SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2003; 33:567-581 (DOI: 10.1002/spe.522)

Mooshak: a Web-based
multi-site programming contest
system

R

José Paulo Leal*T and Fernando Silva

DCC-FC & LIACC, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

SUMMARY

This paper presents a new Web-based system, Mooshak, to handle programming contests. The system acts
as a full contest manager as well as an automatic judge for programming contests. Mooshak innovates
in a number of aspects: it has a scalable architecture that can be used from small single server contests
to complex multi-site contests with simultaneous public online contests and redundancy; it has a robust
data management system favoring simple procedures for storing, replicating, backing up data and failure
recovery using persistent objects; it has automatic judging capabilities to assist human judges in the
evaluation of programs; it has built-in safety measures to prevent users from interfering with the normal
progress of contests. Mooshak is an open system implemented on the Linux operating system using the
Apache HTTP server and the Tcl scripting language.

This paper starts by describing the main features of the system and its architecture with reference
to the automated judging, data management based on the replication of persistent objects over a
network. Finally, we describe our experience using this system for managing two official programming
contests. Copyright (© 2003 John Wiley & Sons, Ltd.

KEY WORDS: Web application; contest management; program evaluation; automatic judging

INTRODUCTION

For many years now, the International Collegiate Programming Contest (ICPC) has organized
and conducted yearly world programming championships, under the patronage of Association for

*Correspondence to: José Paulo Leal, DCC-FC & LIACC, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto,
Portugal.
TE-mail: zp@ncc.up.pt

Contract/grant sponsor: Project Ganesh; contract/grant number: PRAXIS/P/EEI/14232/1998
Contract/grant sponsor: LIACC

Received 29 January 2002
Published online 5 March 2003 Revised 6 August 2002
Copyright © 2003 John Wiley & Sons, Ltd. Accepted 20 December 2002

568 J.P.LEAL AND F. SILVA

Computing Machinery (ACM), for college students [1]. This contest is a two-tiered competition among
teams of students. Up to 60 of the winning teams of the regional contests advance to the world finals.
The participation numbers are impressive: in 2001 there were more then 3000 teams, from 1150
universities, 70 countries, participating in 29 regional contests distributed among 94 locations. The
main motivation behind such an organization is to provide students with an opportunity to demonstrate
and sharpen their problem solving and computing skills.

In a typical contest, teams composed of three undergraduate students get a set of nine problems
which they have to solve in five hours on a single computer, programming either in C, C++, Java,
or Pascal. During the contest, teams can submit solutions, in source code, to the given problems.
The submissions are typically evaluated by a human judge and it involves compiling the program,
running it with a set of predefined test inputs, comparing the results obtained with those expected in
the test outputs, and then marking the submission against a marking scheme. A submission is marked
as accepted only when it successfully passes all the test cases. Usually, there are maximum execution
times associated with the tests, and therefore for a program to pass the tests successfully it must not
only produce the correct results but also has to do so within the specified time limit. This ensures that
the solutions produced by teams are reasonably efficient and not just a brute force approach.

Preparing and running programming contests with many teams (60 teams at the finals) competing
is an enormous task. Designing an adequate environment for mediating the communication between
teams and judges is highly challenging; it must allow the former to ask questions, to submit their
solutions, and to receive information; and the latter to answer questions from the teams, to judge their
submissions, and to report back the evaluation results. Some systems have been developed to try and
fulfill this purpose. PC? is the system that has been used in recent world finals [2]. It has capabilities for
managing single and multi-site contests and since it has been developed in Java it can be run on either
Windows or Unix operating systems. PC2, however, lacks an important feature, automated judging
capabilities, and therefore many human judges are required to run a contest. Other systems have been
developed elsewhere, namely at Ural State University [3] and at Valladolid University [4] were they
have a 24 hour online automated judge that interacts with users through e-mail. These universities also
provide a Web-based problem archive with more than 1000 problems in total, most of which have been
used in previous programming contests.

In this paper, we describe the design and implementation of a new Web-based multi-site
programming system, Mooshak. The system acts as a full contest manager and as an automatic
judge for programming contests, with the capability of running single and multi-site contests, as
well as behaving as a 24 hour online judge. Mooshak is an open system implemented on the Linux
operating system using the Apache HTTP server with Tcl scripts communicating via the CGI protocol.
The system is available from its home page at http://www.ncc.up.pt/mooshak; on this page the reader
can use a public version of Mooshak, both as a contestant and as judge, read its on-line help, and
download an archive with the system. Mooshak is distributed under the so called ‘Artistic License’ and
thus qualifies as certified Open Source Software by the Open Source Initiative [5].

