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Abstract

Background:

In the statistical analysis of directional data, the von Mises-Fisher distribution plays an

important role to model unit vectors. The estimation of the parameters of a mixture of von

Mises-Fisher distributions can be done through the Estimation-Maximization algorithm.

Objective:

In this paper we propose a dynamic clusters type algorithm based on the estimation of

the parameters of a mixture of von Mises-Fisher distributions for clustering directions, and

we compare this algorithm with the Estimation-Maximization algorithm. We also define the

between-groups and within-groups variability measures to compare the solutions obtained

with the algorithms through these measures.

Results:

The comparison of the clusters obtained with both algorithms is provided for a simula-

tion study based on samples generated from a mixture of two Fisher distributions and for

an illustrative example with spherical data.

Keywords: Directional data, Dynamic Clusters algorithm, EM algorithm, von Mises-

-Fisher distribution.

AMS 2000 subject classification: 62H11, 62H30.
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1 Introduction

Clustering data in the unit sphere is an important task in modern data analysis, for exam-

ple, in clustering text documents when analysing textual data.

One approach to address such issue is the spherical k-means clustering. This technique was

proposed by Dhillon and Modha (2001) and implemented in a R package, called skmeans

by Hornik et al. (2012), and it is based on the cosine similarity to obtain a partition of

term weight representation of the documents.

Other works that have appeared in the literature for clustering directional data are based

on model-based clustering methods. For instance, Peel et al. (2001) used the Kent distri-

bution (Kent, 1982) to form groups of fracture data through a model-based clustering and

Dortet-Bernadet and Wicker (2008) supposed a model-based clustering of data that lies on

a unit sphere and applied this clustering method to gene expression profiles. Banerjee et al.

(2005) applied a model-based clustering of directional data to text analysis. These authors

considered the estimation of a mixture of von Mises-Fisher distributions using two variants

of the Estimation-Maximisation EM algorithm, denoted by soft-movMF and hard-movMF

algorithms. Another variant of the EM algorithm, denoted by stochastic EM was given

by Celeux and Govaert (1992). Banerjee et al. (2005) showed that the spherical k-means

algorithm may be obtained as a variant of the EM algorithm for the maximum likelihood

estimation of the mean direction parameters of a mixture of von Mises-Fisher distributions

with common concentration parameter κ, using hard-max classification E-step.

Figueiredo and Gomes (2015) proposed an algorithm based on the dynamic clusters algo-

rithm proposed by Diday and Schroeder (1976) for the estimation of the parameters of a

mixture of Watson distributions defined on the hypersphere and compared it with the EM

algorithm, proposed by Dempster et al. (1977) for problems of incomplete data. Similarly in

this paper, to estimate the parameters of a mixture of k von Mises-Fisher distributions and

obtain a partition of the sample into clusters, we propose a dynamic clusters type algorithm

and we compare it with the EM algorithm. This proposed algorithm has the advantage

of converging quickly to a local optimum, while the EM algorithm may converge slowly

to the local optimum. On the other hand, the EM algorithm provides strongly consistent

estimators with asymptotic normal distribution (Redner and Walker, 1984). For compa-

ring the solutions obtained in both algorithms, we define between-groups and within-groups

variability measures. Then, for several generated samples and a real data set we compare

the solutions obtained with these algorithms.

In Section 2 we recall the von Mises-Fisher distribution and the maximum likelihood

estimators of the parameters of this distribution. In Section 3 we describe the EM algorithm

and we propose the dynamic clusters type algorithm for the estimation of a mixture of k

von Mises-Fisher distributions. In Section 4 we define the variability measures and we

compare the algorithms through these measures, using simulated data from von Mises-

-Fisher populations and a real data set. In Section 5 we present some concluding remarks.

2



2 von Mises-Fisher distribution

The von Mises-Fisher distribution is one of the most used distributions in the statistical

analysis of directional data. It is usually denoted by Mp (µ, κ) and has probability density

function defined by

f(x|µ, κ) = cp(κ) exp(κµTx) x ∈ Sp−1, µ ∈ Sp−1, κ > 0 , (1)

where the normalising constant is given by cp(κ) = κ
p
2
−1�[(2π)p�2 Ip�2−1(κ)] , and Iν(.)

denotes the modified Bessel function of the first kind and order ν and Sp−1 denotes the

unit sphere in Rp. This distribution is called von Mises distribution for circular data and

Fisher distribution for spherical data. The parameter µ is the vector of the mean direction

and κ is the concentration parameter around µ. This distribution is rotationally symmetric

about µ.

