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Evolving Centralities in Temporal Graphs: a Twitter Network Analysis
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Abstract—In online social media systems users are not only
posting, consuming, and sharing content, but also creating
new and destroying existing connections in the underlying
social network. This behavior lead us to investigate how user
structural position reacts with the evolution of the underlying
social network structure. While centrality metrics have been
studied in the past, much less is known about their temporal
behaviors and processing, mainly when analyzing not just net-
works snapshots, but interval graphs. Here, we study Twitter
follower/followee network and how users centralities evolve
over time. Our analysis is founded on temporal graphs theory.
First, we model Twitter as a temporal network and revisit the
concept of shortest path considering the time dimension. We
show how to compute closeness and betweenness centralities
using fastest paths. Then, we propose a baseline algorithm for
mining streams of temporal networks. The task is to find all
pairs fastest paths inside an observation window. We find that
Twitter users are fairly dynamic and from one moment to the
next, they can assume (or leave) central roles in the network.

1. Introduction

Twitter is one the most dynamic networks in the world,
where users are always posting and sharing content, be-
sides creating new and destroying existing connections in
the underlying network. A key problem in online social
networks analysis is that although real social networks are
fairly dynamic, traditional approaches are essentially static,
i.e., nodes and edges are analyzed as being persistent over
time [1].

When considering the additional dimension - time, social
networks can be analyzed as temporal networks, where
the times when edges are active are explicit elements of
representation [2]. A classical example of temporal network
application is on disease contagion through physical proxim-
ity. Usually, the spreading of pathogenic organisms occurs
through contact between two individuals. Thus, a temporal
network seems to be the best way to represent this scenario.
Specially, social networks, our topic of interest, can also be
represented as temporal networks, in the sense that they are
ubiquitous and complex on their interactions [3].

The structural properties of a complex network usually
reveal important information about its dynamics and func-
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tion [4]. This is particularly true if we take into account the
relationship between the position occupied by a node and
the role played by this node for the evolution of a dynamic
process. For instance, not all nodes have the same impact
on the spreading of a rumor over a network: intuitively,
the nodes having a higher number of neighbors should
contribute much more to the spreading than nodes having
few connections. However, if we perform a deeper analysis,
we observe that not just the number of edges is important
to identify good spreaders. In fact, nodes mediating a large
number of shortest paths are indeed those that contribute the
most to the spreading of information over a network. The
identification of nodes that play a central role, i.e., nodes
having high centrality, has been a quite active research field
in complex network theory. Here we review two standard
centrality measures — closeness and betweenness — and their
extension to the case of time-varying graphs.

Finally, analyzing temporal networks implies on process-
ing high velocity applications, where the evolve nature of
data creates complexity for data mining algorithms. A lot of
stream network mining algorithms have emerged from this
scenario [5], [6], [7], [8]. While, some algorithms process
streams of networks considering just static nodes and edges
(snapshots networks) [5], others adopt approximation and
sampling techniques to track evolving structural properties
behaviors [6], [9].

In this work we analyze Twitter as a social temporal
network. This is a pioneer quantitative study over Twitter
follower/followee network and its evolving aspect. Our fo-
cus is on centralities metrics closeness and betweenness.
We address two challenges: (i) modeling Twitter network
using temporal graphs structures and (ii) processing these
structures as graph streams. The goal, in the end, is to show
that it is important to consider the sequence of contacts when
analyzing evolving networks. This implies in a different
meaning and richer analysis than considering just networks
snapshots over time. Furthermore, we aim at quantifying
how dynamic a real network, as Twitter, may be from users
relationship viewpoint.

First, in Section 2 we propose a formalism to repre-
sent Twitter as a temporal graph. Once represented, we
formalize path problems over temporal graphs, as well as
revisit centrality metrics considering the new aspects of
temporal paths presented so far. In the next section, we detail



the Twitter dataset used for analysis. It is an unprecedent
dataset, containing the timestamps of when users start/finish
follow/unfollow relationships. In Section 4 we propose a
baseline algorithm for mining streams of temporal networks.
In Section 5 we present the analysis of evolving centrality
behaviors. In the end, we discuss about proposed approaches
and applications and Section 7 concludes the paper.

2. Social Temporal Networks

In this section, we introduce the main concepts related
to temporal networks and discuss how centrality metrics
can have different behaviors if we consider the dimension
time on the calculation of paths. Our main goal here is
to represent social networks, specially Twitter, founded on
temporal graphs theory [2].

