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Abstract 

This paper presents an innovative approach to solve the product-launch planning 
problem in the pharmaceutical industry, with uncertainty on the product demand and on 
clinical trials. A mixed integer linear programming (MILP) model, incorporating Monte 
Carlo simulation (MCS), was developed for optimizing the process design (process-unit 
allocation and scale-up decisions) and for capacity planning (acquisition of new units), 
considering the products that still require development, and the products that are already 
in commercialization. MCS is performed in a two-step procedure, based on Normal and 
Bernoulli distributions, in order to capture the effects of demand variability and trials 
pass-fail uncertainty, respectively. Product-launch decisions are made taking into 
account the probability distributions of alternative process designs, of new capacity 
requirements, and of the coefficients of the objective function. The applicability of the 
proposed solution approach is demonstrated in an illustrative case study. 
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1. Introduction 

In the pharmaceutical industry, uncertainty is particularly relevant in product-launch 
decisions, as a high level of variability exists in the process and in the product demand. 
Time-to-market is a key issue in this industry and therefore, as the demand increases 
during the various phases of the product-launch process, all required resources need to 
be available in time to start production. Design and planning decisions, such as process 
to unit assignment, scale-up, and unit acquisition decisions, are then critical, and should 
be made early enough to guarantee the necessary availability of resources. However, 
such decisions are often made based on incomplete and inaccurate data, and therefore to 
integrate uncertainty into the planning models is of utmost importance. Model-based 
approaches can then be applied to effectively support the decision-making process of 
product-launch planning. 

The main contribution of the approach proposed in this work is the integration of design 
and planning decisions. For this purpose, process design decisions take into account the 
resource limitations associated to the need of accommodating, simultaneously and in the 
same plant, the manufacture of products under development and products already in 
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commercialization, with uncertainty concerning demand and clinical trials. Moniz et al. 
(2014) considered the production planning of multipurpose batch plants in which both 
types of products compete for the same resources, but they have not included 
uncertainty in the models. To simultaneously address uncertainties on product demand 
and clinical trials, this paper proposes a MILP model for optimal product-launch 
planning, combined with a two-step MCS framework that handles uncertainty with 
Normal and Bernoulli distributions. As a result, the proposed approach efficiently 
integrates the demand variability for both types of products, and the uncertainty on 
clinical trials for new products. 

The remainder of the paper is structured as follows. Section 2 presents a brief literature 
review of the most common methods used for design and planning under uncertainty. 
Section 3 presents the problem description and its mathematical formulation. An 
example is presented in section 4, and final remarks are made in section 5.  

2. Literature Review 

In process industry applications, and in particular in the pharmaceutical industry, a 
method commonly used for planning under uncertainty is two-stage Stochastic 
Programming (SP). Planning decisions are typically taken in two stages. Strategic 
decisions (“here and now”) are made in the first stage, while operational decisions 
(“wait and see”) are made in a second stage. Uncertainties are usually modelled as a set 
of discrete scenarios to account for all possible future outcomes. 

Gatica et al. (2003) present a multistage SP formulation for capacity planning under 
uncertainty, in the pharmaceutical industry. This approach is used to select the final 
product portfolio, and simultaneously to perform production planning and to define the 
investment strategy, subject to the uncertainty on the outcomes of the clinical trials. 
More recently, Colvin and Maravelias (2008) also propose a scenario-based multi-stage 
SP model for planning the clinical trials. Sundaramoorthy et al. (2012) develop a 
framework for capacity planning in order to ensure the availability of enough resources 
for the foreseen demands of products, and they have developed a multi-scenario, multi-
period MILP formulation that takes into account uncertainty in the outcome of clinical 
trials. The main drawback of the scenario-based approaches is the significant increase of 
the model size with the increase of the number of scenarios. 

