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Abstract While the analysis of unlabeled networks has been studied extensively in the past,
finding patterns in different kinds of labeled graphs is still an open challenge. Given a large
edge-labeled network, e.g., a time-evolving network, how can we find interesting patterns?
We propose COM?, a novel, fast and incremental tensor analysis approach which can discover
communities appearing over subsets of the labels. The method is (a) scalable, being linear on
the input size, (b) general, (c) needs no user-defined parameters and (d) effective, returning
results that agree with intuition. We apply our method to real datasets, including a phone
call network, a computer-traffic network and a flight information network. The phone call
network consists of 4 million mobile users, with 51 million edges (phone calls), over 14
days, while the flights dataset consists of 7733 airports and 5995 airline companies flying
67,663 different routes. We show that COM? spots intuitive patterns regarding edge labels that
carry temporal or other discrete information. Our findings include large “star”-like patterns,
near-bipartite cores, as well as tiny groups (five users), calling each other hundreds of times
within a few days. We also show that we are able to automatically identify competing airline
companies.
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1 Introduction

Nodes in real networks naturally organize into communities or clusters exhibiting a high
degree of cohesiveness, a phenomenon reported not only in social graphs [38], but also in
protein—protein interaction networks [32] and in the World Wide Web [8]. Many community
detection methods have been developed to detect such structures in simple unlabeled graphs
[9].

However, in reality, interactions are not all the same, and we are able to characterize
them along different vectors: When they take place, the mean of communication used, the
duration of the communication or the content of the interaction are just a few examples.
Incorporating this additional information in community detection methods would allow us to
characterize communities on these dimensions, and we would be able to detect communities
whose nodes have similar interactions, improving community quality. In a social network,
for example, we observe nodes corresponding to users and edges corresponding to phone
calls, e-mails or text messages. By classifying these interactions in simple categories such as
“work,” “school,” “leisure” and “family,” and then grouping people with similar interactions,
we are able to significantly increase community quality. Standard techniques would ignore
this extra information and mix, e.g., work and family relations.

Here, we focus on exactly this problem: How to find communities in an edge-labeled
network, in a scalable way without user-defined parameters. We analyze a large, million-
node graph, from an anonymous (and anonymized) dataset of mobile customers of a large
population and a bipartite computer network with hundreds of thousands of connections,
available to the public, to detect time-varying communities. We also analyze flights data
(where nodes correspond to airports and edges are labeled with the company operating the
flight) to find which companies are the biggest competitors in different regions. Figure 1
illustrates a sample community, in which three big airlines (Lufthansa, Delta and United
Airlines) heavily compete in 16 worldwide airports; we illustrate other specific regional
competitors in Sect. 4. We shall refer to the communities we discover as comet communities,
because they are only active over some labels; they (may) come and go, like comets.

The contributions of our method, COM?, are the following:

— Scalability CoM?is linear on the input size, thanks to a careful, incremental tensor
analysis method, based on fast, iterated rank-one decompositions.

—— Delta
—— United Airlines
Lufthansa

Fig. 1 Worldwide flights community CoMm? is able to detect situations of competition in flight records without
user-defined parameters. Lufthansa, Delta and United Airlines compete in the 16 biggest world airports flying
37 % of the valid routes with significant overlap. In this figure, we only show the flights in this community
connected to Charles de Gaulle airport, France
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— No user-defined parameters CoM* uses a novel minimum description length (MDL)-
based formulation of the problem, to automatically guide the community discovery
process.

— Effectiveness We applied COM? on real and synthetic data, discovering edge-labeled com-
munities that agree with intuition.

— Generality COM? can be easily extended to handle higher-mode tensors.

This paper is an extended version of an initial conference version [3]. This version pro-
vides an extended model to deal with qualitative edge-labeled graphs instead of focusing on
time-evolving networks. Furthermore, the algorithmic description has been enhanced and
covers additional information such as proof that a small number of rejections suffices, algo-
rithm pseudo-code and a complexity analysis. Finally, the extended version contains new
experiments on real-world data showcasing the method’s ability to deal with non-temporal
edge labels and a discussion on possible extensions of our method.

The rest of this paper is organized as follows: We summarize necessary background and
related work in Sect. 2, describe our proposed method in Sect. 3, show our experimental
results in Sect. 4 and finally conclude in Sect. 5.

2 Background and related work

In this section, we summarize related work on graph patterns, tensor decomposition methods
and general community detection algorithms for graphs.