Let (x1,x2, ...,xn) be a random sample of size n from the von Mises-Fisher distribution,

Mp (µ, κ) . Let R be the resultant length mean of the sample defined by R =
(
xTx

)1�2
=

‖x‖, where x is the sample mean vector of (x1,x2, ...,xn) defined by x =
∑n

i=1 xi�n. The

maximum likelihood estimator of µ is the sample mean direction, i.e.,

µ̂ = x0 =
x(

xTx
)1�2

=
x

‖x‖

and the maximum likelihood estimator of κ is the solution of the equation

Ap(κ) = ‖x‖,

where the function Ap(κ) is defined by Ap(κ) = c′p(κ)�cp(κ) = Ip�2(κ)�Ip�2−1(κ).

For more details about this distribution, see for instance, Mardia and Jupp (2000, p.

198).

3 Estimation of a mixture of k von Mises-Fisher

distributions

A mixture of k von Mises-Fisher components C1,...,Ck has probability density function

given by

ψ(x|Q) =

k∑
j=1

πjf(x|θj) x ∈ Sp−1, (2)

where θj = (µj , κj), µj ∈ Sp−1, κj > 0, and f(x|θj) is the density function of Cj component,

i.e., the density of Mp(µj , κj) distribution. The parameters πj , j = 1, ..., k with 0 < πj < 1

and
∑k

j=1 πj = 1 are the proportions of the mixture and Q = (ν,θ), with ν = (π1, ...., πk)
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and θ = (θ1, ...,θk) is the vector of unknown parameters of the mixture.

For the estimation of the parameters of the mixture, we review the EM algorithm and its

variants (soft-movMF, hard-movMF and stochastic EM) in Subsection 3.1 and we propose

a dynamic clusters type algorithm in Subsection 3.2.

3.1 EM algorithm

The Estimation-Maximization (EM) algorithm is used to obtain the maximum likelihood

estimates of the parameters of the mixture and can be briefly described as follows.

Let (x1,x2, ...,xn) be a random sample from the mixture and let Z = (z1, z2, ...., zn) be the

missing data, where the indicator vector zi = (Zi1, Zi2, ..., Zik)
T , with Zij =

{
1 if xi ∈ Cj
0 if xi /∈ Cj

,∑k
j=1 Zij = 1 indicates the component of the mixture for xi. The expected log-likelihood

associated with the complete sample (x1, ....,xn, Z), derived in Appendix A, is given by

L(Q|x1, ..,xn, Z) =

n∑
i=1

k∑
j=1

tj(xi) ln[πjf(xi|µj , κj)], (3)

where tj(xi) is the a-posteriori probability of xi belonging to Cj defined by tj(xi) =

πjf(xi|θj)�[
∑k

h=1 πhf(xi|θh)], j = 1, ..., k. So (3) may be written as

L(Q|x1, ..,xn, Z) =

n∑
i=1

k∑
j=1

tj(xi) lnπj +

n∑
i=1

k∑
j=1

tj(xi)[ln cp(κj) + κjµ
T
j xi]. (4)

Let

L1(Q|x1, ..,xn, Z) =
n∑
i=1

k∑
j=1

tj(xi)[ln cp(κj) + κjµ
T
j xi] (5)

and let

L2(Q|x1, ..,xn, Z) =

n∑
i=1

k∑
j=1

tj(xi) lnπj . (6)

To estimate the vector of unknown parameters Q, the EM algorithm uses iteratively the

two steps: Estimation (E ) and Maximization (M ).

The algorithm starts with an initial solution: Q0 = (π01, ..., π
0
k,µ

0
1, κ

0
1, ...,µ

0
k, κ

0
k) or with an

initial partition into k groups, and then determine the estimates Q0 based on the partition.