Mooshak innovates in a number of aspects: it has a scalable architecture that can be used from
small single server contests to complex multi-site contests with simultaneous public online contests
and redundancy; it has a robust data management system favoring simple procedures for storing,
replicating, backing up data, and failure recovery using persistent objects; it has automatic judging
capabilities to assist human judges in the evaluation of programs; it has built-in safety measures to
prevent users from interfering with the normal progress of contests.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

MOOSHAK 569

Mooshak grew from previous experience within the group with the Ganesh system [6], a Web-based
learning environment of Computer Science topics that we have been using for several years now.
Ganesh includes a module to automatically evaluate student exercises with a stronger requirement
in that marks must be given to partial solutions. Ganesh already includes domains to deal with
programming languages, graphical interfaces, and operating systems, namely C, Prolog, Tcl/Tk,
HTML, assembly, and SQL. For those unfamiliar with the Hindu mythology, lord Ganesh is the
elephant-headed God with a broken tusk that is always accompanied by a small mouse named
Mooshak.

The reminder of the paper is organized as follows: first we give an overview of Mooshak, mainly
focusing on its external view and functionalities; then we describe its architecture and explain in
more detail the decisions made in the implementation of the system; next, we describe our approach
concerning system security, safe execution of contestants’ programs, and data backup to enable system
recovery; then, we proceed by describing our approach towards automatic judging; finally, we describe
our experience in using the system in two official contests, draw some conclusions, and advance ideas
towards future work.

SYSTEM OVERVIEW

Mooshak is a client-server application to fully manage and run programming contests. It is also
Web-based and therefore all of its functionalities are accessible through interfaces deployed on a
Web-browser, irrespective of the operating system where the browser is running. These interfaces
use the HTML 4.0 frameset and no processing is made on the browser, except for some data input
validations that are implemented with ECMAScript*. Java and plugins were deliberately avoided to
simplify the use of the interface by any machine on the Internet.

Mooshak accommodates a number of user-oriented views with different system requirements and
access permissions to the data. The users currently supported are contestants, judges, administrators,
and the general public. User access is controlled by authentication, except for the general public.
Next, we describe the features available within each user view.

Contestants’ view

During a programming contest most of the team work is done locally on their single workstation using
standard programming tools such as text editors, compilers, and debuggers. Communication outside the
team is mediated by Mooshak through the contestants’ interface view. This view allows contestants to
submit source programs for evaluation as intended solutions for problems; ask questions to the judges
and access all questions posed by contestants and corresponding answers given by the judges; access
the list of all submissions and corresponding marks; access the current contest classification; print the
code programs in development; and visualize on the browser the problem descriptions®.

iJavaScript 1.2
S$This is especially important on public contests open to everyone on the Internet.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

570 J.P.LEAL AND F. SILVA

M da UP - Hozilla {Buil
. File Edit Wiew Search Go Bookmarks Tasks Help

- RE R R R R R R _view | as |

I Browse. I Submit Print

Submissions * Classification Questions (Printouts

Help

Update every| 5 ¥ minutes; with| 20 | Hnes
459 5:00:08 [] UCoimbra Byte_Killers 1 CPP WIONE ANSWEr final
458 45945 11 Udine 1 B CPP time-limit exceeded final
457 4:59:13 = Politechadrid UPM1 ¢} ¢ Wrong answer final
458 4:58:31 11 ECOLE_POLYTECHNIQUE 2 B C time-limit exceeded final
455 45811 T Almeria UAL-1 A o] compile. time error final
454 45811 — URIC Los_Archiperres_Mestolenes A ¢ Wrong answer final
453 4:58:09 [] URIC Barrapunteros H C WIONE aNSWEr final
452 4:58:00 En Evora Lux Triumnphans A c compile time error final
451 4:57:56 1 Roma Sapienzal 1 CPP WrOng ASTWer final
450 4:57:52 H- RoyallT ETH_NADA F CPP wrong answer final
449 4:57:39 = URJIC Barrapunteros H C presentation error final
448 4:57:34 [+ ETHZ Bitornatic B ¢ WrOng ASWer final
447 asm1e T Politecladrid UPM1 <] ® wrong enswer final
448 4:56:55 En I8_Tecnico 2 i) C WIONE aNSWer final
445 45644 = URJC Barrapunteros H ¢ presentation error final

Page 1 of 31

v

Figure 1. The contestants’ view.