Static community detection The widespread notion of cohesiveness used to group nodes has
typically reflected that community members are

1. well connected among themselves;
2. relatively well separated from the remaining nodes.

Building on this intuition, various principles have been introduced, ranging from adaptations
of hierarchical and spectral clustering [10,13,33], over block modeling [38] and generative
models [40], to information theoretic principles [19,31] and the detection of quasi-cliques
in node-labeled graphs [12]. We kindly refer to the excellent survey of [9] for a thorough
discussion of community detection methods. Notably, recent work has shown that, unlike
previously assumed, big communities tend to have a hyperbolic shape, and their members
are not as tightly connected [2].

Community detection in categorical edge-labeled graphs The detection of communities using
categorical edge labels has been studied less extensively in the literature, but the general idea
is that these methods try to simultaneously co-cluster nodes and labels.

MUTURANK and GMM- NK [39] start by determining weights of various relation types
and objects that are then used to create a single-level network by combining the different
probability distributions. PMM [36] is a spectral method that starts by calculating the eigen-
decomposition of the individual adjacency matrices (i.e., considering labels independently)
and then clusters the feature vectors of the different nodes together using k-means. This way,
they find nodes that have a similar “profile” along different edge labels, but the method is
severely penalized as the number of labels increases. In [4,5], extensions of the quasi-clique
definition have been introduced to detect communities where nodes show similarity in subsets
of the edge labels.
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Other approaches rely on sparsifying the dense and real-valued PARAFAC decomposi-
tion in order to identify communities. Possibilities include thresholding the values in the
component vectors after the initial decomposition or modifying the decomposition itself by
imposing sparsity using L1 penalty terms. As an example, GRAPHFUSE [25] starts by cal-
culating a sparse PARAFAC decomposition of the tensor and then assigning each node to
the cluster in which it has the highest weight in the decomposition, effectively partitioning
the nodes. Because it creates a hard clustering (with no overlapping), GRAPHFUSE is more
closely related to graph partitioning than to community detection.

Community detection in time-evolving graphs Graph evolution has been a topic of inter-
est for some time, particularly in the context of web data [21,22]. MDL-based approaches
for detecting non-overlapping communities in time-evolving graphs [34] have been previ-
ously proposed; however, this work focuses on incremental, streaming community discovery,
imposing segmentation constraints over time, rather than on discovering comet communities.
Liu et al. [23] study the problem of detecting changing communities, but require selection of
a small number of parameters. Furthermore, broadly related work uses tensor-based methods
for analysis and prediction of time-evolving “multi-aspect” structures, e.g., [7,35]. Aggar-
wal and Subbian [1] published a very recent survey on evolutionary network analysis, in
which they classify evolutionary clustering methods in eight categories (spectral, probabilis-
tic, density-based, matrix factorization, modularity, information theoretic, pattern mining and
others). We refer the reader to this survey for a more detailed analysis.

Table 1 compares some of the most common static and label-aware community detection
methods.

Tensor decompositions An n-mode tensor is a generalization of the concept of matrices: A
2-mode tensor is just a matrix, a 3-mode tensor looks like a data cube, and a 1-mode tensor
is a vector. Among the several flavors of tensor decompositions (see [17]), the most intuitive
one is the so-called canonical polyadic (CP) or PARAFAC decomposition [14]. PARAFAC
is the generalization of SVD (singular value decomposition) in higher modes. See Fig. 2 for
an example, where the three modes are caller-id, callee-id and timestamp.

Tensors methods have been successfully used for anomaly detection in computer networks
[24], Facebook interactions [20,26] and for clustering of web pages [18]. Papalexakis et al.
[27] provide evidence that when the factors of the CP/PARAFAC decomposition are sparse,
then doing the decomposition by extracting a rank-one component each time approximates
the *batch,” full-rank decomposition with very high accuracy; this premise is key to the present
paper, since it allows us to perform community detection very quickly, by extracting only
rank-one components.

3 Proposed principle

In this section, we formalize our problem, present the proposed method and analyze its
properties. We first describe our MDL-based formalization which guides the community
discovery process. Next, we describe a novel, fast, and efficient search strategy, based on
iterated rank-one tensor decompositions which can discover communities in edge-labeled
networks in a fast and effective manner. While our method generalizes to tensors with an
arbitrary number of modes, we illustrate our method using 3-mode tensors to simplify its
understanding.
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Fig. 2 PARAFAC decomposition date

€~ Gy -
of a three-way tensor as a sum of A 14 24+ ... +
F outer productg (Fank—one Callerl X @ @ 0z
tensors), generalizing the rank-F
—>

singular value decomposition of a _
matrix recelver

3.1 Formal objective

We are given a (possibly directed) network consisting of sources S, destinations D and
edge labels £. We represent this network via a 3-mode tensor X € {0, 1}ISIXIPIXILE where
X ju = lif source i is connected to destination j via an edge with label /. As abbreviations,
weuse N = |S|, M = |D|, and K = |£|. In many practical scenarios, the set of sources S
equals the set of destinations D.

