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Abstract

We evaluated a population of 7199 children between 2
and 19 years old to study the relations between the ob-
served demographic and physiological features in the oc-
currence of a pathological/non-pathological heart condi-
tion. The data was collected at the Real Hospital Portugués,
Pernambuco, Brazil. We performed a feature importance
study, with the aim of categorizing the most relevant vari-
ables, indicative of abnormalities. Results show that second
heart sound, weight, heart rate, height and secondary rea-
son for consultation are important features, but not nearly
as decisive as the presence of heart murmurs. Quantita-
tively speaking, systolic murmurs and a hyperphonetic sec-
ond heart sound increase the odds of having a pathology by
a factor of 320 and 6, respectively.

1 Introduction

Children are usually thought of as having healthy hearts.
Therefore it maybe a surprise to many people to learn that,
in the US, nine out of every 1000 babies are born with a
congenital heart abnormality. It is estimated that one third
of these babies require intervention to prevent death in the
first year of life. Approximately 1.3 million people living
in the US today were born with a congenital heart defect,
and at least half of these individuals are under age 25'. In

I'Source: Lucile Packard Children’s Hospital at Stanford
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Portugal, the number of cardiac surgeries in children per-
formed a year is around 500 and eight out of 1000 babies
are born with a heart abnormality?. In Brazil, place where
we collected our data it is estimated that between eight and
ten children out of 1000 are born with a congenital cardiac
disease [1].

Risk factors such as smoking, lack of exercise, and high
cholesterol, that contribute to coronary artery disease and
other cardiovascular diseases levels, often start at an early
age. In the US, about 4.5 million children, ages 12 to 17,
are already smokers. Nearly half of people aged 12 to 21 do
not exercise on a daily basis, and an estimated 8.8 million
(about 30 percent) US children (ages six to 19) are obese.

Because of the misperception that all children have
healthy hearts, cardiac diseases can evolve, in a silent man-
ner, to the point that it can be too late to revert the health
deterioration by implementing an adequate treatment. Other
factor that contributes to the non-detection of diseases is the
lack of expert professionals available in certain regions. In
particular, in certain regions in Brazil, this is a major con-
cern.

We study a population of 7199 children between 2 and
19 years old, from the northeastern part of Brazil. Our
goal is to identify variables that may be more indicative
of normality or pathology and use this information to build
classifiers that can, in an automatic fashion, distinguish be-
tween normal and cardiac pathological cases. Such clas-

2Source: Apifarma, Portuguese Association of the Pharmaceutical In-
dustry.
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sifiers, and an increased understanding of the relations be-
tween physiological and demographic variables, may help
on the decision making process, avoiding missing patho-
logical patients when they are consulting with a less expe-
rienced professional. This would allow detecting and initi-
ating the treatments earlier, improving patient outcome and
reducing costs. Very few works in the literature report on
prediction of heart diseases using machine learning tech-
niques. The University of California at Irvine (UCI) repos-
itory has some datasets related to cardiology. The one most
related to our dataset is the “Heart Disease” [2]. According
to the UCI website, this database contains 76 attributes, but
all published experiments refer to using a subset of 14 of
them. In particular, the Cleveland database is the only one
that has been used by machine learning researchers to this
date. The “goal” attribute in this database refers to the pres-
ence of heart disease in the patient. It is an integer valued
from O (no presence) to 4. Experiments with the Cleveland
database have focused on attempting to distinguish pres-
ence of disease (values 1,2,3,4) from absence of disease
(value 0). These experiments focused mainly on classifi-
cation performance. Some of them use feature selection
to build classifiers but do not focus on the individual fea-
ture importance as we do in this work. The results obtained
with an instance-based learning algorithm (IB1) report an
accuracy of 75.7% (£0.8) [3]. Another experiment with
the same dataset, also to diagnose disease, used a neural
network algorithm and reported an accuracy of 87.5% [4].
More recently, the same Cleveland dataset was used in ex-
periments that use Radial Basis Function Networks, that re-
port an accuracy of 84% [5]. A more recent work [6] had
as objective to model detection of heart failure more than
6 months before the actual date of clinical diagnosis using
machine learning techniques to EHR data. They compared
the performances of logistic regression, SVM and Boost-
ing along with various variable selection methods in heart
failure prediction. A value of 0.77 for the area under the
ROC (AUROC) for the best classifier was reported. Pre-
vious work on a smaller dataset of 169 children [7], and
performing an exhaustive search for the best classifier, pro-
duced an accuracy of 90.5% and AUROC of 0.83. For this
dataset with 7199 children, our training accuracy is 93%
when predicting cardiac pathological cases, using an SVM.