The contestants’ interface, as shown in Figure 1, and the area at the top (the header) is used to
identify the contest and the team (left part), to aggregate the selections (center part), and to display the
available command buttons (right part).

The central area is used to list information related to the last command processed. For instance, after
submitting a program the listing of submissions is updated, showing the available information for the
latest submissions. The listings are paginated and are automatically updated. The interface allows the
contestants to control the update rate and page size of the listings.

Judges’ view
Even though Mooshak evaluates submissions automatically, it provides a number of functions to help

human judges in exercising a finer control on the judging process. From our experience so far, the
automatic judging is very much trusted, nevertheless problems may arise unexpectedly such as a

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

MOOSHAK 571

= Rdmi [=1(=] [=]
. File Edit View Search Go Bookmarks Tasks Help
Mooshak
STRIEEIN] e capesinn et L0 8 S0 WS | Cagliari UniCa_1 E c Wrong answer final
5443 4:56:14 El [SEP-IFP_1 H CFP run-time error final
Data Tiatle Control 2442 45609 ER [2EC Code_Breakers D CFF WIONZ answer final
- € e 3441 45542 El FCUP MizCC D @ Accepted final
2440 45524 T Almeria UAL-1 D C WIONZ answer final
View: 5439 45438 11 RomaSapienzal I CFP WO anSwer final
Pending (2438 45434 [El SRS IR G CFF run-time error final
Questions C 2437 45421 11 Genova, 1 B CPP time-limit excesded final
Submissions = 2436 45418 11 Eurecom_2 E C WIONE answer final
Printouts ® 2435 45400 ER [SEF-IFF_2 I & time-limit excesded final
Frogress . 2434 45356 Politechladrid UPM 2 C e} Accepted final
Statistics » 5433 45338 2 Valladolid UVAT G [WIONE answer final
Classification -» 5432 4:53:04 — Almeria UAL-1 D C WIONE answer final
2431 45253 2 Walladolid UV A2 D C WIONZ answer final
Problems: Teams: 5430 4:52:32 Ell [3_Tecnico_2 H C WrONg answer final
o I e < Page 2 of 31 »
2 Artificial_intelligence 4]
B Barrapuntaros
c Bitomatic
D Byte_Killers
E c-5 i i
F | | Caparica_Lions 441 45542 EN FCUPMiCC D [Arowed o oo ¥ e Submit
G Code_Breakers
H ECOLE_POLYTECHNIGIUE_1
| ECOLE_POLYTECHMIGQUE_2
‘ ‘ ‘12.23“\ 12.234n 12.23\n
a5 0
Update:
every |5 = mimites Classification Accepted
Observations
Code
#include<stdio.h>
[(il D

Figure 2. The judges’ view.

system resource failure or a mistake in a test case. Mooshak is highly flexible in allowing the judges
to re-evaluate submissions without a team being penalized for it, and thus undoing whatever had gone
wrong. Through the judges’ interface, judges can also answer questions posed by the teams, access all
submissions made, view the current classification, and control the handling of printouts produced by
teams. The judges’ interface is illustrated in Figure 2.

The judges navigate through the information using listings similar to those presented to the
contestants. The main differences are the links in each row that open forms for managing submissions,
questions, and printout requests. The judges view is divided in two main areas: a control area on the left
and a workspace on the right. On the control area the judges select the type of listing to be displayed
on the workspace and they may filter the list by specifying a criteria on the problems and teams.
By filtering the listings, a human judge can monitor the activity of the problems which he or she knows
best.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

572 J.P.LEAL AND F. SILVA

The basic listings available to the judges show the submissions, questions, and printouts. This view
includes a listing presenting the pending transactions of any of the three basic types, i.e. non-validated
submissions, unanswered questions, and undelivered printouts. The judge also has access to the
classification, statistics, and contest progress listings.