The goal is to automatically detect the set of communities C = {Cy, ..., Cx} that best
describes the tensor X, where k is part of the optimization and not known a priori.

Definition 1 (Community) A community is a triplet C = (S, D, L) with S € S, D € D
and L C £ such that elements in S are well connected to elements in D using edges with
labels in L. An edge is part of the community if both nodes and the corresponding label are
part of the community, i.e., E(C); jn=1%i€S,jeD,l€L.

‘We propose to measure the “importance” of a community via the principle of compression,
i.e., by the community’s ability to help us compress the 3-mode tensor: If most of the sources
are connected to most of the destinations using most of the indicated labels, then we can
compress this “comet-community” easily. By finding the set of communities leading to the
best compression of the tensor, we get the overall most important communities.

More specifically, we use the minimum description length (MDL) principle [11]. That
is, we aim to minimize the number of bits required to encode the detected patterns (i.e., the
model) and to describe the data given these patterns (corresponding to the effects of the data
which are not captured by the model). Thus, the overall description cost automatically trades
off the model’s complexity and its goodness of fit. In the following, we provide more details
about the description cost:

Description cost The first part of the description cost accounts for encoding the detected
patterns C = {Cy, ..., Ci}. Each pattern C; = (S;, D;, L;) can be completely described by
the cardinalities of the three included sets and by the information of which nodes and labels
belong to these sets. Thus, the coding cost for a pattern C; is

Li(Ci) = Ln(SiD) + Ln(IDil) + Ln(ILi ) + 1Si| - log N + | Dj| - log M + |L;| - log K (1)

The first three terms encode the cardinalities of the sets using the MDL optimal universal
codelength Ly for integers [30]. The last three terms encode the actual membership informa-
tion of the sets using block encoding: e.g., since the original graph contains N sources, each
source included in the pattern can be encoded by log N bits, which overall leads to | S; | -log N
bits to encode all sources included in the pattern.

Correspondingly, a set of patterns C = {Cj, ..., Cx} can be encoded by the following
number of bits:

L2(C)=LN(|C|)+ZL1(C) (@)
CeC

That is, we encode the number of patterns and sum up the bits required to encode each
individual pattern.
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Since in real-world data we expect to find overlapping communities, our model should
not be restricted to disjoint patterns. But how to reconstruct the data based on overlapping
patterns? As an approach, we refer to the principle of Boolean algebra: Multiple patterns are
combined by a logical disjunction. That is, if an edge occurs in at least one of the patterns,
it is also present in the reconstructed data. This idea is related to the paradigm of Boolean
tensor factorization. More formally, the reconstructed tensor is given by:

Definition 2 (7Tensor reconstruction)

Given a community C, we define the indicator tensor I¢ € {0, 1}V*M>K (o be the 3-mode
tensor with IS, =1 & (i, j, 1) € E(C).

Given a set of patterns C, the reconstructed tensor Xc is defined as XC = \/CeC lc where v
denotes element-wise disjunction.

The second part of the description cost encodes the data given the model. Given that
the MDL principle requires a lossless reconstruction of the data and since the reconstructed
tensor, Xc, unlikely reconstructs the data perfectly, we also have to encode the “errors” made
by the model. Here, an error might either be an edge appearing in X but not in X¢, or vice
versa. Since we consider a binary tensor, the number of errors can be computed based on the
squared Frobenius norm of the residual tensor, i.e., || X — XC H2F

Finally, as “errors” correspond to edges in the graph, the description cost of the data can
now be computed as

LaXIe) = L (|X = X[ 7) + [X - XC[. - og N +log M +logK) ()

Technically, we also have to encode the cardinalities of the set S, D and L (i.e., the size
of the original tensor). Given a specific dataset, however, these values are constant and thus
do not influence the detection of the optimal solution.