According to [2], temporal networks can be divided into
two classes corresponding to the two types of represen-
tations: contact sequences and interval graphs. While in
contact sequences, the edges are active over a set of times,
in interval graphs, they are active over a set of intervals. In
this paper, we are interested in representing Twitter social
network as an interval graph.

Formally, let G = (V, E) be a directed temporal graph,
where V is the set of nodes and E is the set of edges of G. A
directed edge e € E is a quadruple (u, v, tinit, tena), Where
u,v € V, the direction is from v to v, tjni < tenqg and the
interval [t;nit, tena] corresponds to the existence period of e
in G.

For example, the temporal information of Twitter has
the following meaning: the nodes are users and an edge
(u, v, tinit, tena) indicates that v starts following w at ¢,
and unfollows u at tepqt1 (v follows w during [tinit, tend))-
As we are dealing with a real dynamic social network, an
user can follow/unfollow another user at any time. This is
the most interesting aspect that we are investigating: how
following relationships on Twitter evolve over time and
impact on users behaviors?

There are three global variables that must be defined
for we start reasoning with temporal graphs: W, R and T.
W = [n, N] is the window time of observation of G, for n <
N. R is the retention time of nodes, i.e., the time between
information arrival in the node and the instant from which
it can be forwarded. T is the edge traversal time. In our
Twitter temporal graph representation, we adopted R = 1
day and T = 0, as tweets are published instantaneously and
the average interaction time for posts is one day [7]. Notice
that in our context, 7" and R are defined as global variables,
but for flight graphs, for example, each edge (flight traversal)
and node (airports) must be defined with their respective
traversal and retention times [7]. Figure 1 is an example
of Twitter as a temporal network — specifically, an interval
graph.

2.1. Temporal Paths

The definitions here are grounded on the works [4], [7],
[10] with soft adaptations. The topological structure of static

Figure 1. Twitter as an interval graph.

networks can be characterized by an abundance of measures
[1]. When the additional dimension of time is included in the
network picture, many of these measures need rethinking.
So that the concept of geodesic distance cannot be limited
to the number of hops separating two nodes but should also
take into account the temporal ordering of links.

A temporal path P,, in a temporal graph G is a
sequence Pu,u =< (’Ul, V2, tl), (’l]27 V3, t2), ceey ('kal, Vi,
tp—1) >, where

— (i, Vi1, tinit, tena) € F is the i-th temporal edge on
u,vs

-1<i<k,

-4+ RAT <tiqq,

= tinit <t < tends

— nStl and tk—l SN,

— u =1y and v = vy.

The temporal length or duration dp, , of a temporal
path P, ,, is the number of snapshots from t1 to tx_1, i.e.,
dp,, = tgy—1 — t1. Finally, the temporal shortest-path or
fastest path is the minimum temporal length between two
nodes v and v, defined as min(dp, ).

Example 1. Considering the temporal network of Figure 1
and the parameters W = [1,9], T = 0 and R = 1, we
can cite some examples of temporal paths:

Temporal Path Duration Ispfﬁltgm
Py p =< (A,B,1),(B,D,2) > 1 yes
PA,D =< (A7B72)7(B7D76)> 4 no
Pp,c =< (B,D,1),(D,C,4) > 3 no
Pac=<(AC,2) > 0 yes

TABLE I. EXAMPLES OF TEMPORAL PATHS

2.2. Temporal Centralities

Once defined temporal paths concepts, we need to revisit
two important centrality metrics: closeness and betweenness.
As nodes represent users in our context, we chose these local
metrics to conduct our analysis in this paper.

The closeness centrality of a node is used to measure
how close it is from the others nodes in the graph. For
example, people with high closeness in a social network are
in an excellent position to monitor the information flow —



they have the best visibility into what is happening in the
network. The closeness centrality of a node v in G is defined
as:

1
closeness(v) = Z W (D
weV\{v} P

where min(dp, ,) is the duration of the fastest-path
from v to w. If there is not any path P, ,, then the summation
term is 0. If min(dp, ,) = 0 (when traversal time T = 0),
then the summation term is 2.

The betweenness centrality of a focal node is the fraction
of fastest paths passing through it. In a social network,
people with high betweenness have great influence over
what flows, and not in the network:

wy (4, k)
betweenness(v) = Z —

where w,(j, k) is the number of fastest paths between
j and k that pass through v and w(j, k) is the total amount
of fastest paths between j and k.

