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from complex data streams in syndromic
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Abstract. Syndromic surveillance systems continuously monitor multiple pre-diagnostic daily streams of indicators from dif-
ferent regions with the aim of early detection of disease outbreaks. The main objective of these systems is to detect outbreaks
hours or days before the clinical and laboratory confirmation. The type of data that is being generated via these systems is
usually multivariate and seasonal with spatial and temporal dimensions. The algorithm What’s Strange About Recent Events
(WSARE) is the state-of-the-art method for such problems. It exhaustively searches for contrast sets in the multivariate data
and signals an alarm when find statistically significant rules. This bottom-up approach presents a much lower detection delay
comparing the existing top-down approaches. However, WSARE is very sensitive to the small-scale changes and subsequently
comes with a relatively high rate of false alarms. We propose a new approach called EigenEvent that is neither fully top-down
nor bottom-up. In this method, we instead of top-down or bottom-up search, track changes in data correlation structure via
eigenspace techniques. This new methodology enables us to detect both overall changes (via eigenvalue) and dimension-level
changes (via eigenvectors). Experimental results on hundred sets of benchmark data reveals that EigenEvent presents a better
overall performance comparing state-of-the-art, in particular in terms of the false alarm rate.
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1. Introduction

The goal of syndromic surveillance systems is to enable earlier detection of epidemics and a more
timely public health response, hours or days before clinical and laboratory confirmation comes out [15].
Two kinds of events are usually required to be detected: man-made events such as bio-terrorist activi-
ties like anthrax attacks [13] and natural events such as epidemic diseases like H1N1, avian influenza,
SARS, and West Nile Virus, etc. All kinds of events regardless of their type make some changes in the
environment. If we somehow manage to identify such changes in the early stages we can save many
lives and prevent the potential damages. The early event detection systems are developed for such pur-
poses. In these systems, multiple streams of pre-diagnostic health records [15,38] such as daily counts
of doctor/hospital/emergency room visits, over-the-counter medication sales, work/school absences, an-
imal illness or deaths, internet-based health inquiries are being monitored simultaneously to trace the
event footprints.
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Fig. 1. A sample complex system in syndromic surveillance that generates 128 time series for 16 features and 8 spatial regions.

Figure 1 demonstrates an example of a complex data stream in synonymic surveillance systems. As
it can be seen, this system measures 16 features aggregated daily within 8 different regions. Hence, the
system generates 128 time series. Our goal is to monitor this complex system and signal an alarm when
something strange occurs. One straightforward approach for monitoring such system is to monitor each
individual time series and then apply an anomaly detection technique (e.g. Control chart) on each. This
approach, however, imposes much higher false alarm rate. Because pre-diagnostic streams of indicators
are weak and noisy signals [4] and applying detectors on each individual signal results in multiple
hypothesis testing problem [48]. For instance, suppose that we reject null hypothesis when the p −
value ≺ 0.05, for a single hypothesis test, the probability of making a false discovery is equal to 0.05.
Now assume that we do the test for each of 128 time series. Probability of false alarm could be as bad
as: 1 − (1 − 0.05)128 = 1.00� 0.05.

Existing univariate methods include statistical process control based approaches [16,46]; Time se-
ries analysis and signal processing based approaches, including singular spectrum analysis (SSA) [32],
Box-Jenkins models [36]; Wavelet [50], Hidden Markov Model (HMM) [28,35]; and regression [37].
The univariate methods since only monitor a single variable are not proper techniques for handling the
complex data in synonymic surveillance. Besides, if we monitor each individual feature independently
without taking into account the correlation between them, we then likely confuse the measurements error
and noises with the events.

The other category of methods is multivariate methods that are able to monitor multiple streams.
These methods include Hotelling T2 [49], multivariate CUSUM and EWMA [30], principal component
analysis (PCA) [21], multivariate HMM [31], vector autoregression (VAR) [1,9] and vector autoregres-
sion moving average (VARMA) [8]. There is also a sub-group of multivariate methods that operates
on categorical data and looks for interesting rules via contrast set mining techniques. STUCCO [2] and
Emerging Patterns [7] are instances of such techniques. Multivariate temporal methods, despite of their
wide application in many areas, are not well-suited to syndromic surveillance and outbreak detection
problems where geographic dimension is widely involved.
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The methods that take into account geographic dimension are twofold: spatial and spatiotemporal.
Spatial methods such as spatial scan statistics [22] do not capture the temporal fluctuations of the data
and only operate on spatial data. Spatiotemporal methods instead take into account both spatial and tem-
poral dimensions. Space-time scan statistics (STScan) is of this group that can operate both on univari-
ate count data [22–24,26] and multivariate data [25]. Univariate STScan is not adequate for syndromic
surveillance for the same reason mentioned for univariate temporal methods. Multivariate STScan also
has some drawbacks that make it be inappropriate for the introduced problem. On one hand they assume
that the environment is static and do not consider seasonal effects and on the other hand they are devel-
oped for retrospective and offline analysis. Therefore, this group of techniques is not also suited to the
problem.