Administration view

The administration interface allows contest directors to set up all necessary data to run the contest.
By contest data we mean the problem set (problem descriptions and test cases), teams composition
and authentication (passwords), and programming languages with corresponding execution commands
and compilation flags. Our first experiences in managing programming contests were focused on the
features for contestants and jury. Contest administration was carried out by editing configuration
files and moving data files using shell commands. This approach had two major problems: it was
a complicated and error prone task, and was difficult to use in an ‘emergency’ situation during the
contest. Even though there is a great effort in making the contest data consistent, it may be necessary
to edit some test input or output during the contest itself. This happened once and it was enough
to convince anyone about the importance of having flexible administration features. The editing
capabilities introduced in the current administration interface overcome this difficulty as it is possible
to virtually edit or replace any piece of data. The main requirements identified for the administration
interface were the following.

History. A contest is actually a series of events. Before the main event there are usually one or
more training sessions. In the case of preliminaries the contest may be broken into several
events during a year. Thus, the administration interface must allow the management of several
successive events, reuse data from one event to another (e.g. teams), and record all the
transactions from previous events.

Navigation. For each event Mooshak records the contest data (problem set, teams, languages) and
transactions (submissions, questions and printouts). The contest data have their own structure:
the problem set includes several problems, each one with several tests; the teams are composed
of contestants (three effective, one reserve and one coach) and are aggregated into institutions.
Thus, navigation through the data must be simple and intuitive.

Editing. Mooshak has basically two types of data: text strings and text files. The first are used for
configuring atomic values like the starting and finishing date/time or the command line to
compile a program for a given language. Examples of data files are program solutions, problem
descriptions, or input test data. The interface must include means of inserting and editing both
types of data.

Commands. The preparation of contest data requires the execution of several commands at different
times, for example importing/exporting problem sets, generating passwords for teams, printing
certificates of achievement, checking problems timeouts, etc. These commands must be simple
to find and use with the appropriate data.

To meet these requirements the administration view of Mooshak is as illustrated in Figure 3.
The navigation tree follows a familiar interaction pattern that most users will recognize immediately

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

SR E MOOSHAK 573

(BJET]ES)

Mooshak
SWERC 2001 The comperton ended 10:58 proplem : dados/prova/problemas/B

Name [B
Wording l— Browse... @
Program li Browse... g
Timeout [

Updata | Remove Localiza-imagens st

a MaxTime=0
Timeout=2

=l

Figure 3. The administration view.

since it is used in several file managers in various operating systems. To capitalize on the metaphor, the
navigation tree actually has a folder for each branch and a sheet for each leaf, and each icon anchors a
link to that position. By navigating within the tree, the user can quickly select any branch.

When a branch is selected the corresponding form is displayed in the workspace on the right.
The forms include a header showing the type of data and the path in the tree to get to this form.
The form also includes all the fields related to the selected branch. As mentioned before, these can
either be text values, editable in the field, or text files. In the last case, the user may either upload a
file or edit its current value. In the footer of the workspace several buttons indicate to the user which
commands may be executed with this branch. The Update and Remove buttons are always available.
The other buttons may vary according to the type of data being edited.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U9D17 SUOWILLOD dAIIR1D et dde au) A pausenol ae saoile YO ‘88N Jo 3|1 104 Aeiq i 8UIUO AB|IA UO (SUORIPUOD-PU-SULBI/LLI0D" A8 1M Aleug 1 pul|uo//:SaNY) SUO HIPUOD pue SWwid L 8y} 89S *[£202/20/90] Lo Ariqiautiuo As|im ‘bniod aueiyooD Aq zzgads/zo0T 0T/I0p/uwiod As|imAseiq fpuluo//sdiy Wwoj papeo|umod ‘9 ‘€002 ‘Xy20L60T

574 J.P.LEAL AND F. SILVA SRE

User interface

EOEOHE0 BELD

HTTP
Application
Server
- —_ =
|
| RSYNC
Node
Figure 4. The architecture of Mooshak.
ARCHITECTURE

The architecture of Mooshak is that of a typical Web application: a client—server framework connecting
the users with the machine where problem submissions are recorded, analyzed, and validated. Figure 4
represents the architecture of Mooshak, structured in vertical and horizontal layers. The user interface
layer on the top includes the machines used by the teams, human judge, administrators, and general
audience to access the system. The graphical user interface is rendered in HTML and interaction data
are communicated back to a server on the application layer using the HTTP protocol. The application
layer is composed of a set of servers, each using its own data management system.