@)

3. Twitter Dataset

Although there are many Twitter datasets available in
literature [10], [11], [12], we need one containing the infor-
mation of when relationships start and end in the network.
Only then we will have a complete temporal network of
follower-followee relationships. Moreover, we chose Twitter
due to rich information available that allow us to correlate
with users behaviors, for example. Datasets like [13] are lim-
ited on structural information. To the best of our knowledge,
there is no available Twitter dataset with temporal network
structure.

We developed TCraw!, our Twitter data collector. The
architecture is composed by two crawlers that use Twitter
Rest APIs? to get data. The first one, Data Crawler is
responsible to collect our observation network. This is the
name used to refer to nodes and edges that we choose to
track. The observation network crawling is done according
to the following steps:

1) Choose s users seeds on Twitter. This is the level 0
(current_level = 0).
2) While current_level < MAX_LEV EL do
a) For each node n in current_level, get m followers
of n
b) Set current_level = current_level + 1
Once stored entire observation network in file format,
the Update Crawler is started. Its function is to update
structural node information based on a given time interval
U. For example, for U = 24hs, the temporal network is built
with one day granularity. Since structural information is not
available in Twitter (Twitter API does not provide historical
information about when a user starts/end following other),

1. Available at: http://Isi.facom.ufu.br/~fabiola/temporal-networks
2. https://dev.twitter.com/rest/public

our dataset only makes sense from the moment Update
Crawler is started. So, the observation network built from
Data Crawler is our initial state.

Time-changing Characteristics of Data. Table 2 details
statistics of our dataset’. It is important to notice that the
dataset does not track nodes evolution, just edges activa-
tion/inactivation for the 144975 nodes. The total number
of temporal edges has been computed considering that two
edges of the type (ua v, tinita tend) and (ua v, tinit’7 tend’) are
different.

Observation window W [08/28/2015, 12/15/2015]

Update window (granularity) U 1 day
Max fanout (m) 10000
MAX_LEVEL 1
# nodes 144975
# edges in first day 837961
# total temporal edges 1222118
Avg # new follows/day 3492
Avg # unfollows/day 3657
# seeds (s) 27

# themes 9 (3 seeds each)
politics, sport, news,
religion, music, humor,
fashion, health, TV

TABLE 2. TWITTER DATASET STATISTICS

Themes related to seeds

As illustrated in Figures 2 and 3, the dataset is fairly
dynamic, specially on October 2015. These observations
endorse that the dataset has a time-changing characteristic,
when considering edges.
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Limitations. The strategy we have used for collecting the
observation network is a limitation in our dataset. The idea
of starting from seeds celebrities resulted in a network
extremely unbalanced, with weak connections between users
that are not seeds. Another limitation is the difficulty on
tracking updates daily in our network. Twitter API has
hard restriction policies, which resulted in a relatively small
Twitter sample. The longer nodes or edges are considered,
the higher should be the granularity (update window).

Even with these limitations, in what follows we show
how interesting is the analysis of evolving centralities in our
dataset. It is certainly a time-changing network structured
data.

4. Network Evolution

How to analyze a temporal network? Which algorithms
can be applied for this task? In this section, we present a
baseline algorithm for mining Twitter temporal graph from
evolving centralities perspective. The idea is to analyze
temporal edges as streams.

4.1. Stream Representation of an Interval Graph

An interval graph can be represented as data stream.
Intuitively, a stream is a sequence of all edges in G that
come in order of the time each edge is created. When
analyzing interval graphs, the existence interval of an edge
e = (u,v,tinit,teng) means that at any time inside this
interval [t;nit, tend], there may be a communication between
the nodes u and v. For that reason, we first define the stream
representation of e as a set of contacts.

Definition 1 (Contact). An edge ¢ = (u,v,tinit,tend)
can be represented by a set of contacts C. =
{(’U, v, tin’it)7 (U’a v, tinit+1)7 ey (U, v, tend)}- A contact
Cet € Cp is a triple (u,v,t) indicating that there may
be communication between v and v at .