There is another group of techniques such as PANDA [5] that use a causal Bayesian network to
model spatiotemporal patterns of outbreaks. These methods not only explicitly compute the probability
of events, but also are able to operate in real time settings through incremental updating of the Bayesian
network. However, the main criticism against these techniques is that tuning the primary parameters
requires a deep prior knowledge that is not available most of the time. Therefore, these methods are
considered domain specific and their application has remained limited.

Among many existing techniques and algorithms, the most suited approach to the introduced prob-
lem is WSARE [47,48] that is able to handle multivariate data along spatial and temporal dimensions.
WSARE searches for surprising rules in data streams given some baseline reference. The baseline cre-
ation strategy varies in different version of the algorithm. WSARE 2.0 uses raw historical data from
selected days, WSARE 2.5 uses all historical data that match the environmental attributes and WSARE
3.0 models the baseline distribution using a Bayesian network. Opposed to PANDA where Bayesian
network is created manually, WSARE 3.0 learns the Bayesian network from historical set. Therefore, is
not as such domain-dependent as PANDA. WSARE has been successfully applied and merited in many
real world problems such as in bioterrorism surveillance for 2002 Winter Olympics [12] and Israel in-
fluenza type B outbreak and Walterton outbreak [18]. However, the main criticism about WSARE is its
high rate of false alarms [3]. WSARE opposed to other techniques, processes the data from bottom to
up. Therefore, instead of overall changes in the whole data, it tracks the changes in subgroup of data.
Therefore, it is sensitive to small changes and consequently presents lower detection delay, however,
comes with more false alarm rate.

The methodological differences between our proposed method and WSARE are as follows. 1)
WSARE is a bottom-up rule-based approach while our method is a middle approach between bottom-
up and top-down that tracks both high level and dimension-based changes in the data subspace. 2) Our
approach takes into account both multi-linear and multi-way correlations in data while WSARE is not
able to capture such complexity; and 3) Our method is suitable only for alarming purposes and cannot
explain about subgroup of the data that cause the alarm, while WSARE can be used for both purposes.
4) The statistical significance of the alarms in WSARE is computed via Monte Carlo simulation while
in our approach is computed by statistical process control techniques.

In overall, the main objective in syndromic surveillance systems is to detect events in a timely manner
before they turn into an epidemic. This early detection has important functions in both mortality saving
and prevention of economic losses. An estimation by DARPA shows that a two-day improvement in
detection time could reduce fatalities by a factor of six [33]. Another study states that improvements
of even an hour in detection can reduce the economic impact of by a hundred million of dollars [34].
To reach this objective, any capable signal is required to be considered. However, this is somehow
problematic, since involving more signals results in more false alarms. In the recent years the emphasis
of the developed algorithms in syndromic surveillance has been focused more on the early detection and
rate of false alarm is rarely taken into account. This is while the recent studies show that the false alarm
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Fig. 2. The environmental setting affects the data items.

rate can have an inverse effect as bad as delay in detection. A recent study concerning the warning system
for tornado events [41] reveals that tornadoes occurring in the regions with a high false alarms ratio kill
and injure more people. A statistically significant effect of false alarms is identified in this study: A
one-standard-deviation increase in the false alarm ratio increases expected fatalities by between 12%
and 29% and increases expected injuries by between 14% and 32%.

Besides, opposed to anomaly or outlier detection problems, which it is assumed that the process oc-
curs in an isolated and static environment in synonymic surveillance systems we deal with dynamic and
time-changing environment. In such environments, attributes such as day of the week, holiday, weather,
etc. affect the whole or part of the system behavior. Figure 2 illustrates an individual time series corre-
sponding to the feature V 1 and Zone 1 in Fig. 1. As it can be seen, in point A due to cold weather and
high rate of influenza rate, we have a higher count comparing point B. Such effects impose another kind
of complexity to the event detection problem in syndromic surveillance which is required to be taken
into account along with other issues.

In this paper, we propose a novel event detection methodology that considers both data complexity
and time-changing environmental issues in syndromic surveillance. The concentration of this work is to
reduce the false alarm rate of early event detection systems. Our contributions are as follows.