In the mth iteration (m ≥ 1) the steps are:

E -Step

For j=1,...,k, i=1,...,n, calculate the a-posteriori probability of xi belonging to the j th

component of the mixture

t
(m)
j (xi) =

π
(m)
j f(xi|µ(m)

j , κ
(m)
j )

k∑
h=1

π
(m)
h f(xi|µ(m)

h , κ
(m)
h )

. (7)
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M -Step

Use estimates t
(m)
j (xi) to maximize L1(Q|x1, ...,xn, Z) subject to the constraint µTj µj = 1

and L2(Q|x1, ..,xn, Z) subject to the constraint
∑k

j=1 πj = 1. The estimators obtained, de-

rived in Appendix B, are the following:

• The maximum likelihood estimator of µj in the (m+1)th iteration, µ̂
(m+1)
j is given by

µ̂
(m+1)
j =

n∑
i=1

t
(m)
j (xi)xi∥∥∥∥ n∑

i=1
t
(m)
j (xi)xi

∥∥∥∥ , j=1,...,k. (8)

• The maximum likelihood estimator of κj in the (m + 1)th iteration, κ̂
(m+1)
j is the

solution of the equation

A
(
κ̂
(m+1)
j

)
=

Rj
n∑
i=1

t
(m)
j (xi)

, j=1,...,k, (9)

where Rj is the length of the vector
∑n

i=1 t
(m)
j (xi)xi, that is Rj = ‖

∑n
i=1 t

(m)
j (xi)xi‖.

• The maximum likelihood estimator of πj in the (m+1)th iteration, π̂
(m+1)
j is given by

π̂
(m+1)
j =

1

n

n∑
i=1

t
(m)
j (xi), j=1,...,k. (10)

In the particular case of components with the same concentration parameter κ, the

estimates of µj and πj , j = 1, ..., k, are given by the expressions (8) and (10) and the

estimate of the common concentration parameter κ, derived in Appendix C, is the solution

of the equation

A(κ) =

k∑
j=1

Rj

n
, (11)

where Rj is defined as before.

The EM algorithm is assumed to have converged if the relative change in the log-

-likelihood values is smaller than a threshold or if the relative absolute change in the parame-

ters is smaller than a threshold. A partition (P1, ..., Pk) of the sample is obtained assigning

xi to the component for which the a-posteriori probability is the largest, that is,

Pj =

{
xi : tj(xi) = max

h
th(xi), h = 1, ..., k

}
(12)

and when tj(xi) = th(xi) consider xi ∈ Pj , if j < h.

This algorithm is denoted by soft-movMF algorithm by Banerjee et al. (2005, p. 1357).
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These authors also proposed the hard-movMF algorithm (p. 1358), which is a modification

of the soft-movMF by adding a hardening step (H -step) between E -step and M -step. This

step is:

H -Step

Replace the a-posteriori probabilities by assigning each observation with probability 1

to the component for which its a-posteriori probability is maximum.

Celeux and Govaert (1992) denoted the previous algorithm by Classification EM algo-

rithm and proposed another variant of the EM algorithm, the stochastic EM , where instead

of the hardening step, a stochastic step (S -step) is added between E -step and M -step. This

step is:

S -Step

Assign at random each observation to one component with probability equal to its a-

-posteriori probability.

These three variants of the EM algorithm are implemented in a R package called movMF

(see Hornik and Grun, 2014).

3.2 Dynamic Clusters type algorithm

Let E be a finite sample. The aim is to determine a partition P = (P1, P2, ..., Pk) of E

into k classes, so that for every j (1 ≤ j ≤ k), Pj may be considered as a sample from a

population with density fθ.

Let fθ (θ ∈ L) be the family of probability densities, from which the distributions of the

different components belong: θ is a vectorial parameter and L its definition space:

fθ(x) = cp(κ) exp(κµTx), x ∈ Sp−1, θ = (µ, κ). (13)

Let Pk be the set of partitions of E into k classes and let Lk be the set of vectors of dimension

k of L. The method starts with an initial partition (P 0
1 , P

0
2 , ..., P

0
k ) of E or starts with a

vector of dimension k of values of the unknown parameter
(
θ0
1, ...,θ

0
k

)
.