The data stream representation of an interval graph is a
sequence of contacts from all edges in G, ordered by the
time of each possible contact. For example, if G has the
following edges:

{(Ula V2, 47 6)7 (Ulv v3, 1a 3)7 (U27 V4, 5a 6)) (U47 Vs, 6a 8)},
the corresponding data stream is:

{(Ul,U3,1),(U1,U3,2) (111,1}3,3),(1)1,1}2, )7
(U17v275)a(U17U276)7(U27U47 ),(’U4,’U5, ) (
(v4,vs5,8)}

(UQ,U4, )7
V4, Vs, )7

This definition is different from the one adopted in [7]. In
our proposal we convert the edges represented by means of
time-varying intervals into set of contacts. The data stream
representation is a sequence of all possible contacts from all
edges in G that come in order of each contact time. On the
other hand, in [7], the stream is a sequence of all edges in
G, ordered according to their starting time.

We argue that this conversion is necessary for the anal-
ysis considering the meaning that we want to represent:
the information in Twitter can be diffused as a result of
a sequence of contacts among users.

4.2. Temporal Centrality Analysis

To compute the exact closeness or betweenness central-
ity, we need first to compute all pairs fastest paths, which
is too expensive for a large graph. The Algorithm 1 is a
baseline algorithm we propose for this task.

Algorithm 1 All pairs fastest paths detection

Input: A temporal graph G =
tation, W = [n, N], R, T

Output: For each node v € V, a set L, containing all fastest
paths from v

(V, E) in its data stream represen-

1: for each incoming contact ¢ = (u, v, t)

2 if t >nand t < N then

3 // Py is a temporal path

4: Py« {c}

5: // Ly is a set of all temporal paths from u, initially ()
6: Ly« LyU{Py}

7 for each z € V

8: for each P,. =< (z,v1,t1), ..., (Vk, 2, tk) >€ Ly
9: if z = u then
10: if t > tx + R+ T then
11: Py < Py . U{c}
12: Lz <~ Lz U {Pz,v}

13: // Removing cycle paths and paths that are not the fastest ones
14: for each x € V
15: for each P, . € L,

16: if £ = z then

17: Ly <+ L, — {Pm’z}

18: else

19: for each P, , € L,

20: if dp, . > dp/ then
21 Lo ¢ Ly ~{P,.}

22: return L, for each x € V

Remarking on complexity analysis of Algorithm 1, we
have that for each incoming contact, the computational cost
to update the values is O(V x P), for P being the average
number of paths between two nodes. In the end, there is the
additional cost of removing cycles and paths that are not the
fastest ones, corresponding to O(V x P) (from line 14). If
we consider the total number of elements in the stream as
C, we have a final complexity of O(C x 2(V x P)).

It is important to mention that the algorithm has a
high spatial cost. To be able to calculate the exactly (not
approximated) values of fastest paths, our algorithm keeps
all paths stored while processing the stream. In what follows,
we explore the aspects of memory size vs. stream size Vvs.
high velocity processing temporal paths.

5. Experimental Analysis

All the experiments were performed with 32GB of main
memory available. The values for retention and traversal
time are R = 1 day and T' = 0, respectively. The Twitter
dataset granularity is of 1 day.

5.1. Varying Time Intervals

For computing the all pairs fastest paths, the input
observation window W can affect several aspects, for cite:



overall running time, stream size and duration of fastest
paths. We define different intervals to perform the analysis.
As Twitter dataset has been collected from Aug 28th, 2015
to Dec 15th, 2015, in table 3 we summarize the adopted
observation windows.

Period Values
WE1 =
[09/01,09/07], WE =
[09/08,09/14],...,WE15 =
[12/08,12/14]

# of intervals

Weekly (W E) 15

[09/01,09/15], FO2 =
[09/16,09/30], ..., FO7 =
[11/30,12/14]
MO, =
[09/01,09/30], MO2
[10/01,10/31], MOs3
[11/01,11/30]
Total (T'O) 1 TO =[08/28,12/15]
TABLE 3. OBSERVATION WINDOWS

Fortnightly (F'O) 7

Monthly (MO) 3

We measure the execution time of Algorithm 1 for
different observation windows. Figure 4(a) illustrates these
results. The values for WE, FO and MO correspond to
the average execution time in each group of windows. We
can observe an exponential behavior compatible with the
increasing number of incoming contacts C' (Figure 4(b)).
Our algorithm is dependent on the size of the observation
window.