– To the best of our knowledge this is the first time that the tensor decomposition techniques [20] is
applied to the syndromic surveillance problem with space and time dimensions.

– We use the changes in data dimensions and data correlation structure as an effective criteria for
event detection.

– We introduce a novel and effective approach for baseline data creation that can infer baseline for
unseen environmental settings.

The rest of the paper is organized as follows. In Section 2 we introduce the proposed solution and
our developed algorithm EigenEvent. The Section 3 includes experimental evaluation, including the
introduction of the data set, performance evaluation and sensitivity analysis. The last section concludes
the exposition presenting the final remarks.

2. Proposed method

2.1. The idea

The fundamental idea that is used to develop the method relies on tracking changes in the subspace.
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Fig. 3. Snapshot of the proposed solution at a hypothetical timestamp. We detect events through tracking changes in the sub-
spaces of baseline and recent data.

This is impossible unless we could match the recent data with a baseline reference. However, in stream-
ing settings, data itself is time-changing due to the effect of the dynamic environment on the data items.
Therefore, using a static baseline seems to be inappropriate for dynamic environments. We propose a
dynamic baseline set creation strategy which takes into account both seasonality and non-stationarity.
The main novelty of our method is that we not only track changes in the feature subspace, but in the
subspace of other dimensions.

Figure 3 demonstrates an illustrative example of our proposed method. Each day we receive a chunk
from a complex data stream. In the data stream model this can be translated to the sliding window
with fixed size of one day across the data stream. The window here is more complicated than a one-
dimensional window in temporal data processing. Each window is a two-dimensional matrix of Space
× Features (top-right matrix). Each cell in the matrix corresponds to the count of a feature in specific
regions. With respect to the sliding window environmental setting, we generate a dynamic baseline tensor
with order of Space× Features× Time (top-left tensor) which is being fed from the historical data. This
baseline tensor is built in each step or cycle of the algorithm run. The baseline tensor is composed

AU
TH

O
R 

CO
PY



602 H. Fanaee-T and J. Gama / EigenEvent: An algorithm for event detection from complex data streams

Fig. 4. A simplified example showing how events can be detected by tracking changes in the eigenspace. If the distance between
the sliding window eigenvector and baseline eigenvector is higher than expected, then the window is marked as abnormal. Also,
if the ratio of window eigenvalue to the baseline eigenvalue is higher than expected, the window is marked as abnormal as well.
(Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-150734)

of some previously arrived sliding windows that are combined in a particular order. We decompose the
recent matrix and the baseline tensor to a lower-rank subspace and then match their pairwise eigenvectors
and eigenvalues. We signal an alarm if we observe any unexpected difference in the match.

Figure 4 illustrates the eigenspace of both baseline and recent matrix. The solid vector in this figure
corresponds to the baseline tensor. The direction of this vector corresponds to the principal eigenvector
corresponding to a dimension and the length of the vector corresponds to the principal eigenvalue. When
we receive a matrix we decompose it to the eigenvectors and eigenvalues and then match the obtained
principal eigenvalue and principal eigenvectors to the reference vector (solid vector). We signal an alarm
if the matrix eigenvector has a considerable difference in direction (eigenvector) or length (eigenvalue).
For instance, dashed lines in the figure correspond to those matrices that have close eigenvector to the
baseline eigenvector and have the close eigenvalue (vector length). Such matrices are considered normal
by EigenEvent. Dash-dot lines in the figure on the contrary are related to abnormal matrices that have
an unexpected eigenvector (unexpected vector direction) or unexpected eigenvalue (unexpected vector
length) with respect to the baseline.

2.2. Proposed algorithm: EigenEvent

In this section we describe our proposed algorithm, which is called EigenEvent. As it is presented
in Algorithm 1, the inputs are as follows: sliding window D with length of one day; t which is the
sequence number; e is a number corresponding to the environmental setting of the day. For instance, the
environmental setting 1214 is related to: day = weekend (1), weather = cold (2), flu = high (1), season
= winter (4). The algorithm as a result outputs a p-value indicating the statistical significance of the
sliding window. A very low p-value can be interpreted as an event signal.