The two following functions f and g are successively applied until obtaining stable elements

of L and P :

f : Lk → Pk

L→ P

where L = (θ1, ...,θk) and P = (P1, ..., Pk), so that for ∀i 1 ≤ i ≤ k, Pi is the set of

observations, which are less distant from the distribution fθi
than from others. Then, it is

important to define a function D, which measures the distance from an observation x ∈ E
to a distribution fθ :

D : E × L→ R+
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(x,θ)→ D(x,θ).

The distance is defined by

D(x,θ) = ln

[
C

fθ(x)

]
, (14)

where C is a constant defined by C ≥ max {fθ(x)| θ ∈ L, x ∈ E} . Then

D(x,θ) = C − ln cp(κ)− κµTx (15)

and each group Pi is defined by

Pi = {x ∈ E|D(x,θi) ≤ D(x,θj), ∀j 6=i with i < j if D(x,θi) = D(x,θj)}

=
{
x ∈ E| ln cp(κi)− κiµTi x ≥ ln cp(κj)− κjµTj x, ∀j 6=i

}
.

The function

g : Pk → Lk

P → L

is such that for ∀i (1 ≤ i ≤ k), θi satisfies the condition∑
x∈Pi

D(x,θi) = inf
θ∈L

∑
x∈Pi

D(x,θ). (16)

The optimum value of θi is the maximum likelihood estimator of θi associated with Pi and

the optimum criterion is function of the partition P ∗ and L∗ ∈ L obtained in convergence:

W (L∗, P ∗) =
∑

1≤i≤k
D(P ∗i ,θ

∗
i ) =

∑
1≤i≤k

∑
x∈P ∗i

D(x,θ∗i )

= C +
∑

1≤i≤k

∑
x∈Pi

[
− ln cp(κ̂i)− κ̂iµ̂

T

i x
]
,

where C is the constant previously defined and µ̂i and κ̂i are the maximum likelihood

estimators of µi and κi respectively, based on the sample Pi. Then,

W (L∗, P ∗) = C −
∑

1≤i≤k

card(Pi) ln cp(κ̂i) +
∑
x∈Pi

κ̂iµ̂
T

i x

 , (17)

where card(Pi) is the number of observations of Pi. So the parameters θi are estimated

based on the k classes Pi: the function g defines the estimation by the maximum likelihood

method and the function f enables us to define again k new classes Pi and then, evaluate

again the value of the criterion W .
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4 Comparison of the algorithms

For comparing the solutions obtained with the algorithms, we define next the between-

-groups and within-groups variability measures, in the decomposition of the total variabi-

lity used to test the null hypothesis of a common mean vector across k von Mises-Fisher

populations with concentration parameters not necessarily equal. This test was considered

in the literature for the particular case of equal concentration parameters, for the circle or

the sphere, see for instance, Mardia and Jupp (2000, pp. 222-226), Watson (1956), Watson

and Williams (1956) and Harrison et al. (1986).

Let xi1, ...,xini (i = 1, ..., k) be k independent random samples of sizes n1, ..., nk from

populations Mp (µi, κi) , with mean vector µi and concentration parameter κi. Let n =

n1 + ...+ nk be the global sample size. The null hypothesis of interest is

H0 : µ1 = .... = µk = µ,

against the alternative hypothesis that at least one of the equalities is not satisfied.

Next we consider the concentration parameters κi unknown, but if these parameters are un-

known, we have to estimate them through their maximum likelihood estimates for instance.

Let’s consider the following identity

2κi(1− µTxij) = 2κi(1− µTi xij) + 2κi(µ
T
i xij − µTxij).

Summing from i = 1 to k, j = 1 to ni and replacing µ and µi by their maximum likelihood

estimates, the following identity is obtained

2

k∑
i=1

ni∑
j=1

κi(1− µ̂Txij) = 2

k∑
i=1

ni∑
j=1

κi(1− µ̂Ti xij) + 2

k∑
i=1

ni∑
j=1

κi(µ̂
T
i xij − µ̂Txij), (18)

where µ̂=(
∑

i κi
∑

j xij)�‖
∑

i κi
∑

j xij‖ and µ̂i=
∑

j xij�‖
∑

j xij‖=
∑

j xij�Ri, i = 1, ..., k.