In Figure 4(c) we show how different the fastest paths
values can be just varying observation windows. This en-
dorses the time-varying aspect of Twitter network.
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Figure 4. Results varying the size of observation window when running all
pairs fastest paths algorithm

5.2. Evolving Centralities

The closeness centrality can be easily calculated from
the return of Algorithm 1. With all pairs fastest paths and

their respective duration, the closeness(v) is a straight sum
of these values (see Eq. 1). In Figure 5(a) we can see
the closeness value averaged across all users for different
observation windows. The observation during short or large
amount of time does not influence on closeness. These
values depend mainly of the network behavior: as Twitter
network is diversified and extremely dynamic, nodes’ close-
ness vary accordingly.

Another interesting analysis is illustrated in Figure 5(b).
Three users uj, us and ug were randomly selected and their
closeness analyzed over fortnightly intervals. Remark that
these users are not seeds. The graph shows that users are
always changing their closeness.

As well as closeness, the betweenness centrality
betweenness(v) is a straight calculus from the fastest paths
returned by Algorithm 1 (see Eq. 2). Furthermore, the nodes
have the same behavior in varying their centrality values. In
Figure 5(a) we have the betweenness averaged across all
users for different intervals. And in 5(c) the variation for
users w1, g and ug.

Finally, we rank all nodes according to their central-
ity values (first positions for higher centralities). For this
analysis we consider a sequence of incremental obser-
vation windows of the type Iy = [dayl,daylb],Is =
[day16,day30],...,I; = [day91,dayl05]. The values in
Table 4 suggest that nodes centralities are fairly dynamic
and from one observation to the next, the node may have
become more or less important.

z5

Avg Value
G ki win e iy
.
g
B
Closeness
e
in o
]
I
]
y
b
3
’-n’"
t
™ .

i ;f s i -
/ Y
1 \‘\_! % L
""" Closeness 05 g | )
0. Betweenness u3
WE o Mo (s} FO1 FOI FO3 FO4 FOS FOE FOT
Period Period
(a) (b)
| 1
£ I z Uz
3 4 u3
o
25
c 3
g 21
E | =
% 151 7 .
2 | _______ v o
11
|
05 |
!

o

FO1 FO2 FO3 FO4 FOS5 FOD& FOF
Period

()

Figure 5. Evolving centralities observations

6. Discussion

We consider the strategy proposed in this paper for
mining all pairs fastest paths as a pseudo-stream mining.
The Algorithm 1 is extremely sensitive to the size of the
stream, despite processing data as stream. Its high velocity



User 11 12 13 14 I5 16 I7
U; 544 | 530 | 533 | 530 | 544 | 580 | 600
Us 653 | 644 | 600 | 589 | 592 | 615 | 617
Us 122 | 123 100 | 224 | 220 | 235 | 249

TABLE 4. RANKING POSITIONS VARIATIONS FOR CUMULATIVE

OBSERVATION WINDOW

processing depends on the size of available memory, which
technically does not fully characterize the stream mining
problem [14]. On the other hand, our proposal is a first
look in temporal networks over a real dataset from evolving
centralities perspective. Despite of some works investigate
the evolving centrality problem, they use approximation
and sampling methods [5], [7], [9], [15]. To best of our
knowledge, there is not a solution for exactly centrality
values tracking, specially for evolving betweenness.

Applications. Analyzing evolving centralities in networks
can be applied in diverse real applications. We highlight here
two of them. First, the problem of contagion (information,
influence and disease) where the interest is in observing not
exactly people getting infected, but who infected them [16].
As contagion is a dynamic process, temporal networks can
be applied in this problem and tracking evolving centralities
can help in increasing the sales in marketing field, for
example.

A second emerging application is on the analysis of user
preferences and behaviors [17]. The analysis of evolving
centralities can reveal patterns of influence and communi-
cations in social networks. For instance, these patterns help
to understand how users’ preferences evolve over time for
more accurate recommendation systems.

7. Conclusion

Our purpose in this paper was to analyze Twitter from
evolving network structure viewpoint. We have modeled
Twitter as a temporal network and revisited the concept
of shortest path considering the time dimension. We have
shown how to compute closeness and betweenness central-
ities using fastest paths. We have developed an algorithm
for mining streams of temporal networks and have used it
to perform analysis over Twitter follower/followee network.
Our findings have shown that analyzing Twitter as a tem-
poral graph, models the behavior of real applications and is
different from just considering static analysis.
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