2 Materials and Methods
2.1 Dataset

The data used in this study was collected in the Real
Hospital Portugués (RHP), Brazil, then anonymized and
shipped to Portugal with the approval of the RHP Ethics
Commitee. The Ethics Committee of the University of
Porto, Portugal also approved this study.
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In the original dataset containing 7603 instances and 33
features, we performed pre-processing tasks, namely, data
cleaning, data transformation, data normalization, as well
as removal of irrelevant features, like ID, name of doctor,
etc. Since we want to use the body mass index (BMI) in
our study and this feature is usually assessed for 2-year old
or older children, we removed from our dataset all the chil-
dren younger than 2 years old. Therefore, our dataset, af-
ter pre-processing, consists of 7199 cases and 21 features.
Of these 7199 cases, 2507 (34.8%) are pathological, while
4692 (65.2%) are healthy. The description of the data with
its variables is shown in Tables 8 and 9 in the appendix. We
note that age, BMI, systolic blood pressure, and diastolic
blood pressure are represented in numerical and categorical
versions. We used only the categorical versions in our anal-
ysis, thereby reducing the number of analyzed features to
17. The main goal of this work is to apply feature impor-
tance metrics to rank the variables that are more predictive
of cardiac pathologies.

2.2 Methodology

We now present in detail the methods applied in our
dataset. We take two approaches to find the most relevant
attributes to predict pathologies. First, we use a filter based
approach, i.e., using model independent metrics such as mu-
tual information and chi-squared tests. Then, we use model
specific metrics, namely a variable importance measure by a
random forest classifier and a logistic regression odds ratio
analysis.

The mutual information approach to feature selection
consists in computing the mutual information between each
attribute and the class variable. This gives information on
how correlated they are. Remembering the definition of mu-
tual information I(X;Y) = H(X) — H(X|Y), where X
is our class variable and Y is the feature under analysis [8].
To have the results bounded between 0 and 1, we define a
normalized mutual information measure as:

Loom(X;Y) = I(X;Y)/H(X) =1 — H(X|Y)/H(X).

The intuition this result gives us is the following: If X
and Y are statistically independent random variables, then
H(X|Y) = H(X), that is, the knowledge of Y does not re-
duce the uncertainty about X . Therefore, Iom(X;Y) = 0.
If the knowledge of Y removes all the uncertainty about X,
then H(X|Y) = 0, as a result Iyorm(X;Y) = 1. So, the
closer the result is to 1, the more important is the feature
according to this measure.

The chi-squared test is used as a test of independence be-
tween two random variables. The first step is to calculate the
chi-squared test statistic, X2, which resembles a normalized
sum of squared deviations between observed and expected
frequencies. The second step is to determine the degrees of
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freedom, d, of that statistic, which is essentially the num-
ber of frequencies reduced by the number of parameters of
the fitted distribution. In the third step, x? is compared to
the critical value of no significance from the Xi distribu-
tion, which in many cases gives a good approximation of
the distribution of x2.

We then analyze the specific importance metrics. First,
we calculate the variable importance as measured by a ran-
dom forest classifier. A random forest is an ensemble clas-
sifier that consists of many decision trees, and outputs the
class that is the mode of the classes output by individual
trees. The method combines Breiman’s bagging idea [9]
and the random selection of features, introduced indepen-
dently by Ho [10] and Amit and Geman [11] to construct a
collection of decision trees with controlled variation.

Finally, we apply a logistic regression and perform odds
ratio analysis to infer the importance of each feature in the
odds of having pathology. In a logistic regression, we can
think of the class variable = as having a Bernoulli distribu-
tion with parameter p given by

p="Pl=10"y)=n(6y),

where © = [0, 0s,...,07]T are the regression coefficients,
f is the number of features, y = [y1, y2, . . ., yy] is the vec-
tor containing the features, y; is the value the ¢-th feature,
and h(-) is the logistic function. The log odds of the out-
come is modelled as a linear combination of the predictor

variables In (ﬁ) = O©Ty. The odds ratio for the i-th

feature is simply given by exponentiating the ¢-th feature
regression coefficient and can be seen as how an increase
(presence) of a numerical (categorical) feature influence the
probability of occurrence of the class variable [12].

3 Results and Discussion

In this section we present the results obtained by apply-
ing the feature importance metrics presented in the previ-
ous section to our database. The mutual information re-
sults, using the 17 features, place murmur as the feature
that most reduces the uncertainty of the class variable (ei-
ther pathological or not). In fact, murmur presents a score
much higher than the remaining features (Table 1).