2.2.1. Data processing and decomposition
The first phase is to transform the sliding window to the matrix format of Space× Feature (line 1). To

assess the abnormality of sliding window we need a baseline reference to match with. Two strategies can
be utilized, one is to compare the window with the previous data and another strategy is to compare the
window with previous data that have the same environmental setting. We use a combined strategy that
takes into account both (see Section 2.2.4) and produce the dynamic baseline set according the context
corresponding to the window (line 2). As a result, baseline is presented as a tensor of Space × Feature
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Algorithm 1 EigenEvent
//D: Recent data (Right top table in Fig. 3)
//C: Recent data in the format of matrix Space × Features
//t: Instant (e.g. t = 3 means after 3 days of monitoring started)
//e: Recent data Env. Setting (e.g. 1214 = {day = weekend, weather = cold, flu = high, season =
winter})
//EV: Environmental setting vector (e.g. [1214, 1321, 3214, 1456])
//H: Historical Tensor
//vd1: Vector of principal Eigenvalue distances (d1,1, d1,2, . . . , d1,t−1)
//vd2: Vector of principal spatial Eigenvector distances (d2,1, d2,2, . . . , d2,t−1)
//B: Current generated Baseline tensor (Tensor Space × Time × Features in Fig. 3)
//P -value: Statistical Significance of the recent data (e.g. Signal an alarm when p-value ≺ 0.05)

Require: D, t, e
Ensure: P -value

1: Matrix C ← D
2: Tensor B ← BaselineTensorUpdate(B,H, t, e, EV,C)
3: HOSVD(B): Xb ← principal spatial Eigenvector, λb ← principal Eigenvalue
4: SVD(C): Xc ← principal spatial Eigenvector, λc ← principal Eigenvalue

5: d1 =
λb

λc
6: ‖d2‖ = (Xc,Xb).
7: p1 = p-value of d1 given vd1
8: p2 = p-value of d2 given vd2
9: P -value← Min[p1, p2]

10: if e then exists in EV
11: vd1

add←− d1

12: vd2
add←− d2

13: end if
14: H

add←− C
15: EV

add←− e

16: function BASELINETENSORUPDATE(B,H,t,e,EV,C)
17: if B is empty then B

add←− C
18: else
19: k = 0
20: for i = 1 to t− 1 do
21: if EV(i) == e then
22: k = k+ 1
23: B(k)← H(i)
24: end if
25: end for
26: end if
27: Return B
28: end function
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× Time. We then apply SVD [19] on window matrix and higher order SVD (HOSVD) [6,20] on the
baseline tensor and for each dimension we take the principal eigenvector and eigenvalue.

Note that EigenEvent does not concern about the feature selection (selection of pre-diagnostic signals
that are required to be monitored). Feature selection, however, may be performed via standard feature
selection techniques or via domain experts or a combined technique. Nevertheless, feature selection
is one the most important steps in a data mining process that is required to be taken into account.
Selection of inappropriate signals may result in higher false alarm or more detection delay. The well-
known over-fitting problem may happen here as well. Leinweber in an article entitle stupid data miner
tricks: overfitting the S&P 500 names some of such problems. He finds a strong correlation between
butter production in Bangladesh and S&P 500 (stock market index) over a ten year period. This implies
that the selection of appropriate signals still is human-dependent and cannot be fully automated.

2.2.2. Subspace matching
The next phase is the matching phase. If we denote the principal eigenvalue of baseline with λb, the

principal eigenvalue of window with λs, the principal eigenvector of baseline with Xb and the princi-
pal eigenvector of window with Xs, we can define the ratio of eigenvalues and Euclidean distance of
eigenvectors respectively as:

d1,t =
λs

λb
(1)

‖d2,t‖ = (Xs,Xb). (2)

We keep the historical distances in two vectors of vd1 and vd2 for eigenvalues and eigenvectors re-
spectively, such that at time t we have vd1 = (d1,1, d1,2, . . . , d1,t−1) and vd2 = (d2,1, d2,2, . . . , d2,t−1).
Having d1,t, d2,t, vd1 and vd2 we can compute the z-scores corresponding d1,t and d2,t as follows.

z1 =
d1,t − μvd1

σvd1

(3)

z2 =
d2,t − μvd2

σvd2

(4)

Where μvd1
and μvd2

denotes the mean and σvd1
and σvd2

denote standard deviation of vector vd1 and
vd2 respectively.

Although z-scores alone can be used along with a threshold for alarming purpose, since most related
event detection algorithms in the literature outputs p-value, we may want to transform z-scores to the
corresponding p-value to ease the comparison task. We can use the following equation to derive the
p-value from the z-score:

P (z) =
1√
2π

∫ z

−∞
e

−t2

2 dt (5)

2.2.3. Indicator selection
As we already explained, HOSVD and SVD decompose the complex data into smaller subspaces

(eigenspace). Tensor and matrix decomposition methods are robust against the noises. However, in the
case that we have some missing values we need to use specific types of SVD [27].