The previous identity can be written as

2

 k∑
i=1

κini −

∥∥∥∥∥∥
k∑
i=1

κi

ni∑
j=1

xij

∥∥∥∥∥∥
 = 2

 k∑
i=1

κini −
k∑
i=1

κi

∥∥∥∥∥∥
ni∑
j=1

xij

∥∥∥∥∥∥
+

+2

 k∑
i=1

κi

∥∥∥∥∥∥
∑
j

xij

∥∥∥∥∥∥−
∥∥∥∥∥∥

k∑
i=1

κi

ni∑
j=1

xij

∥∥∥∥∥∥


or equivalently,

2

(
k∑
i=1

κini −R

)
= 2

k∑
i=1

(κini − κiRi) + 2

(
k∑
i=1

κiRi −R

)
, (19)

where R = ‖
∑k

i=1 κi
∑ni

j=1 xij‖ and Ri is the resultant length of the ith sample. This

identity is the decomposition of total variability
∑k

i=1 κini−R into within-groups variability
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∑k
i=1(κini − κiRi) and between-groups variability

∑k
i=1 κiRi − R. The test statistic is

defined by

F =

(
k∑
i=1

κiRi −R
)
�(k − 1)(p− 1)

k∑
i=1

(κini − κiRi)�(n− k)(p− 1)

(20)

and the hypothesis H0 is rejected for large values of F . When all concentration parameters

κi are equal to κ, the statistic (20) reduces to the following statistic given in Mardia and

Jupp (2000, pp. 222-223):

F =

(
k∑
i=1

Ri −R
)
�(k − 1)(p− 1)(

n−
k∑
i=1

Ri

)
�(n− k)(p− 1)

, (21)

where Ri is resultant length of the ith sample and R is the resultant length of the global

sample. The F -statistic has under H0 approximately the F(k−1)(p−1),(n−k)(p−1) distribution

for large κ.

4.1 Simulation study

We generated samples of size n from a mixture of equal proportions of two Fisher distri-

butions F (e3, κ) and F (µ, κ), with a common concentration parameter κ. We considered

without loss of generality, e3 = (0, 0, 1)T and µ = (0, (1− cos θ)1/2 , cos θ)T , where θ is the

angle between µ and e3. Should other mean directions have been used, which form an angle

θ, the same results would have been obtained. We considered two sample sizes n = 20, 40,

several angles of separation between the two components, θ = 30o, 90o, 150o and two values

of the common concentration parameter κ = 5, 10.

For generating observations from the Fisher distribution, we used the method given in

Wood (1994). We supposed that the parameters of the mixture are unknown and we es-

timated these parameters based on each generated sample, using the three variants of the

EM algorithm (soft-movMF, hard-movMF and stochastic EM) described in Subsection

3.1 and the dynamic clusters type algorithm described in Subsection 3.2. We obtained the

estimates of the concentration parameters and the angle between the estimated mean di-

rections, indicated in the Table 1 for the sample size of 20 and concentration parameters of

the components equal to 5 or 10 and in Table 2 for the sample size of 40 and concentration

parameters of the components equal to 5. In these tables, we also present for each sam-

ple, the classification results (confusion matrix), the sizes of the groups and within-groups

and between-groups variability measures for the final solution, which were obtained by the

expressions given in the previous subsection, where the concentration parameters were re-

placed by their maximum likelihood estimates. We note that when the angle θ = 30o, i.e,
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Table 1: Confusion matrices, size groups, estimates of the parameters, variability

measures (between-groups and within-groups) and F -statistic for the EM algorithm

(soft-movMF, hard-movMF, stochastic EM) and dynamic clusters algorithm (DC),

for the sample size of 20 and concentrations equal to 5 or 10 (*: the results for the

other three methods are equal)

κ θ (o) Algorithm Group Conf. matrix ni κ̂i θ̂ Bet./ F

1 2 With.