Mooshak also has a vertical structure, where each layer groups a set of client machines to their
server. We call these vertical layers nodes since they are the basic component of a Mooshak network.
A simple contest may be managed using a single Mooshak node.

We will now concentrate on detailing the implementation of a Mooshak server, emphasizing its
automated judging and its data management approach using persistent objects. Then, we describe how
a network of Mooshak nodes is used to deal with issues such as backup, load balancing, and multi-site
contests.

Mooshak server

The Mooshak server is an Apache HTTP server extended with external programs using the CGI
protocol, running on a Linux operating system. Apache is responsible for the communication,
authentication, access control, and encryption. The external programs (CGIs) are responsible for
generating HTML interfaces and processing form data. They are implemented in Tcl [7] and manage
data using persistent objects over the file system. Tcl was chosen for being a scripting language with

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

MOOSHAK 575

powerful tools for process management and for interfacing the file system. These features were used to
implement the automated judging and data management with persistent objects as described in more
detail next.

Automated judging

The automated judge is the cornerstone of Mooshak. Its role is to classify a submission according to a
set of rules and produce a report with the evaluation to be validated by a human judge. A submission
is composed of data relevant for the evaluation process, that is the program source code, the team-
id, the problem-id, and the programming language (this is automatically inferred from the source
code file extension). Submissions are automatically judged and almost instantaneously displayed
to the teams, although initially in a pending state. The human judges have the responsibility of
validating pending classifications, making them final, and occasionally modifying initial classifications.
A classification may have to be modified as a result of changes in the compilation and execution
conditions (e.g. changes in test cases). Re-evaluation produces another report that has to be compared
with previous ones.
The automated judging can be divided in two parts according to the type of analysis.

(i) Static analysis checks integrity of data related to the submission and, if successful, produces an
executable program.

(i) Dynamic analysis is performed after a successful static analysis and is composed of one or more
executions of the program.

Static analysis starts by verifying if the submitted problem has already been solved (by the same
team), in which case the submission is rejected and no classification is given. Then it goes on to
confirm the verifications made by the interface, i.e. by double checking the submitted data for team
ownership and problem-id. If these verifications fail it probably means that the submissions did not
come from the contestants interface (where the values would have been checked) and is thus marked as
an ‘invalid submission’. At this stage the size of program source is also verified to prevent a denial of
service attack by submitting a ‘program too long’. Finally, if it succeeds in this verification, it compiles
the submitted program using the compilation command line defined in the administration interface.
Mooshak may be more or less tolerant according to the flags chosen for each compiler. An error or
compiler warning detected in this stage aborts the automated judging and dynamic analysis is skipped.
Table I lists the verifications performed during static analysis and the associated classifications upon
failure.

Dynamic analysis involves the execution of the submitted program with each test case assigned to
the problem. A test is defined by an input and an output file. The input file is passed by the standard
input to the program execution and its standard output is compared with the output file. The errors
detected during dynamic analysis determine the classifications listed in Table II. Each classification
has an associated severity rank and the final classification is that with the highest severity rank found
in all test cases. The highest severity is given to the rare situation where the system has an indication
that the test failed due to lack of operating system resources (inability to launch more processes, for
instance). The lowest severity is the case where no other error was found, using the test cases, and
therefore the submission is accepted as a solution to the problem.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

576 J.P.LEAL AND F. SILVA

Table 1. Static analysis verifications.

Verifications Classification

Team Invalid submission
Language Invalid submission
Problem Invalid submission

Program size Program too long
Compilation ~ Compile time error

Table II. Classification and severity of program tests.

Severity Classification
6 Requires re-evaluation
5 Time-limit exceeded
4 Output too long
3 Run-time error
2 Wrong answer
1 Presentation error
0 Accepted

The automatic judge marks an execution as ‘Accepted’ only if the standard output is exactly equal to
the test output file. Otherwise the output file and standard output are normalized and compared again.
In the normalization both outputs being compared are stripped of all formatting characters. If after
this process the outputs become equal them the submission is marked as having a ‘presentation error’;
otherwise it is marked as a ‘wrong answer’.