Overall model Given the functions L, and L3, we are now able to define the communities
that minimize the overall number of bits required to describe the model and the data:

Definition 3 (Community model)
Given a tensor X € {0, 1}ISIXIPIXIZI the set of communities is defined as the set of patterns
C* C (P(S) x P(D) x P(L)) fulfilling

C* =arg mcin[Lz(C) + L3(X|O)] 4

Again, it is worth mentioning that the patterns detected based on this definition are not
necessarily disjoint, thus better representing the properties of real data.

3.2 Algorithmic solution

Computing the optimal solution of Eq. 4 is infeasible as it is NP-hard, given that the column
reordering problem in two dimensions is NP-hard as well [15]. Therefore, in the following,
we introduce a scalable and efficient algorithm that approximates the optimal solution via an
iterative method of sequentially detecting important communities. The general idea is to find
in each step a single community C; that contributes the most to the MDL compression based
on local evaluation. That is, given the already detected communities C;—1 = {Cy, ..., Ci_1},
we are interested in finding a novel community C; which minimizes Lo({C;} U C;_1) +
L3(X|{C;} UC;_1). Since C;_ is given, this is equivalent to minimizing

Li(Ci) + L3(X{Ci} U Cio1). (&)
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Obviously, enumerating all possible communities is infeasible. Therefore, to detect a
single community C;, the following steps are performed:

— Step 1: Community candidates We spot candidate nodes and labels by performing a
rank-one approximation of the tensor X. This step provides a normalized vector for each
dimension with the score of each element.

— Step 2: Community construction The scores from the previous step are used in a hill-
climbing search as a bias for connectivity, while minimizing the MDL costs is used as
the objective function for determining the correct community size.

— Step 3: Tensor deflation Based on the current community detected, we deflate the tensor
so that the rank-one approximation is steered to find novel communities in later iterations.

In the following, we discuss each step of the method.

Community candidates As mentioned, exhaustively enumerating all possible communities
is infeasible. Therefore, we propose to iteratively let the communities grow. The challenge,
however, is how to spot nodes and/or labels that should be added to a community. For
this purpose, we refer to the idea of tensor decomposition. Given the tensor X (or as we
will explain in step 3, the deflated tensor X(i) ), we compute vectors a € RV, b € RM
and ¢ € RX, providing a low-rank approximation of the community. Intuitively, sources
connected to highly connected destinations at highly active labels get a higher score in the
vector a and similarly for the other two vectors.

Specifically, to find these vectors, a scalable extension of the matrix power method only
needs to iterate over the equations:

MK
a; <« z Xi jkbjck
j=1.k=1
N.K
bj < X, jkaick (6)
i=1 k=1

N.M
Cr <« X jkaib;
i=1,j=1
where a;, bj and ¢y are the scores of source i, destination j and label k. These vectors are

then normalized, and the process is repeated until convergence. Initial values are assigned
randomly from the range O to 1.

Lemma 1 ALS [6] reduces to Eq. 6, when we ask for rank-one results.

Proof According to the alternating least squares method, one fixes matrices B and C and
solves for A through the minimization of

min Hx(]) —AcoB)T H i @)

Due to properties of the PARAFAC decomposition [17], A has closed-form solution of
the form A = X(1,(C © B)(CTC « BTB)".

When A, B and C are vectors (a, b and ¢, resp.), the Khatri-Rao product (¢ © b) is
equivalent to the Kronecker product (¢ ® b). The inner products ¢’ ¢ and b” b are scalars and
50 is (¢Tc  bTh)T. The product of X(1), the N x MK matricization of X, and ¢ ® b, the
MK x 1 column vector, reduces to Eq. 6. O
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Notice that the complexity is linear in the size of the input tensor: Let E be the number
of non zeros in the tensor, we can easily show that each iteration has complexity O(E)
as we only need to consider the non zero X; ;; values. In practice, we select an € and
compare two consecutive iterations in order to stop the method when convergence is achieved.
In our experimental analysis in Sect. 4 (using networks with millions of nodes), we saw
that a relatively small number of iterations (about 10) is sufficient to provide reasonable
convergence.

Community construction Since the tensor decomposition provides numerical values for
each node/label, its result cannot be directly used to specify communities. Additionally, there
might be no clear threshold to distinguish those nodes/labels belonging to the community
and the rest. Algorithm 1 illustrates the construction process in pseudo-code.