We have three elements in the eigenspace that can be matched: principal eigenvector of spatial and
feature dimensions and the principal eigenvalue. We may observe three kinds of changes in the match.
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The first kind includes an overall change in the system which is more related to the late days of outbreak
period when we have both infection and outbreak. This kind of event must be reflected in a significant
change in the ratio of eigenvalues (d1,t). The second kind of change occurs when an event agent (e.g.
Virus) begins to spread over the geographical space. This type of event also is reflected in the changes in
the spatial eigenvector pairwise distance (d2,t). The third kind is the change in the feature values. This
event type can be reflected in the eigenvectors corresponding to feature dimension. However, as we show
later due to the noisy properties of the feature dimension, this kind of indicator is not such helpful.

We propose a new strategy that is able to detect both overall and dimension-based changes in the
system. We monitor the system using a combination of indicators, including eigenvalue and different
eigenvectors and the compute the p-value corresponding to each combination for each sliding window.
Then we take the minimum p-value as the algorithm output (line 9). Suppose that we have three p-values
of 0.01, 0.12 and 0.43 corresponding to the pairwise match between the principal spatial eigenvector, the
principal feature eigenvector and the principal eigenvalue respectively. The EigenEvent algorithm reports
the minimum p-value (0.01) as the output. These above mentioned p-values indicate three facts about
the system: 1) No overall change has occurred in the system, because p-value corresponding Eigenvalue
is considerably high; 2) No significant change is occurring in the feature values; 3) A significant change
is occurring in the spatial dimension. We may infer that data items despite of showing normal behavior
in the features are showing different behavior in geographical space and hence we probably are in the
outbreak phase. The minimum p-value selection strategy lets us to detect all above kinds of changes
and subsequently makes the algorithm sensitive to changes in both overall system behavior and the
dimension level.

2.2.4. Dynamic baseline tensor
There should be a criterion to estimate the abnormality of the recent data. As is mentioned before,

two types of common criteria includes comparing with the previous data and comparing with only the
previous data that match the current environment settings. Both of these criteria are vulnerable. The
first criteria fails when data contains seasonal effects and second one fails when there is no enough
historical data matching the recent environmental setting. To solve this problem a typical inference
usually is performed, for instance, a causal Bayesian network is constructed in WSARE 3.0 [47,48] so
that when there is no enough historical data, baseline is inferred from the constructed Bayesian network.
This approach, however, only make inference about the days their corresponding environmental settings
cannot be found in the baseline set. In the rest of the time it compares the recent window with the
previous data that match the current environment settings. This approach can be vulnerable as well,
since the correlation of the current window with the recent data is ignored. We introduce another way
of baseline set selection which is a combination of both ideas. We assume that the recent data is not
only related to the previous data and data with the same environmental settings, but also to data with
the most repeated environmental settings. In fact, our baseline tensor is a combination of previous data,
data with the same environmental setting and data from most frequent environmental settings. The main
advantage of this approach is that it does not fail when deal with an unseen environmental setting.

The function BaselineTensorUpdate in Algorithm 1 receives six inputs, including B (current baseline
tensor); H (whole data, historical tensor); t (instant number); e (the recent environmental setting); EV
(vector of all environmental settings seen yet); and C (recent matrix) and outputs the updated baseline
tensor B. It first checks that whether the tensor B is empty. In the case that B is empty, C is added to
B. Then we search in historical tensor H for data that match the recent environmental setting. Next, it
rewrites the first k matrices of tensor B with the matched items.

An illustrative example of the procedure is demonstrated in Fig. 5. The figure is a snapshot of the
system at four hypothetical days between days 50 to 53. From the figure we also can observe four
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Fig. 5. A Sample of dynamic baseline tensor creation process between day 50 to day 53. Each plate represents a daily matrix of
Space × Features in historical set. The dynamic baseline tensor is a combination of such matrices in a particular order. e also
denotes the environmental setting of the day.

distinct environmental settings, which are shown with different colors and that their corresponding name
is demonstrated in the guide table. Each cube in the figure represents a baseline tensor and each plate
inside the cubes is a Space × Features matrix from the historical set. At day 50 the baseline tensor is
composed of 20 matrices such that 9 of matrices are from setting c4, 4 matrices from setting c2 and 7
matrices from setting c1. We also assume that the context c1 is the dominant environmental setting with
20 times occurrence. The dominant context is the most frequent setting in all the history. For this reason,
all baseline tensors, in Fig. 5, include 20 matrices, given that the length of the baseline tensor is equal to
the number of occurrences of the dominant context.