An alternative to this approach is Monte Carlo simulation (MCS) used to generate 
random instances for each uncertainty parameter. Bassett et al. (1997) present a 
framework for including uncertainty parameters into a general aggregate production 
planning procedure, or resource constrained scheduling problems, using MCS. Farid et 
al. (2005) use MCS to model technical and market uncertainties based on a hierarchical 
framework. More recently, Eberle et al. (2014) present a framework for measuring and 
improving the production lead time of pharmaceutical processes, employing MCS, 
sensitivity analysis, and what-if analysis. When dealing with scenario-based approaches, 
not only formulation intractability is a downside, but also the determination of which 
scenarios to generate can be a complex problem. Particularly when dealing with 
multiple uncertainty parameters, the decision about what scenarios to generate is neither 
simple nor obvious. Additionally, the (sensitivity) analysis of each scenario tends to be 
very complex, and time consuming. To overcome these difficulties, the two-step MCS 
approach proposed in this work can be a sound alternative. It enables the investigation 
of a large number of possible values (instead of just scenarios), and a comprehensive 
analysis and assessment of the risks associated with each uncertainty parameter.  
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3. Proposed Method 

3.1. Problem Definition  

Product development, as considered in this work, encompasses the clinical trials phases 
I, II, and III, and ends with the regulatory approval and the product launch. The main 
goal of the problem addressed here is to determine the optimal plan, including process 
to unit assignment, scale-up, and unit acquisition decisions, for the demand 
requirements of both the under development and the developed products. The problem 
can be defined as follows. We are given: (i) the recipes of the products under 
development and already in commercialization; (ii) the set of processing units available 
and their maximum and minimum capacities; (iii) the task suitability for every 
processing unit and task processing times; (iv) a fixed time planning horizon, discretized 
into equal duration intervals; (v) the operational and investment costs associated to each 
task and unit available; and (vi) the probabilistic distributions of the demand and of the 
clinical trials pass-fail uncertainty. The objective is to maximize the overall profit, by 
determining: the size and timings of scale-up decisions; the best set of processing unit 
types for each process; and the capacity extension requirements. 

3.2. Solution Approach  

The solution approach developed in this work integrates a MILP model with MCS. The 
MCS component randomly generates a large number of instances, and for each of these 
instances, the MILP model is solved, and an optimal solution obtained. To model the 
uncertainty associated with the clinical trial outcomes, the probability of success of each 
product at the end of the trial phases is given by Bernoulli distributions, since there are 
only two possible results of the clinical tests: “success” or “failure”. On the other hand, 
Normal distributions have been considered to capture the essential characteristics of 
demand uncertainty throughout each phase. Thus, in each iteration both uncertainty 
parameters (clinical trial outcomes, and product demand) are randomly sampled from 
their given probability distributions. This process is performed for each of the 3 clinical 
trial phases and for each product, in two main steps: (i) random product demand 
generation; and (ii) random trial outcome generation. Figure 1 shows a schematic 
diagram of this procedure.  

 

Figure 1 – Schematic representation of the two-step MCS. 

In short, the procedure works as follows. At the end of each trial phase, a sample trial 
outcome is performed in order to determine if the product successfully passed the 
clinical test. If so, a demand sample for the next clinical trial is generated. The sampled 
values are then used to run the MILP model, and the procedure is repeated until a 
certain number of iterations is reached. At the end, the probability density function for 
the objective function is determined and the results for the probabilistic occurrence of 
the decision variables are derived. These results are used to support decision-making 
concerning the design of the processes and the need for capacity extensions in each 
phase of the clinical tests. 
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3.3. MILP Model 

The formulation developed in this work is an aggregate planning model based on the 
RTN (Resource-Task Network) process representation, as introduced by Pantelides 
(1994). All material requirements as well as all storage levels and production yields are 
precisely defined through the model parameters and decision variables. However, the 
detailed time and task-sequencing constraints are not modeled. The optimal plan will be 
determined considering that production resources are shared by products under 
development and products already in commercialization. The formulation is defined by 
the following main constraints: (i) resource balance constraints, to determine the 
materials availability over time (intermediates and final products); (ii) capacity 
constraints, to set the minimum and maximum boundaries for resources availability; 
(iii) demand constraints, to define the production requirements; (iv) batch size 
constraints, for ensuring that the total amount of material processed is within the 
capacities of the units; and (v) plant capacity constraints, to express the time availability 
of the processing units, including the possibility to expand capacity. The objective 
function is the maximization of the profit, as defined by expression (1) (i.e. the total 
income over the time horizon, minus operational costs, investment costs (associated 
with the increase in capacity), storage costs, changeover costs, costs associated with the 
selection of processing units, and costs associated with missing deliveries). 
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The key decision variables of the proposed model are: (i) selection of processing units - 
binary variables ���� (���� = 1 if product � is assigned to equipment �, in time 

interval �); (ii) when and how much capacity to expand - integer variables ���; and (iii) 
total amount produced in each processing unit - continuous variables x

��
. 