We exploit the vectors a, b and ¢ as bias in a hill-climbing search, with the goal of
minimizing the MDL cost. Algorithm 1 shows an overview of this step. We start by selecting
a highly connected entry (ag, bo, co) in the tensor as the initial seed S, = {ao}, Sp = {bo},
Se = {co}."! We then let the community grow incrementally: We randomly select nodes v,
vp and label v, that are not currently part of the community but connected to it, using the
score vectors a, b and ¢ as sampling bias. That is, given the current nodes S, S, and labels
S¢, we sample according to

Plog = i) ai 1¢S;N3y€Sp,z€8::Xiy.,=1
0 else
b; jESpANIxeS,,ze€ S8 Xy i,=1
P(up = j) j ] ¢ Sp X as % ¢ X,j,z
0 else
k¢S A3 Sa, Sy Xe v =1
Pv, = k) Ck ¢ Se X € Oq, Y € Op x.y.k (8)

0 else

For each of these elements, we calculate the description length considering that we would
add the element to the community. That is, we calculate MDL,, MDL,; and MDL, based
on the sets S, U {v,}, Sp U {vp} and S, U {v.}, respectively. If the smallest of these MDL
scores is smaller than the score of the community detected so far, the corresponding element
is accepted and the next round of sampling is performed. This process is repeated until A
consecutive rejections have been observed. We can show that a small number of rejections
A is sufficient:

Lemma 2 Let i be an element that was not included in the community when it should have
been included. Let u be the vector corresponding to i ’s mode (i.e., 0 is one of the vectors a, b,
or ¢). Then, the probability that i does not belong to this community decreases exponentially
with A.

P (“i not selected”| “i should have been selected”) < (1 — up)’. )

Proof Given that vector u is normalized (see step 1), at each iteration, the probability that
the element i is not chosen is given by (1 — u;). After A iterations, the probability that the
element has not been chosen is upper-bounded by (1 —u;)*. The exact probability is actually
lower as the sampling is done without replacement, ignoring the elements currently in the
community. O

1 We tested different methods with no significant differences found in the results since the subsequent steps
of growing and shrinking lead to the selection of the most relevant edges and the removal of irrelevant ones.
Selecting the edge (i, j, k) with highest min(a;, b;, c) provides a good initial seed.
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Algorithm 1 Community construction

function COMMUNITYCONSTRUCTION(Score Vector a, b, and ¢)
[Sa,Sp,Sc] < initialSeed(a, b, ¢)

repeat
t <0
while < A do > Try to grow the community
vq < newBiasedNode([Sq4, Sp, Scl, a) > Mode 1
vp < newBiasedNode([Sqa, Sp, Scl, b) > Mode 2
ve < newBiasedNode([Sq4, Sp, Scl, ¢) > Mode 3

MDL, <« L3(Sq U{va}, Sp, Sc)
MDLy, < L3(Sa, Sp U {vp}, Sc)
MDL, < L3(Sq, Sp, Sc U {vc})
[value, index] = min(MDL,, MDL,,, MDL,)
if value < L3(Sg, Sp, Sc) then Sipgex < Sindex U {Vindex} 1 <0
elser <141
for all elements n in S, do > Try to shrink the community
if L3(Sq\{n}, Sp, S¢) < L3(Sa, Sp, Sc) then Sy « Sy \{n}
for all elements n in S, do
if L3(Sq, Sp\{n}, S¢) < L3(Sa, Sp, Sc) then S, < Sp\{n}
for all elements n in S do
if L3(Sa, Sp, Sc\{n}) < L3(Sa, Sp, Sc) then S¢ < Sc\{n}
until [S,, Sp, Sc] has converged
return [Sy, Sp, Scl

In our experimental analysis, a value of A = 50 has proven to be sufficient; we consider
this parameter to be general, and it does not need to be defined by the user of the algorithm.

After growing the community (i.e., after A rejections), we try to improve its description
cost by removing elements. Intuitively, it is possible that one of the nodes initially selected to
be part of the community (when it was small) is not that well connected to the nodes that have
since been added. Instead of penalizing the current MDL score and “blocking” the addition
of new nodes, we check whether the removal of any node/label currently in the community
improves the description cost. This growing/shrinking alternating process is repeated until
the community stabilizes, and it is guaranteed to converge as the description cost is strictly
decreasing.

Tensor deflation While the output of the previous two steps is a single community, the
goal of this step is to transform the tensor so that novel communities can be found in future
iterations. The challenge of such an iterative processing is to avoid generating the same
community repeatedly: We have to explore different regions of the search space.