Soft-movMF 1 7 3 14 15.5 46.4 23.8/ 23.3

2 7 3 6 18.1 18.5

30 Hard-movMF 1 7 3 14 16.6 48.1 26.2/ 17.1

2 7 3 6 20.3 20.0

DC 1 6 4 13 17.3 46.4 22.2/ 17.1

2 7 3 7 18.8 23.3

Soft-movMF 1 6 4 6 14.4 77.5 32.0/ 30.6

5 2 0 10 14 5.4 18.8

90 Hard-movMF 1 8 2 8 9.2 77.9 31.1/ 28.0

2 0 10 12 7.3 20.0

Stochastic EM 1 6 4 6 16.2 78.9 34.3/ 30.9

2 0 10 14 5.6 20.0

DC 1 9 1 12 6.1 75.4 27.6/ 24.9

2 3 7 8 10.0 20.0

150 Soft-movMF* 1 10 0 10 5.9 127.3 70.3/ 63.3

2 0 10 10 12.5 20.0

Soft-movMF 1 4 6 4 77.5 42.3 34.3/ 31.8

2 0 10 16 14.2 19.4

30 Hard-movMF 1 8 2 13 12.8 33.9 15.6/ 14.1

2 5 5 7 32.6 20.0

10 DC 1 7 3 11 14.4 33.4 13.5/ 12.2

2 4 6 9 20.9 20.0

90 Soft-movMF* 1 10 0 10 10.9 90.0 72.9/ 65.6

2 0 10 10 18.2 20.0

150 Soft-movMF* 1 10 0 10 10.9 142.4 163.3/ 147.0

2 0 10 10 20.4 20.0
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the components are poorly separated, the stochastic EM algorithm did not converge for

any run. When the components are reasonably or well-separated, i.e., θ = 90o or θ = 150o,

all algorithms lead to the same solution, in general.

Table 2: Confusion matrices, size groups, estimates of the parameters, variability

measures (between-groups and within-groups) and F -statistic for the EM algorithm

(soft-movMF, hard-movMF, stochastic EM) and dynamic clusters algorithm (DC),

for the sample size of 40 and concentrations equal to 5 (*: the results for the other

three methods are equal)

θ (o) Algorithm Group Conf. matrix ni κ̂i θ̂ Bet./ F

1 2 With.

Soft-movMF 1 17 3 28 4.4 43.1 20.4/ 23.3

2 11 9 12 9.4 33.2

30 Hard-movMF 1 11 9 20 5.8 56.4 28.8/ 27.4

2 9 11 20 9.4 40.0

DC 1 13 7 20 9.0 53.9 24.2/ 23.0

2 7 13 20 5.3 40.0

90 Soft-movMF* 1 20 0 20 6.1 110.4 89.0/ 84.6

2 0 20 20 6.3 40.0

150 Soft-movMF* 1 20 0 20 5.9 77.9 126.7/ 121.7

2 0 20 20 4.5 39.6

From the results indicated in Tables 1-2, we conclude the following:

• The algorithms gave the same solution when the two components are well separated,

that is, when θ =90o for κ=5 and when θ =90o or 150o for κ=10. Therefore, in

these cases, the confusion matrix is the same and the variability measures coincide

for all the algorithms, as well as the estimates of the concentration parameters and

the estimate of the angle between the mean directions.

• When the concentration of the components increases, the rate of misclassified obser-

vations decreases (or remains equal) and the between-groups variability increases, as

well the F -statistic for components with moderate or large separation.

• For each algorithm, the rate of misclassified observations decreases as the separation

between the components increases, and for well-separated components, this error rate

is equal to 0. This error rate decreases or is equal to 0 when the sample size increases.

• For each algorithm, the between-groups variability increases as the separation between

the two components increases and for well separated components, the between-groups
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variability exceeds largely the within-groups variability. The F -statistic also increases

when the angle between the mean directions of the components increases.

• When the sample size increases, the between-groups variability and F -statistic in-

crease for moderate or large separation of the components of the mixture.

4.2 Example

We used the spherical data given in Wood (1982), which consist of a set of 33 estimates of

a previous magnetic pole position of the earth obtained using palaeomagnetic techniques.

Each estimate is associated with a different site, the 33 sites being spread over a large of

Tasmania. As the data appear to fall into two main groups, Wood (1982) estimated the

parameters of a bimodal model for the data.

We obtained a partition of these data into two groups based on the estimation of a mixture

of two Fisher distributions through the three variants of the EM algorithm (soft-movMF,

hard-movMF and stochastic EM) described in Subsection 3.1 and dynamic clusters type

algorithm described in Subsection 3.2. For obtaining the final solutions of the variants of the

EM algorithm, we used the R package, movMF. For the dynamic clusters type algorithm,

as it depends on the initial solution, we considered several initial partitions randomly chosen

for the algorithm and for all initial partitions, the algorithm converged and the final solution

obtained was the same. The final solutions obtained with the algorithms are given in the

Table 3.