From the presented result, murmur plays an important
role when predicting cardiac pathology, which is in accor-
dance to clinical assessment [13]. Nonetheless, from all the
cases in the database we observe that 5,000 patients have
absent murmur, and of those, 404 have cardiac pathology
(404 pathological, ~ 8% and 4,596 normal, ~ 92%). Since
murmur seems to be determinant in cardiac pathology de-
tection, to study the impact of the absence of this character-
istic, and to evaluate which other variables may aid in the
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Table 1. Mutual Information applied to the 17
features: 7199 cases

Feature Score
Murmur 0.61
Secondary Reason 0.10
Weight 0.09
Primary Reason 0.05
HR 0.05

detection of these pathological cases, we apply mutual in-
formation to the dataset containing only the patients with
absent murmur. Results are presented in Table 2.

Table 2. Mutual Information applied to the 17
features: 5000 cases with absent murmur

Feature Score
Weight 0.17
HR 0.05
Height 0.04
S2 0.04
Secondary Reason 0.02

Although weight, heart rate, height, S2 and secondary
reason, reach the top of the ranking (Table 2), their rele-
vance is lower when compared to murmur (Table 1).

Chi-squared results using the 17 features from the 7199
instances reinforce also the idea that murmur is a key factor
when assessing a cardiac disease (Table 3). When applying
chi-squared test to the dataset with absent murmur (Table
4), the feature ranking obtained is very similar to the feature
ranking in the mutual information approach, and as referred
before.

Table 3. Chi-squared test applied to the 17
features: 7199 cases

Feature Score
Murmur 5160.57
Weight 730.00
Secondary Reason | 702.92
Primary Reason 501.63
HR 445.33

Moving to classifier-based approaches, we first compute
the mean decrease Gini achieved by a random forest classi-
fier to the 17 features from the 7199 instances. It focuses on
measuring the total decrease in node impurities from split-

CBMS 2013



Table 4. Chi-squared test applied to the 17
features: 5000 cases with absent murmur

Feature Score
Weight 577.86
S2 255.56
HR 149.01
Height 125.22
Secondary Reason | 62.89

ting on the variable, averaged over all trees. The node impu-
rity is measured by the Gini index. A variable that decreases
the Gini index the most is responsible for a decreased node
impurity, hence it is the most important in terms of separat-
ing the target classes. Analyzing the results with 17 features
from the 7199-case dataset, murmur is the crucial feature in
order to correctly separate the target classes, as it decreases
the Gini index in an approximate score of 1976 (Table 5).
When we apply a random forest classifier to the dataset with
absent murmur (Table 6), we notice that the top 5 features
present scores of mean decrease Gini that are less relevant
when compared to the result achieved by murmur.

We noticed that the Secondary Reason is ranked in the
top 2 twice and in the top 5 three times. This can be ex-
plained by the fact that one of the possible Secondary Rea-
sons is "Presence of Murmurs” (see Table 9). From the 881
occurrences of that label, 635 (=~ 72%) are associated with a
cardiac disease. This reinforces the importance of murmur
in the accurate detection/classification of cardiac pathology.

Table 5. Variable importance as measured by
a Random Forest classifier applied to the 17
features: 7199 cases

Feature Mean Decrease Gini
Murmur 1975.98
Secondary Reason 216.44
Weight 189.82
Height 172.65
HR 149.61

We then apply logistic regression and compute the odds-
ratio of the features. The most important features accord-
ing to the odds-ratio is the presence of systolic murmurs,
which increases the probability of having a pathology by
a factor of approximately 320. The results of the logistic
regression also shows that an abnormal S2, such as having
an hyperphonetic S2, increases the odds of having a cardiac
pathology by six. This result contrasts with the ones ob-
tained using the other importance metrics presented in the
paper. Analyzing S2 in more detail, we may notice that if S2
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Table 6. Variable importance as measured by
a Random Forest classifier applied to the 17
features: 5000 cases with absent murmur

Feature Mean Decrease Gini
Weight 131.59
Height 119.36
HR 84.64
CDH 1 48.05
Secondary Reason 46.45

is abnormal (i.e. unique, hyperphonetic or fixed split) it is
possible to easily separate the pathological cases. There are
140 instances with abnormal S2. From these, 129 (=~ 92%)
are associated with a cardiac disease while 11 (= 8%) refer
to healthy children. Focusing on the 7005 instances with
normal S2, the distribution of abnormal and normal cases
is extremely similar to the a priori distribution (see Table
9). From the 7005 cases with normal S2, 2338 (=~ 33%) are
associated with a pathology, while the remaining 4667 (=
67%) are from patients with no cardiac problems. As the
normal S2 are in much higher number than the abnormal
ones, knowing S2 does not clarify much in the prediction
of cardiac pathologies, as proved by the mutual information
and chi-squared tests.

Finally, we performed a small experiment using a SVM
classifier applied to the 7199 cases to predict cardiac
pathologies using/not using murmur as feature. The results,
obtained with 10 times 10-fold cross-validation, are in Ta-
ble 7 and are consistent with the results obtained in the fea-
ture importance analysis. As performance metrics, we re-
port the average number of Correctly Classified Instances
(CQD), sensitivity and specificity.