As described in Sect. 2, [27] indicate that extracting one rank (i.e., community) at a
time approximates the full-rank decomposition with very high accuracy when the factors
are sparse. Therefore, we propose the principle of tensor deflation. Starting with the original
tensor X(l) := X, after each iteration, we remove the community C; whose edges were
already described. We obtain the recursion

X(Hl) = X(i) i (¢ ® X(i) [=X-— XCi ®X] (10)

where ® denotes the Hadamard product.

The method might terminate when the tensor is fully deflated (if possible), or when a
predefined number of communities has been found or when some other measure of community
quality (e.g., community size) was not achieved in the most recent communities.
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3.2.1 Complexity analysis

Lemma 3 Our algorithm has a runtime complexity of
O(C-(E+|P|-logN -log|P[)),

where C is the number of communities we obtain, E is the number of nonzeros of the tensor,
N is the length of the biggest mode and | P| is the size of the biggest community. Thus, our
method scales linearly w.r.t. the input E.

Proof Steps 1 to 3 are repeated C times, the number of communities to be obtained. Step 1,
the rank-one approximation, requires O (E) time. Step 2, the core of the algorithm, can be
executed using O (| P|) addition and removals, each with the complexity required to calculate
the new minimum description length of the community: O (log N - log | P|). Finally, step 3,
the matrix deflation, can be done in O (E) with a single pass over the edges of the community.

O

3.2.2 Algorithm parameters

Despite the existence of two parameters in the algorithm, their variation has no significant
impact when analyzing specific networks.

The first parameter, €, impacts the number of iterations in the rank-one approximation
in step 1. In practice, a fixed value of 10 iterations provides very good results regardless of
the network under consideration. This effect can be explained due to two reasons: First, the
vectors a, b and ¢ are only used as approximations for community candidates and do not
require high precision. Second, since real graphs are scale-free having small diameter, the
changes in these vectors propagate very quickly through the network.

The impact of the second parameter, A, has been analyzed in Lemma 2. The exponential
decrease in a node’s probability to be wrongly left out of the community implies that a
relatively small and fixed value for A can be used.

Therefore, we conclude that these parameters do not need to be defined by the user (and
provide no such means in the software package made available).

4 Experiments

CoMm? was tested on a variety of real and synthetic tensors in order to assess its effective-
ness, robustness and scalability. Table 2 summarizes the networks used, and a more detailed
description of each dataset is provided later in this section.

In the three fairly different real-world datasets, CoM? was run using the default parameters
(cf. Sect. 3.2.2), showing that it can be applied without any user-defined parameters.

4.1 Quality of the solutions

Characterizing the quality and robustness of the communities identified by the method is
important. In particular, we want to answer the following questions: How are “overlapping
blocks” identified? How much overlapping can occur so that consecutive rank-one decom-
positions can identify them separately? How “dense” are the communities found? We rely
on synthetic datasets with ground-truth information to answer these questions.
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Table 2 Networks used: two small, synthetic networks; three large real networks

Name #Nodes #Non zeros #Labels Description

OLB 10-20 1000-2000 100 Overlapping blocks

DJB 1000 50,000 500 Disjoint blocks

LBNL 1647 + 13,782 113,030 30 Internet traces from LBNL
PHONE 3,952,632 51,119,177 14 Phone call network
FLIGHTS 7733 67,663 5995 Flights network

(a) (b)

Fig. 3 Synthetic datasets, Tensor with overlapping blocks Illustration of the tensors used in the first experi-
ment, the number of overlapping edges of the two blocks was variable, Communities with different densities
Tllustration of the tensors used in the second experiment. Opacity indicates the nonzeros density in the blocks

Overlapping communities Analyzing the impact of overlap helps us predict when two
distinct communities will be reported as a single entity and, equivalently, how connected
internally a community needs to be so that it will not be split into two separate communities
by the algorithm.

A tensor with two disjoint and cubic communities was constructed, and iteratively, ele-
ments from each of the modes of one of the communities were replaced with elements of the
other (see Fig. 3a). Our tests show that the communities are reported as independent until
there is an overlap of about 70 % of the elements in each mode, in which case they start
being reported as a single community. This corresponds to an overlap of slightly over 20 %
of the nonzero values of the two communities, and the global community formed has 63 % of
nonzeros. This clearly demonstrates that CoM? has high discriminative power: It can detect
the existence of communities that share some of their members, and it is able to report them
independently, regardless of their size. Note that, due to the 3-dimensional nature of our data,
a relatively high overlap of the modes does not immediately correspond to an high overlap
of the nonzeros.