Table 3: Final partitions, size groups, estimates of the concentration parameters and

estimate of the angle between the mean directions

Algorithm Group Final Partition ni κ̂i θ̂ (o)

Soft-movMF 1 9,10,11,12,14,15,16,23,24,30 10 21.50 33.3

2 Remaining observations 23 36.65

Hard-movMF 1 9,14,16,24,30 5 22.52 39.9

2 Remaining observations 28 26.86

Stochastic 1 9,10,11,12,14,15,16,22,23,24,30 11 20.52 31.2

EM 2 Remaining observations 22 36.47

Dynamic 1 1,5,9,10,11,12,13,14,15,16,23,24,29,30 14 13.29 31.3

Clusters 2 Remaining observations 19 23.64

The solutions obtained with the several algorithms do not coincide, probably because

in this case the components are not well-separated (the estimated angle between the mean

directions is around 30o). But, the solutions obtained with soft-movMF, stochastic EM

12



and dynamic clusters algorithm are rather similar, as we may observe for these solutions, a

large number of observations is stable in the partitions, i.e., 87.8% of the observations stay

always together in the same group.

We compared the solutions obtained in the algorithms through the between-groups

variability measure and F -statistic, where we estimated the concentration parameters. See

Table 4.

Table 4: Between-groups variability measure and F -statistic for the final partitions

Algorithm Soft-movMF Hard-movMF Stochastic EM DC

Between-groups 21.549 22.353 26.136 20.004

variability

F -statistic 12.048 21.000 24.549 35.088

The solution obtained in stochastic EM is preferable in what concerns to the between-

-groups variability, but considering the F -statistic, the solution obtained with dynamic

clusters algorithm is preferable.

5 Concluding remarks

The simulations revealed that only for poorly or moderately separated components, the

variants of the EM algorithm and the dynamic clusters type algorithm lead to different

solutions in general. For very well separated components, the algorithms seem to originate

the same result. Additionally, the larger concentration parameters associated with the com-

ponents, greater is the tendency to obtain the same solution for the algorithms.

For each algorithm, as expected, the between-groups variability and the F -statistic increase

when the separation between components increases or when the concentration of compo-

nents increases, since these components are not badly separated (i.e, the angle θ is 30o).
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Appendix A

Derivation of the expected log-likelihood of the complete sample

The vectors zi are independent and have multinomial distribution with parameters (1, π1, ..., πk)

and the probability density function is given by

g(zi|Q) =
k∏
j=1

π
zij
j .

The density function of xi|zi is given by

l(xi|zi, Q) =

k∏
j=1

f(xi|θj)zij .

Then, the density function of (xi, zi) is defined by the product

h(xi, zi|θ) = g(zi|Q)l(xi|zi, Q).

Replacing the densities g(zi|Q) and l(xi|zi, Q) in the previous expression, we obtain

h(xi, zi|Q) =
k∏
j=1

π
zij
j f(xi|θj)zij .

The complete data log-likelihood of (x1,x2, ...,xn, Z) is given by

L(Q|x1,x2, ...,xn, Z) = ln
n∏
i=1

h(xi, zi|Q)

and replacing h(xi, zi|Q), we obtain the expression

L(Q|x1,x2, ...,xn, Z) =

n∑
i=1

k∑
j=1

zij ln [πjf(xi|θj)] .
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The density function of zi|xi given by

f(zi|xi, Q) =
h(xi, zi|Q)

ψ(xi|Q)
.

Replacing the densities h and ψ, we obtain

f(zi|xi, Q) =

k∏
j=1

[πjf(xi|θj)]zij

k∑
h=1

πhf(xi|θh)

.

The expected value of Zij |xi is given by the expression

E(Zij |xi, Q) =
πjf(xi|θj)
k∑

h=1

πhf(xi|θh)

.

This expected value is the a-posteriori probability of xi belonging to Cj , which we denote

by tj (xi) . Then, the expected complete data log-likelihood may be written as

L (Q|x1,x2, ...,xn, Z) =

n∑
i=1

k∑
j=1

tj (xi) ln [πjf (xi|θj)] .