In the current implementation the normalization trims white characters (spaces, newlines, and
tabulation characters) and replaces sequences of white characters by a single space. This is a general
normalization rule since white characters are only used for formatting. In a specific problem other
classes of characters could have the same meaning. For instance, in a problem where the only
meaningful characters are digits, other characters, such as letters or punctuation, could be treated as
formatting characters. This cannot be done in general since many problems have a meaningful output
that includes letters. This feature will require having a meaningful class of characters defined for each
problem output.

The compilation and the execution of programs are the two most insecure points of a contest
management system. Provided it fits in a single file, a team can submit virtually any program in one of
the contest languages, including a bogus or malicious program capable of jeopardizing the system and
ruining the contest. For that reason Mooshak compiles and executes programs in a secure environment,
with the privileges of an insecure user and with several limits. Most of these limits are independent of
the problems, with the exception of execution timeout that is adjusted to each problem. The execution
timeout for each problem is determined before the contest and it is the maximum time taken by the
judges solutions, with all test cases, rounded up to the next integer (in seconds). The execution timeout

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

MOOSHAK 577

is used by the system to ensure more efficient solutions were a brute-force solution would be an obvious
candidate. Other time limits, such as the compilation timeout and the real time execution timeout, are
independent of the problem and have been introduced to ensure the integrity of the system against
bogus submissions. Real time execution timeout deals with programs blocking on input (trying to read
past the end-of-file), therefore not using CPU time, and would not be caught by execution timeout.
The compilation timeout deals with problems resulting from the misuse of template expansion in
languages such as C++. Mooshak also enforces other limits such as source code size, output size,
process data, and stack size.

Data management

A typical Web application uses a relational database management system (RDBMS) for managing
persistent data. Mooshak instead bases its data management directly over the file system. The main
motivation was that the data used by Mooshak is conveniently represented in plain files—source and
object programs, data files, HTML files, and images. The number of files required by Mooshak and
the number of procedures reading and writing them forced us to define a methodology to mediate the
interaction with the file system. This methodology, that we call persistent objects, gives an object-
oriented flavor to Mooshak since it encapsulates data files with the methods that operate on them.

In fact, persistent objects blend data, recorded on the file system, with code written in the Tcl [7]
scripting language. All data used by Mooshak are maintained in plain files grouped in file system
directories. Each of these directories is viewed as an object, belonging to a class managed by a Tcl
module. This module encapsulates the methods supported by a particular class of objects.

Figure 5 represents a small part of the tree structure where Mooshak’s data are hanged. Consider
the object submissions/sub2 containing the program submitted by a team, solving a given problem.
After loading this object, it can receive the message analyze that once executed will produce a report
file within the same object/directory. All submissions have a common parent, the object submissions.
This object provides the methods that operate over the set of submissions, such as the method /ist that
produces a listing of all submissions.

Mooshak network

A single Mooshak node, a server accessible through a set of Web clients on users machines, is sufficient
for running a small programming contest (i.e. a contest with up to 20 teams) where reliability is not
at a premium. Running an official contest, with a concern for reliability and a larger number of teams,
distributed in several sites and a simultaneous online contest requires a more complex setup, with a
network of interconnected nodes.

A link between the Mooshak nodes X and Y requires the replication of the contest data from the
server X to the server Y. The main reasons for replicating contest data between Mooshak servers are to
support the following.

System backup. Replication is used to maintain a backup system, with an updated version of the
contest data, so that it can replace one of the servers in case of hardware failure.

Online contest. Replication propagates the contest data to a server with Internet access used to
maintain an online contest simultaneously with an official local contest.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

578 J.P.LEAL AND F. SILVA SRE

<<Submissions>>

list

ssions

<<Submission>> <<Submission>>

analyze

sion2

prog.c report.html prog.c

Figure 5. Persistent objects.

Load balancing. Several servers distribute load among them and replicate their data to the others.
In this case each server is assigned to a set of users, for instance contestants to a server and
judges to another, or contestants in different rooms to different servers.

Multi-site contest. This case is similar to the previous one but servers are in distant locations.

The Mooshak network configuration for a particular contest may contain several of these links.
Figure 6 represents the network for a contest taking place simultaneously in two sites, A and B, the first
using two servers (Server Al and Server A2) for load balancing and the second using just one server
(Server B). Each site has a backup with an updated version of the contest data, capable of replacing
any of the main servers in case of failure. Site A also maintains an online version of the contest where
anyone on the Internet can compete against the official contestants physically located at either site A
or at site B without interfering with them. Some nodes are connected in unidirectional links, such as
those connecting servers with the backup nodes or online-contest servers, and other are bidirectional,
such as those connecting contest servers.