4. Preliminary computational results 

To demonstrate the applicability of the proposed framework, the following product 
portfolio has been considered: 3 new products (PA, PB, and PC) entering in the 
development phase, and 2 products (PD and PE) already in commercialization. The 
demand forecast profiles for each product are illustrated in Figure 2a). A 5 years 
planning horizon was considered, divided in equal time intervals of 6 months. The 
recipes for the products are given, including their yields, processing times, and 
alternative processing unit types. All processes are composed by 3 aggregate tasks that 
can be processed in 3 possible unit types ({R1, R2, R3}, {F1, F2, F3}, and {D1, D2, 
D3}) having different capacities and investment costs. These tasks have a variable 
duration that is proportional to the batch size. 

4.1. Results   

The MCS component was run for 1000 iterations, thus sampling the demand variability 
of the under development products. For this purpose, a normal distribution was 
considered, with values, per time period, for the mean and standard deviation of 30%, 
derived from the data in Figure 2a). The clinical trial outcomes are determined by the 
Bernoulli distributions according to given success probabilities. For the products 
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already in commercialization, a lower demand variability was considered (with a 
standard deviation of 10%). The values of the objective function show that the profit 
follows a non-normal left-skewed probability distribution (see Figure 2b)). 

 
a) b) 

Figure 2 – a) demand profile for products under development (PA, PB and PC) and products 
already in commercialization (PD and PE); and b) histogram and probability distribution of profit 

(objective function). 

These results provide an interesting assessment of the impact of the product demand 
variability and clinical trial outcomes on the profit. The maximum profit value obtained 
was 2.00 x 106 relative monetary units, and the average profit was 1.73 x 106. Moreover, 
the most likely process design configurations for each product and clinical trial/planning 
period were determined. These results are illustrated in Figure 3. 

Additionally, the most selected design configuration for products PD and PE includes 
the processing units with higher capacities for each task, not shown in the figure. Thus, 
unit R1 was selected for task 1, unit F1 for task 2 and unit D3 for task 3. This leads to 
larger and fewer batches for these products. The lower capacity units were seldom 
selected in this case. On the other hand, for the under development products, the most 
selected process design configurations are strongly connected to the success of the 
clinical trials (see Figure 3). So, the model favours the lower capacity units in clinical 
trials I and, along with the increase of the product demand for trials II and III, the model 
tends to use process design configurations with higher capacity units (whenever there is 
no capacity available in the smaller units). Clearly, the model seems to be handling well 
the trade-off between the allocation of the larger capacity units to the products with 
higher and stable demands (PD and PE) and the allocation of smaller capacity units to 
the products with higher demand variability (PA, PB, and PC). 

 
a) b) 

 
c) 

Figure 3 - Probability of occurrence of each process design configuration for the products under 
development: a) product PA, b) product PB, and c) product PC. 

Considering these results, the process design configurations D2_F2_R3 (Phase I), 
D3_F2_R2_R3 (phase II), and D3_F1_R1_R2_R3 (phase III) seem to be plausible 



6  C. Marques et al. 

choices to accommodate product PA. Similarly, for product PB the right choices appear 
to be the process configurations D2_F2_R3 (Phase I), D2_F2_R2_R3 (Phase II), and 
D3_F1_R1_R2_R3 (Phase III). Finally, for product PC the most frequently selected 
configurations were D2_F2_R2 (Phase I), D2_F1_R2 (Phase II), and D3_F1_R1_R2 
(Phase III). In summary, we might say the solution approach proposed in this work 
provides the decision makers with valuable information regarding the process design 
configuration for profit maximization, taking into account the highly uncertain context 
involving product launch planning.   

5. Conclusion 

This paper presents an innovative solution approach (integrating optimization and 
Monte Carlo simulation) for the product launch planning problem, with uncertainty on 
the product demand and on clinical trials. This approach simultaneously considers the 
utilization of resources by products that are already in commercialization, and it can 
efficiently assess the effects of uncertainty in process design decisions (both process-
unit allocation and scale-up decisions) and in capacity planning, during product launch. 
Preliminary computational results indicate that the proposed approach provides a robust 
support to this decision-making process, through a clear identification of the most 
probable process configurations, in a highly uncertain context. Future research will 
address the systematization of the decision-making process, and the consideration of 
other relevant uncertainty parameters, such as production yield and lead times. 
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