Now let’s explain how a dynamic baseline set is generated. At day 50, we receive a matrix with
setting c1. We search in historical tensor H for a match with c1 setting, but we do not find, so the
function BaselineTensorUpdate returns input B unchanged. On day 51, we again receive a matrix with
the setting c1. We again search for a match in H . This time we find one match, because one day before
(day 50) the setting has been c1. Therefore, we rewrite the first k elements of B Tensor with k found
matrices. In this case since we find only one match, k is equal to 1. At day 52 we receive a matrix
corresponding with environmental setting c2. We search in H for a match and suppose that we find 13
matrices. Hence, k will be equal to 13, so we rewrite the first 13 elements of the baseline tensor with the
matched 13 matrices. As it can be observed at day 52, setting c2 has been the dominant setting versus
c3 and c4 settings, however, still c1 dominates c2 (c1 setting has more repeats comparing c2), therefore,
the baseline tensor is composed of matrices with most dominant settings with preference to the recent
data. Finally, on day 53, we receive a matrix with setting c1. We search in H for a match and we find 20
matrices (k = 20), thus we rewrite first 20 elements of the baseline tensor with matrices corresponding
c1 settings. At this moment, the whole baseline tensor is filled with only matrices with setting c1. This
procedure repeats and repeats. However, the size of baseline tensor always stays fixed to the repeat count
of the most repeated environmental settings.

2.2.5. Updating step
In this step we update the vector of distances (lines 11–12). We add the distances to the vectors if their

corresponding contexts has been already seen. If we have a matrix with an unseen environmental setting,
we do not add the computed distance to the vector of distances. Because an inference for this setting is
approximate and adding the distance obtained from this approximation is not adequate for keeping. We
finally update historical tensor and vector of environmental settings.

3. Evaluation

3.1. Data set

Validation of event detection algorithms is basically a difficult task due to the type of required data [3,
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Table 1
Characteristic of CityBN data sets

Field Type Cardinality Sample record #1 Sample record #2
XY Spatial 9 SW NE
Daynum Temporal 730 73779 74508
Age Feature 3 Senior Child
Gender Feature 2 Female Male
Action Feature 3 Purchase Evisit
Reported symptom Feature 4 Nausea Respiratory
Drug Feature 4 Nyquil Vomit-b-gone
Flu level in season Environmental 4 High Decline
Day of week Environmental 3 Weekday Sat
Weather Environmental 2 Cold Hot
Season Environmental 4 Winter Sumer

39,48]. To evaluate the algorithms, the event occurrence period is required to clearly be labeled in the
data. This requires a knowledge expert to look into the data and specify the event period manually,
making this task infeasible. Benchmark data sets that are already used for change detection and anomaly
detection are not appropriate for our research purpose, because, on one hand, most of the time they do
not have seasonality property and on the other hand do not contain multi-way property. We recently [10]
proposed a semi-automatic for labeling events in unlabeled data which is based on ensemble detectors
and background knowledge from web. However, this approach also needs to have access to some sort of
background knowledge which is not available in this domain.

We use a benchmark data set used in [47] including 100 data sets of a simulated disease outbreak.
These data sets are generated using a Bayesian network simulator namely CityBN which generates tem-
poral fluctuations based on a variety of factors such as weather and food conditions [48]. The structure
and parameter of this Bayesian network are manually adjusted. As is mentioned by the authors, this
simulator produces extremely noisy data sets that are a challenge for any detection algorithm. This data
set is publicly available online in [45].

Table 1 shows the characteristic of the original data sets. As it can be seen, this data is multi-way.
It contains two dimensions of space and time and multiple variables. It also contains seasonal effects,
because features are under influence of some environmental settings. Cardinality of each attribute is
also specified in the table. As it can be seen, we have 9 distinct spatial regions and 730 temporal in-
stants (days). We also have 16 (3 + 2 + 3 + 4 + 4) distinct time series and 4 × 3 × 2 × 4 possible
environmental settings.

3.2. Performance

Receiver operating characteristic (ROC) curve [14] measures the trade-off between sensitivity and
specificity. ROC curve is widely used method for evaluation of anomaly detection and classification
methods. However, ROC curve, even though summarizes the overall ability of the algorithm, does not
evaluate the timeliness of detection which is critical in syndromic surveillance. An algorithm with the
lowest false positive and the highest true positive rate that detect outbreaks with heavy delay is inap-
propriate for syndromic surveillance applications. In fact a system with this characteristic is more help-
ful for retrospective applications than the prospective applications like what is required in syndromic
surveillance. One of the proper metrics for evaluation of algorithms is Activity Monitoring Operat-
ing Characteristic (AMOC) curve [11] that evaluates the trade-off between specificity (false alarms)
and timeliness (detection time). AMOC curve is widely used for evaluation of methods in syndromic
surveillance [4,17,40,48]. Therefore, in this work we use AMOC curve for evaluation of our algorithm.
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Fig. 6. Evaluation strategy: Alarms in days with black color represents false alarms and in white days represents true alarms.
Detection delay is also specified for each day inside the plates.