The Mooshak replication uses the rsync remote-update protocol. This protocol updates differences
between two sets of files over a network link, using an efficient checksum-search algorithm.
The replication procedure is invoked frequently to propagate changes to other servers, typically every
60 seconds, and copies only the data that have been changed since the last replication. The object files
produced by the compilation of programs are not replicated, just the evaluation reports. If necessary
the programs may be re-evaluated on a different machine.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

SRE MOOSHAK 579

 Yorooeoroo] < > DU, . >
Public Server A1 & ServerA2 Server A1
v
Backup A Backup B
Site A Site B

Figure 6. The network of Mooshak nodes.

The main issue with replication is the consistency of contest data, namely that no data fail to be
replicated or are overwritten by replicated data. To guarantee that no data fail to be replicated we must
ensure that there is a replication path connecting all servers interfacing with official contestants—the
main servers.

To address the problem of data being overwritten, we must differentiate between contest definition
data (such as teams, problems and programming languages) and contest transactions (such as
submissions, questions, and printouts). Of these two, contest transactions, especially submissions, are
particularly important. To guarantee uniqueness all transaction data are keyed with a timestamp, the
team-id, and the problem-id. Thus, if team-id is unique in the system, and transactions from the same
team are consistently sent to the same server, then there is no danger of losing transactions due to
overwritten data since each transaction key is also unique.

Contest data are not, in principle, changed after the beginning of the contest. It should be updated
in a single node for the sake of consistency, and that node must have a path to every other node in the
network. The only exception to this case is the creation of teams for online-contest servers, as we allow
contestants to register during the contest. If load balancing is used for online-contest servers then it is
important to assign team creation to a single server. Otherwise, two teams with the same name, and
same group, registering at the same time on different servers could (although not very likely) share the
same record.

For the above setup to work properly, all server clocks must be synchronized. This can be achieved
using the Network Time Protocol [8].

EXPERIENCE

Mooshak has been used to manage several programming contests, culminating in SWERC 2001,
the Southwestern Regional ACM Programming Contest [9]. The system was also used in the

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

580 J.P.LEAL AND F. SILVA

preliminary Portuguese Programming Contest, MIUP 2001 [10], and several local competitions within
the University of Porto. The two major events, SWERC 2001 and MIUP 2001, had simultaneous online
contests and were preceded by several practice sessions. The public contests were open to anyone on
the Internet and the submissions from the official contests were propagated to the online-contest server.
The practice sessions gave the contestants an opportunity to become acquainted with the system as well
as train their problem solving skills.

More recently Mooshak has been used by others without the authors direct supervision to run their
programming contests, namely at the University of Evora in Portugal. Further use of the system is
scheduled for the events SWERC 2002 and MIUP 2002. The second event will be held at the Classical
University of Lisbon and run by a different group of people.

The experience of using Mooshak in last year events showed us that the major performance issue
of the system was the server high load towards the end of the contests. As an example, in the final
minutes of SWERC 2001 the load of the server reached an average number of 85 processes running
simultaneously. The reason for this high load was twofold: teams (48 at this contest) tend to submit
all the programs they are still working on, hoping to have another correct solution; and teams and
the audience produce a lot more requests for classification listings. This led us to conclude that the
number of teams managed by a single server should be around 20 which is less than we originally
assumed. This influenced our load balancing strategy for similar future events as explained in the
previous section.

In summary, this experience helped us to validate the main designs goals of Mooshak and to identify
points where we had to focus our efforts to improve the system.

Flexibility. During the contests changes had to be made to the contest definition data, such as
input/output tests, which required re-evaluating submissions. This situation arose specially in
the practice contests, where the preparation time is small and standards of problem verification
are not as high as in the official contests. Using Mooshak the human judges were able to quickly
correct all situations of this nature during the contest itself.

Robustness. The large number of submissions during the several contests confirmed the robustness of
the automated judging system. During the training sessions some of the teams explored the limits
of the system and submitted programs that they thought could damage it; we were pleased to find
that they did not succeed. It should be noted that, although overloaded, Mooshak managed every
contest from start to finish. Splitting the teams by servers can be done using the load balancing
capabilities of the Mooshak network.