Impact of block density We also performed experiments to determine how density impacts
the number of communities found (see Fig. 3b). Fifty disjoint communities were created
in a tensor with random noise, and nonzeros were sampled without repetition from each
community with different probabilities. We then analyzed the first fifty communities reported
by Com? in order to calculate its accuracy. As we show in Fig. 4a, the discriminative power
remains high, even with respect to varying density.
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Fig. 4 Experiments on synthetic data, Tensor with disjoint blocks—COoM? identifies communities even at low
densities, COM? scales linearly with input size: Running time versus number of nonzeros for random tensors

4.2 Scalability

As detailed before, Com? ’s running time is linear on the number of communities and in the
number of nonzero values in the tensor. We constructed a tensor of size 10000 x 10000 x 10000
and randomly created connections between sources and destinations using random labels.
Figure 4b shows the runtime versus the number of nonzeros in the tensor when calculating
the first 200 communities of the tensor. In addition to its almost linear runtime, COM? is also
easily parallelizable. By selecting different random seeds in the tensor decomposition step,
different communities can be found in parallel.

4.3 Discoveries on edge-labeled graphs

CoMm? was applied to a dataset of flight routes from 2012 available at http://openflights.org/
data.html (cf. Table 2, FLIGHTS). In this setting, nodes correspond to airports and edges are
labeled with the airline company performing the route (i.e., there might be more than one
edge between each pair of nodes). Our goal is to find a set of companies flying several routes
between a set of airports, a strong indicator of local competition. Even though the underlying
graph is directed, we chose to work with a single set of airports instead of separating origin
and destination sets. For this purpose, we adapted the previously described algorithm so that
the sampled vertex is added to both modes: the origin and destination set.

Figure 1, depicted in the introduction, illustrates the most international of these commu-
nities, with 16 worldwide airports and 3 companies well known for intercontinental travel:
Lufthansa, Delta and United Airlines. In order to show CoM? ’s effectiveness, we showcase
three regional communities of competing companies:

— Figure 5a, b represents the major competing companies in the USA and China, along
with respective airports. The community pictured in Fig. 5a corresponds to 26 American
airports; US Airways, United and American Airlines operate 915 different routes between
these 26 airports. Figure 5b shows 25 Chinese airports; Hanan Airlines, Air China, China
Southern Airlines and China Eastern Airlines operate 1,150 routes between these airports.
These two examples show COM? ’s effectiveness in identifying dense subgraphs sharing
similar edge labels.

— Figure 6 shows that CoM? is also able to find single-label communities. Ryanair alone
operates 988 different routes between 47 European airports. This community can be seen
as a dense subsection of the tensor, which is the equivalent to a big star in the unlabeled
case (i.e., a dense row/column in a matrix).
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(b)

Fig. 5 Regional communities of competing companies found using flight routes, Community in the USA
US Airways, United and American Airlines operate 915 different routes (47 %) between these 26 airports,
Community in China Hanan Airlines, Air China, China Southern Airlines and China Eastern Airlines operate
1,150 routes (48 %) between these 25 airports

Please note that neither standard community detection algorithms operating on the unla-
beled graph, nor multiple runs considering each company independently, could possibly find
the competing companies scenario as it requires interaction between several different edge
labels.

4.4 Discoveries on time-labeled graphs

To characterize communities found in real phone call data, we applied CoM?to a dataset
from an anonymous European mobile carrier. We considered the network formed by calls
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Fig. 6 Community in Europe Ryanair creates near-cliques on its own. It operates 988 unique routes (46 % of
total possible) between these 47 airports

between clients of this company over a period of 14 days. During this period, 3,952,632
unique clients made 210,237,095 phone calls, 51,119,177 of which formed unique (caller,
callee, day) triplets (cf. Table 2, PHONE). Here, each label corresponds to a specific day.
The tensor is very sparse, with density in the order of 10~7. We extracted 900 communities
using Com2. These communities contain a total of 229,287 unique nonzeros; 293 unique
callers and 97,677 unique callees are represented, so the first observation is that the temporal
communities are usually heavy on one side with large outgoing stars.

We also applied COM? to a public computer network dataset captured in 1993 and made
available by the Lawrence Berkeley National Laboratory [28]. Thirty days (i.e., edge labels)
of TCP connections between 1647 IP addresses inside the laboratory and 13,782 external IP
addresses were recorded (cf. Table 2, LBNL). This tensor was completely deflated, and a
total of 19,046 communities were found (1930 of them having more than 9 nonzeros).