We use the same evaluation strategy as [48]. Assume that the agent release occurs at timestamp t. A
true alarm corresponds to a case where the alarm is raised in a period between t + 1 and t + 14. The
alarms before or after this period are considered false positives. The detection delay is also defined as
the temporal difference between the first alarm in the above period and the release time. In reality, the
data of each day is processed tomorrow of that. Therefore, is not possible to detect event on the day
of release. Thus, the optimum detection is tomorrow of the release (detection delay = 1). This one day
delay is also considered in CityBN simulation. Figure 6 demonstrates that how we define false alarms
and detection delay. If we signal an alarm in a period of 14 days after release it is marked as true alarm
and if we signal an alarm before or after this period, it is marked as a false alarm. Detection delay is also
specified in the figure as numbers in the plates. If we signal an alarm tomorrow of the release, we get
only one-day delay which is the optimum condition. For any alarm after this period we define detection
delay equal to 14 (as [48]).

The outputs of both WSARE and EigenEvent are p-values indicating the statistical significance of
recent data. Depending on the desired confidence level, we may signal an alarm. For instance, given a
threshold as 0.05 we signal an alarm if the p-value corresponding to the recent data goes lower than
0.05. To assess the algorithms performances we use variable p-value threshold from 0.020 to 0.250
with the step of 0.001 (totally 231 p-values). Each data set has temporal size of 730 days. We use the
first 365 days for training the primary baseline and the next 365 days for evaluation of the algorithms.
Baseline set is also incrementally updated whenever a new window arrives after day 365. Note that agent
release in all 100 data sets occurs in the second year and is guaranteed that the first year do not contain
any release. A sliding window moves across the data from day 366 to day 730 and match each window
with the baseline. If the match outputs a p-value below the threshold, then an alarm is raised. After we
reached to day 730, we compute the number of false alarms and detection delays. We finally average the
detection delay and false alarms for all 100 data sets and plot the AMOC Curve. In the AMOC curve,
the x-axis indicates the number of false alarms per month and the y-axis measures the detection time in
days. The optimal detection is one day detection delay with zero false alarm. The closer to the point (0,
1) the better detection algorithm is.

The results are shown in Fig. 7. Although the curve corresponding EigenEvent seems different com-
paring WSARE, if we rotate the AMOC curve 90 degrees anticlockwise we observe the same pattern
similar to WSARE 3.0. The difference is that EigenEvent performs better in terms of false alarm rate
and performs worse in terms of detection delay. The intersection between the curves makes the overall
comparison difficult. For instance, in a desired false positive rate from 2.8 to 3.3, EigenEvent is the best
method both in terms of false alarm rate and detection delay. Nevertheless, to specify which of the al-
gorithms are better in overall we need to compute the area under the AMOC curve [34], average delay
and average false positive rate (see Table 2). Obtained area under AMOC curve implies that EigenEvent
outperforms all versions of WSARE. Its average false positive is considerably lower than all versions of
WSARE. However, in terms of detection delay as was expected presents one more day delay. To have
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Table 2
False positive rate (per month), detection delay (in days), Area under AMOC curve
and Runtime (in seconds) averaged for 100 data sets of CityBN

Method False positive Detection delay AUAMOC
WSARE 2.0 4.052439 2.163983 12.859000
WSARE 2.5 2.739062 2.192338 9.885192
WSARE 3.0 2.877031 1.929134 8.648379
EigenEvent 1.866439 2.839827 8.027842

Table 3
Runtime (in seconds) averaged for
100 data sets

Method Runtime
WSARE 2.0 59.2
WSARE 2.5 105.3
WSARE 3.0 838.4
EigenEvent 16.8

a separate look on both numbers of false alarms and detection delay, we also compute the average false
alarms and detection delay for 231 p-values (from 0.020 to 0.250 with the step of 0.001). The results are
presented in Tables 4 and 5 respectively. As it can be seen from the first table, EigenEvent in terms of
false alarms, beats other methods in the majority of data sets. Regarding the detection delay even though
is not the best, has detected events tomorrow of release in half of the data sets.

The main reason for the differences in the performance is related to the methodological differences
between EigenEvent and WSARE. EigenEvent opposed to WSARE is not a bottom up approach and
subsequently is less sensitive to the small-scale changes and subsequently, presents less false positive
rate. EigenEvent due to its less sensitivity to the small-scale changes reacts slower to the events. How-
ever, EigenEvent have this ability to track changes in the dimensions, for this reason does not suffer from
the high false alarm rate problem of bottom-up approaches and heavy delay problem of the top-bottom
approaches.