Appendix B

Derivation of the maximum likelihood estimators

First, consider the function L1 (Q) subject to the constraint µTj µj = 1 :

L1(Q) =
n∑
i=1

k∑
j=1

tj(xi)
{

ln cp(κj) + κjµ
T
j xi
}
− λ1(µTj µj − 1),

where λ1 is a Lagrange multiplier and tj(xi) is defined by (7). The maximum likelihood

estimator of µj is the solution of the following equation

∂L1(Q)

∂µj
= 0⇔

n∑
i=1

tj(xi)κjxi − 2λ1µj = 0⇔ µj =
κj
2λ1

n∑
i=1

tj(xi)xi.

As µTj µj = 1, then the Lagrange multiplier is given by

λ1 =
κj
2λ1

∥∥∥∥∥
n∑
i=1

tj(xi)xi

∥∥∥∥∥ .
So the maximum likelihood estimator of µj in the (m+ 1)th iteration, µ̂

(m+1)
j is given by

µ̂
(m+1)
j =

n∑
i=1

t
(m)
j (xi)xi∥∥∥∥ n∑

i=1
t
(m)
j (xi)xi

∥∥∥∥ , j=1,...,k.
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Second, the maximum likelihood estimator of κj is the solution of the equation

∂L1(Q)

∂κj
= 0⇔

n∑
i=1

tj(xi)
c′p(κj)

cp(κj)
+

n∑
i=1

tj(xi)µ
T
j xi = 0.

Let c′p(κj)�cp (κj) = −A(κj) and then the previous equation may be written as

A(κj)

n∑
i=1

tj(xi) =

n∑
i=1

tj(xi)µ
T
j xi.

Replacing µj by µ̂
(m+1)
j , the maximum likelihood estimator of κj obtained in the (m+ 1)th

iteration, κ̂
(m+1)
j is the solution of the equation

A
(
κ̂
(m+1)
j

)
=

Rj
n∑
i=1

t
(m)
j (xi)

, j=1,...,k,

where Rj is the length of the vector
∑n

i=1 t
(m)
j (xi) xi, that is Rj = ‖

∑n
i=1 t

(m)
j (xi) xi‖, i.e,

κ̂
(m+1)
j = A−1

 Rj
n∑
i=1

t
(m)
j (xi)

 , j=1,...,k.

Third, consider the function, L2 (Q) subject to the constraint
∑k

j=1 πj = 1, that is, ma-

ximize
∑n

i=1

∑k
j=1 tj(xi) lnπj − λ2(

∑k
j=1 πj − 1), where λ2 is a Lagrange multiplier. The

maximum likelihood estimator of πj is the solution of the equation

∂L2(Q)

∂πj
= 0⇔

n∑
i=1

tj (xi)
1

πj
− λ2 = 0.

Summing the last equation from j = 1 to k, we obtain λ2 = n. Then the maximum likelihood

estimator of πj in the (m+ 1)th iteration, π̂
(m+1)
j is given by

π̂
(m+1)
j =

1

n

n∑
i=1

t
(m)
j (xi) , j=1,...,k.

Appendix C

Derivation of the common concentration estimator

When all concentration parameters κi are equal to κ, the expression L1(Q) given by (5)

reduces to

L1(Q) =
n∑
i=1

k∑
j=1

tj(xi)
[
ln cp (κ) + κµTj xi

]
− λ1(µTj µj − 1),
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The estimator of κ is the solution of the equation

∂L (Q)

∂κ
= 0⇔

n∑
i=1

k∑
j=1

tj(xi)
c
′
p(κ)

cp(κ)
+

n∑
i=1

k∑
j=1

tj(xi)µ
T

j xi = 0.

The last equation is equivalent to the following one

nA(κ) =
n∑
i=1

k∑
j=1

tj(xi)

(
n∑
i=1

tj(xi)xi

)T
∥∥∥∥ n∑
i=1

tj(xi)xi

∥∥∥∥ xi,

where A(κ) = c
′
p(κ)�cp(κ). The maximum likelihood estimator of κ in the (m + 1)th

iteration, κ̂(m+1) is the solution of the equation

A(κ̂(m+1)) =

k∑
j=1

Rj

n
,

where Rj is defined as before.
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