Observation 1 The biggest communities are more active during weekdays.

Figure 7 shows the number of active communities per day of the week on both datasets,
and we can see that most communities are significantly more active during weekdays. In the
phone call data, we are led to believe that these are mostly companies with reduced activity
during weekends, while the reduced activity during the weekends in the research laboratory
is to be expected.

Observation 2 A typical pattern is the “Flickering stars.”

When analyzing a phone call network, a pattern to be expected is the marketeer pattern in
which a single-number calls many others a very small number of times (1 or 2). Surprisingly,
the stars reported by CoM? were not of this type. Two callers stand out in an analysis of the
communities reported: One participated in 78,279 (source, destination, time) triplets as a
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Fig.7 Weekly periodicity number of active communities vs time. Notice the weekend dives on a days 4, 5 and
11, 12 and b days 3, 4, 10, 11, 17, 18, 24, 25, Weekly periodicity phone call data, Weekend activity computer
network data

caller but only in 10 triplets as a receiver, while the other participated in 8909 triplets as a
caller and in none as a receiver. These two nodes are centers of two distinct outgoing stars and
were detected by the algorithm. However, the time component of these stars was not a single
day but rather spanned almost all the weekdays. This behavior does not seem typical of a
marketeer, so we hypothesize that it is a big company communicating with employees. Many
of the reported communities are stars of this type: A caller calling a few hundred people in a
subset of the weekdays—we call them flickering because, even though there is some activity
during the rest of the weekdays, it is significantly reduced and those days are not reported as
part of the community.

In the LBNL dataset, one star was particularly surprising. It received connections from
over 750 different IP addresses inside the laboratory but only on a single day. One of the
other big stars corresponded to 40 connections on a single day to an IP address attributed to
the Stanford Research Institute, which is not surprising given the geographical proximity.

We define Flickering stars as a common temporal community that has a varying number
of receivers. These communities are active on different days, not necessarily consecutive.
Stars active on many days (e.g., every weekday) are more common than single-day stars.

Observation 3 A typical pattern is the “Temporal Bipartite Cores.”

Several near-bipartite cores were detected as communities in the phone call dataset. These
are communities with about five callers and receivers that are active on nearly each day under
analysis, and each represents between 75 and 150 of the nonzeros of the original tensor, with
a block density of around 40 %.

An example of such communities can also be shown for the LBNL data. Seven machines of
the laboratory communicated with six external IP addresses on every weekday of the month.
After analyzing the IP addresses, the outside machines were found to be part of the Stanford
National Accelerator Laboratory, the University of California in San Francisco, the UC
Davis, the John Hopkins University and the US Dept. of Energy. CoM? was able to detect
this research group (possibly in particle physics) using communications data alone (Fig. 8).

5 Conclusion

CoMm? carefully combines a fast and efficient iterated rank-one tensor decomposition to guide
the search for nodes and labels that participate in communities, and a principled MDL-based
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Fig. 8 LBNL community Com?2 detects research group collaborations using computer communications data

model selection criterion that guides the expansion of communities and provides a stoppage
mechanism. We have focused on binary tensors, which reveal structural (connectivity) com-
munity patterns over edge-labeled graphs and have demonstrated interesting findings in a
variety of real-world datasets. The main contributions are the following:

— Scalability Our method, COM?, is linear on the input size; instead of relying on a complete
tensor factorization, we carefully leverage rank-one decompositions to incrementally
guide the search process for community detection.

— No user-defined parameters In addition to the above efficient, incremental search process,
we also proposed a novel MDL-based stopping criterion, which finds communities in a
parameter-free fashion.

— Effectiveness We applied COM? on real and synthetic data, where it discovered commu-
nities that agree with intuition.

— Generality CoM? can be easily extended to handle higher-mode tensors.

CoM? is available at http://www.cs.cmu.edu/~maraujo/comdet/com2.html.

Discussion and future work Our current methods require categorical edge labels. Extend-
ing MDL to handle real numbers, as opposed to integer values, is a challenging problem.
Furthermore, real-valued (possibly continuous, but non-categorical in general) edge labels
render tensor representations impossible (i.e., we cannot represent non-categorical indices).
However, tensor decompositions can be applied to weighted tensors (e.g., representing the
strength of connections), potentially enabling interesting findings.

Future work can also focus on expanding our principle to coupled tensor/matrix data,
in order to exploit node-related side information such as demographic data. This research
direction would provide unified tools to find communities in networks with both edge labels
and node attributes.
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