Table 7. Predicting Pathology

Metrics Using murmur | Not using murmur
CCI (%) 93.21 73.12
Sensitivity 0.85 0.37
Specificity 0.98 0.92

4 Conclusions

In this study we present an exploratory analysis of vari-
ous cardiac and demographic features collected from chil-
dren (with and without cardiac pathology), in standard clin-
ical practice. The most important result that is drawn from
the several exploratory techniques presented, is the impor-
tance of the presence of murmur in the detection of car-
diac pathology. Although this information is not new, and
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is widely used in clinical practice to assess cardiovascu-
lar state in conjunction with other demographic data [13],
it should be noticed that when this feature is not present,
the remaining variables analyzed in this study do not con-
tribute as decisively to the pathology detection. Hence it
is crucial to have accurate information on murmur pres-
ence. Taking into consideration that some studies report a
high detection error of mild murmurs, when evaluated by a
less experienced clinician [14], this may present a motiva-
tion for the introduction of digital signal processing of the
heart sound for feature extraction, aiding the less experi-
enced clinician in the detection of such features. It should
be noticed that information about S2, which is described
in the literature [13] as being a decisive predictor of car-
diopathies, did not yield significant performance gain in the
presented exploratory analysis.
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A Dataset Description Tables

Table 8. Numerical Features

Attribute Range Average +Stdev  Missing
Age 2-19 8.6 +3.7 0
Height (cm) 51-198 1302 £ 21.5 0
Weight (kg) 3.5-101.0 32.8+15.0 0
BodyMassIndex  12.0-33.6 18.4+ 3.6 0
HeartRate (bpm)  48-160 855+ 11.0 310
SystolicPressure ~ 70-170 101.0 + 10.7 20
DiastolicPressure  35-120 62.1 £8.5 20
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Table 9. Categorical features

Attribute Values Percent Qty Missing Pathology
Yes No
Sex Female 41 2946 0 1023 1923
Male 59 4253 1484 2769
Pre-School 2-6 38.3 2757 0 1158 1599
Age Range School 6-10 252 1817 636 1181
Pre-Teen 10-14 28.3 2036 573 1463
Teenager 14-19 82 589 140 449
Low Weight 45 324 0 148 176
. Normal 48.7 3509 1223 2286
Body Mass Index Percentile Overweight 17.1 1234 445 789
Obese 29.6 2132 691 1441
Normal 91.6 6574 20 2241 4333
Systolic Blood Pressure (SBP) Limit 3.1 224 87 137
Hypertense 53 381 172 209
Normal 90.0 6459 20 2234 4225
Diastolic Blood Pressure (DBP) Limit 5.7 409 149 260
Hypertense 4.3 311 117 194
Normal 86.2 6187 20 2113 4074
Result-SBP-DBP Limit 6.6 472 175 297
Hypertense 72 520 212 308
Absent 69.5 5000 0 404 4596
Murmur Systolic 304 2186 2093 93
Diastolic 0.1 6 5 1
Continuous 0.1 7 5 2
Normal 98.0 7005 54 2338 4667
Second Heart Sound (S2) l:;;eq(ilgpht 8? 63 5; ?
Hyperphonetic 1.0 68 66 2
Normal 99.8 7168 17 2486 4682
Pulses Diminished Femoral 0.1 7 7 0
Ample 0.1 7 2 5
Asymptomatic 723 3910 1789 1500 2410
Cyanosis 1.0 54 22 32
Precordial pain 9.7 527 176 351
Current Disease History 1 (CDH 1)  Dyspnea 6.1 332 135 197
Palpitation 53 286 78 208
Faint/Dizziness 3.2 172 37 135
Weight Gain 24 129 50 79
Cyanosis 8.4 26 6889 15 11
Precordial pain 18.1 56 18 38
Current Disease History 2 (CDH 2) Rﬂ‘;’ﬁ tr; e;()n %gg gé %g 22
Faint/Dizziness 12.9 40 13 27
Weight Gain 8.1 25 10 15
Cardiopathy 5.7 408 60 258 150
Routine check-up 72 513 119 394
Primary Reason Others 2.5 178 67 111
Cardiology Screening 53.1 3788 958 2830
Possible Cardiopathy 31.5 2252 1082 1170
Physical Activity 13.1 701 1846 188 513
Congenital Cardiopathy 6.1 324 222 102
Secondary Reason Surgery 342 1833 499 1334
Risk factors 17.1 914 299 615
Presence of Murmurs 16.5 881 635 246
Others 13.1 700 241 459
Pathology 7199 0 2507 4692
(34.8%) (65.2%)

CBMS 2013

319