Accuracy. The automated judging system provided classification reports that were easily validated by
a small team of human judges. In some cases the load of the machines made it impossible to
execute the programs within the timeout limits defined for some problems. In the situations
where the server load was too high and the submissions reported ‘time limit exceeded’ the
human judges re-evaluated these submissions on the backup system. To overcome this situation,
the current version of Mooshak enforces two time limits: CPU and real time. The CPU time
limit is not affected by machine load and is set per problem to deal with inefficient solutions.
The real time limit is obviously affected by machine load but can be set to a much higher value,
independent of the problem. Real time limits are necessary to ensure that programs trying to read
more than the available data do not run forever.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

SRE MOOSHAK 581

CONCLUSION

In this paper we have detailed the design and implementation of Mooshak, a system aiming to become
a full programming contest manager. The system has been heavily tested with practice and official
contests, and has proven so far to be very flexible in managing contests with different requirements,
quite robust as it supported successfully high transaction loads, and quite accurate in its automated
judging capabilities. Furthermore, the system does not require a large number of people to assist in
the management during the contest. Mooshak distinguishes itself from other systems by allowing all
interaction with the system to be Web-based and by having a simple and scalable architecture that
enables one to easily support multiple-site contests and simultaneous online contests.

For the near future we envisage further system development, especially concerning the following
issues.

Evaluation and classification. Mooshak evaluates each submission and computes the final
classification using International Collegiate Programming Contest (ICPC) rules [1] (summarized
in the introduction). These rules are inappropriate for other types of programming contests
that have shown interest in using Mooshak. For instance, submissions could be evaluated
quantitatively instead of just being marked as accept or, say, wrong answer. Similarly, the final
classification of teams could be computed differently to also accommodate the partial marks for
problems. To deal with these different types of contests the next version of Mooshak will have
evaluation and classification policies as part of the contest definition.

Data sharing. Mooshak already has some import/export features, namely for teams (using ICPC data)
and for problem sets. For problem sets, Mooshak uses an archive (zip or gziped tar) with all files
related to each problem (problem description, solutions, test data) and an XML file stating the
archive content. We expect to improve this specification and extend this feature to other contest
data.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous referees for their valuable comments. This work was partially supported
by Project Ganesh (contract PRAXIS/P/EEI/14232/1998) and by funds granted to LIACC through the ‘Programa
de Financiamento Plurianual, FCT’ and ‘Programa POSI’.

REFERENCES

1. The ACM-ICPC International Collegiate Programming Contest. http://icpc.baylor.edu/icpc.

. Programming Contest Control System (PC2), California State University, Sacramento, U.S.A.
http://www.ecs.csus.edu/pc2/.

. Ural University Problem Set Archive. http://acm.timus.ru/en.

. Online Judge from the Universidad de Valladolid, Spain. http://acm.uva.es/problemset.

Open Source Initiative. http://www.opensource.org/.

. Ganesh Learning Environment. http://www.ncc.up.pt/ zp/ganesh.

. Tcl Developer Xchange. http://tcl.activestate.com.

. Network Time Synchronization Project. http://www.eecis.udel.edu/ mills/ntp.htm.

. 2001 Southwestern Regional ACM Programming Contest, Universidade do Porto, Portugal. http://swerc.up.pt.

. Maratona Inter-Universitdria de programacao. http://acm.up.pt/miup.

SV UN AL N

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:567-581

85U017 SUOWILLIOD BAITe81D (ot [dde ayy A peusenob ae sajoile YO ‘88N JO S8 104 AreIqiT8UIUQ AB|IAA UO (SUOTIPUOD-PUe-SWLBY/LLI0D A8 | 1M Aseiq 1 pul|UO//SANY) SUOIPUOD pue SWiB L 8y} 89S *[£202/20/90] Lo Ariqiauliuo 8|1 ‘eBnLod aueiyo0D Aq 226 eds/z00T 0T/I0p/woo A8 |im Arelq 1 puluo//sdny o) papeoumoa ‘9 ‘€002 ‘XvZ0L60T

	INTRODUCTION
	SYSTEM OVERVIEW
	Contestants' view
	Judges' view
	Administration view

	ARCHITECTURE
	Mooshak server
	Automated judging
	Data management

	Mooshak network

	EXPERIENCE
	CONCLUSION

