0.9

Table 1. Circle number and added area for
different threshold values (TH).

The MA+CC (Medial Axis followed by Circle Covering) of
these four pieces can be seen on Fig. 7, being P1, P2, P3
and P4, with threshold of 0.01. The threshold is expressed
in units of length, and is not relative to the size of the
piece. As an example, if we use 0.01 units for threshold, it
will be the same distance whether the rectangle has 10 or
15 units of length.

An important issue that must be analyzed is the trade-
off between the increase in the number of circles and the
reduction of the additional area. Tab. 1 already shows this

Figure 7. CC+MA of P1, P2, P3 and P4, with 0.01
threshold, and 72, 161, 55, 141 circles, respectively.
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Figure 8. Trade-off between the number of circles and the
additional area.

trade-off for pieces P1, P2, P3 and P4, where initially a
decrease in the threshold value leads to a small increase
in the number of circles and a significant reduction in
the additional area while later the same reduction in the
threshold value leads to large increase in the number of
circles and a small reduction in the additional area (Fig.
8). The graph on Fig. 8 shows a similar behavior for all
4 pieces. The evolution of the circle covering of piece P3
can be seen in Fig. 9, where the covering with the most
amount of circles is also the closest to the real shape of
the piece.

The complexity of the piece also has a negative impact on
the algorithm, since the numerical precision errors increase
at each iteration, due to having to compute multiple
intersections, leading to incorrect skeletons being built.
For complex pieces where the MA cannot be correctly
constructed, convex decomposition is used on the original
piece, computing the skeleton for each one, but with the
downside of increasing substantially the number of circles.

Comparisons of this MA-+CC approach were also made
against a set of two pieces, from (Zhang and Zhang, 2009),
which were also used to test several distinct methods to



(e) 25 circles. (f) 55 circles.

Figure 9. Evolution of the circle covering of piece P3.
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Figure 10. Circle covering the rectangle, with 19 circles.
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Figure 11. Circle covering of a triangle, with 7 circles.

achieve circle covering. (Zhang and Zhang, 2009) also uses
an improved algorithm, that allows a small gap between
circles, as long as the salient edge of another piece does
not interfere with the current piece. This gap is the
allowable distance between circles that still maintain the
non-overlapping constraints. To compare the algorithms
the same pieces were used, according to the dimensions
of the pieces and their threshold, as presented on (Zhang
and Zhang, 2009). The pieces that we obtained, with their
respective number of circles are presented in Fig. 10 and
Fig. 11, having the threshold of 0.1 and 0.2, respectively.
These pieces have the circle covering computed by the
presented CC+MA approach.

Comparing to the results from (Zhang and Zhang, 2009),
Tab. 2 can be presented, with the focus being on the total
number of circles used to represent the same pieces, with
the same threshold. Although (Zhang and Zhang, 2009)
had three distinct algorithms, we compared only against
the ones that allowed complete or nearly complete covering
of the piece.

Pieces

Algorithm Rectangle Triangle
CC+MA 19 7
Three-Step 22 8
Three-Step + Gap 21 6
Table 2. Circle number depending on algo-
rithm.

According to the results, using medial axis and computing
the circle placement positions on its skeleton can be
competitive when compared to the three step algorithm,
for these two pieces. We achieve the best results on
one piece. Allowing a small gap prevents a complete
covering of the piece, but the overlap computation is still
valid as long as the criteria that define the maximum
gap is met. Unfortunately, computational results about
the other algorithms are lacking, preventing an extensive
comparison between our approach and the others. This
paper will have as an annex the details about the used
pieces, so that further comparisons can be done by other
researchers.

5. CONCLUSIONS AND FUTURE WORK

The MA+CC approach appears to be competitive with
the presented algorithms. This method to generate circle
placement positions by reducing the possible positions to
a medial axis is very efficient. The main problem with this
approach is that the method that generates medial axis is
not very resilient to numerical precision errors. The error
has a tendency to grow with the complexity of the piece,
and the skeleton bones start appearing with a visible offset.
For pieces where its skeleton cannot be constructed due to
numerical precision errors, the convex decomposition of
the piece is used, but at the expense of a greater number
of circles, since the generated skeleton will have a higher
amount of bones. The number of circles depends on the
approximation error selected, and the lower the desired
error, the higher the circle number will be.

Some ideas will be explored in the near future. Our method
might achieve better results when computing placement
positions of circles taking into account the introduction
of a small gap, such as presented on (Zhang and Zhang,
2009), but that is limited to the smallest circle size that
can be used on all the pieces, which also depends on
the approximation threshold, being the same for all the
pieces. Another component that is being implemented
is the simplification of the outline of complex polygons,
by reducing the number of small concavities, with the
idea of reducing the complexity and numerical precision
errors and the outline complexity when generating the
medial axis, as also simplifying the final skeleton, by
eliminating or rearranging some small bone segments while
maintaining coherency in the structure. The penalty to pay
is that at each modification the size of the circles will grow
to ensure that the piece is still fully contained (assuming
the complete coverage is desired), but it is expected that
the number of circles will be further reduced.

This will help reducing the total number of circles required
to represent a piece, within the limits of approximation
error to the original piece.
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Appendix A. PIECE COORDINATES USED IN
COMPUTATIONAL EXPERIMENTS

A.1 Piece 1 {z,y}
{0,0} {5,2} {10,1} {5,10}
A.2 Piece 2 {z,y}

{0,0} {9,0} {13,4} {10,5} {8,3} {0,3} {0,10} {5,10} {10,7}
{13,7} {5,13} {0,13} {-5,8} {-5,3}

A.8 Piece 3 {z,y}

(3,0} {6,0} {11,3} {124} {11,6} {7.5} {4,6} {2.5} {0,3}
{0,2}

A.4 Piece 4 {x,y}

{0,0} {5,3} {10,1} {7,5} {10,10} {5,7} {1,11} {3,5}