3.3. Runtime

Since in syndromic surveillance systems, data are often required to be processed in daily scale, com-
putational efficiency receives less attention. In the unlikely case where data size becomes very huge and
processing of data requires run-time of more than 24 hours (the process scale) then we have to come
up with computational efficiency issues. Although, computational efficiency is not the claim in this re-
search work, runtime in Table 3 indicates the superiority of EigenEvent over all versions of WSARE.
EigenEvent requires only 16.8 s to deliver the result. This is three times faster than WSARE 2.0, 6 times
faster than WSARE 2.5 and 50 times faster than WSARE 3.0. The majority of this difference is related
to two factors; WSARE exhaustively search the whole space while EigenEvent only tracks the changes
in the correlation structure. The second factor is related to the method the approaches compute the p-
value of alarms. WSARE exploits Monte Carlo simulations for computing the p-value while EigenEvent
computes the p-value using statistical process control techniques which is lighter.

In each time step, Eigenevent requires to perform a tensor decomposition and a matrix decomposition.
The offline tensor decomposition (OTA) [42] of the baseline tensor requires O

(
T
∏M

i=1 ni

)
where T is

the temporal size of the tensor, M is the order of the tensor which in our case is equal to 3 (three dimen-
sions of space, features and time) and ni(1 � i � M) is the dimensionality of the ith mode (reshaped
matrix in dimension i). The matrix decomposition of the recent data also requires O(N2) for one-rank
matrix decomposition. Therefore, in each step we require O

(
T
∏M

i=1 ni

)
+ O(N2). Some approxima-

tion techniques are developed for reducing the computation time of the first term. For instance, [42]
proposed three different techniques including dynamic tensor analysis (DTA), streaming tensor analy-
sis (STA) and window-based tensor analysis (WTA) that perform tensor decomposition more efficiently
with much lower computation time. For instance, DTA requires computation time of
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Table 4
Number of false alarms per year for 100 datasets averaged for 231 p-values (0.020, 0.021, . . . , 0.250)

Dataset WS2.0 WS2.5 WS3.0 EigenEv Dataset WS2.0 WS2.5 WS3.0 EigenEv
1 70.013 51.8571 57.8485 37.8398 51 54.9827 36.1602 41.013 24.7835
2 0 0 0 0 52 89.7922 51.29 59.9481 51.697
3 0.4416 2.2251 1.8182 1.4545 53 89.2078 62.1991 61.2727 46.3074
4 70.4719 54.3896 53.5368 30.71 54 49.0952 31.7403 33.4762 10.4805
5 69.5974 40.5108 39.5758 29.0823 55 47.4156 42.1991 48.3896 29.2381
6 93.7792 59.0779 62.0346 37.7056 56 108.3766 73.5108 71.3333 40.5498
7 72.5628 50.5584 62.1082 35.3203 57 59.6017 36.7489 38.3117 20.0866
8 89.5628 71.039 79.2771 50.0303 58 25.1299 20.4589 22.1948 13.7706
9 26.3506 17.684 18.4632 8.2468 59 90.4372 41.8658 41.6797 40.0779
10 70.0563 53.8831 49.5584 34.7532 60 79.0996 51.2208 52.3074 50.7013
11 89.6104 63.2251 53.2771 48.3636 61 70.4329 44.29 50.4286 29.316
12 89.3896 71.3333 75.1342 48.4805 62 31.5455 19.1645 19.7879 9.342
13 82.8442 51.0996 49.0346 40.0346 63 59.3463 42.632 45.2511 33.2597
14 35.7013 25.2597 25.4762 17.632 64 72.6407 48.4892 51.9221 37.29
15 80.7619 44.6926 43.6407 34.7879 65 29.2251 19.684 20.2857 9.2684
16 58.8745 42.7056 42.5195 25.7273 66 3.2771 2.3723 3.987 0.8312
17 5.5714 4.2208 6.6753 1.3939 67 39.8398 22.6537 22.9351 10.2468
18 62.0433 42.0606 44.0346 16.2338 68 30.5844 13.4286 15.8052 7.4286
19 55.1472 38.7532 45.6017 32.9567 69 9.0476 8.0087 10.5931 2.9004
20 31.8225 31.3896 30.4675 17.3463 70 1.0952 0 0 0
21 17.3074 9.9221 11.8831 8.3117 71 7.961 7.7489 9.5281 2.7186
22 42.4502 22.3506 20.9091 11.1775 72 9.974 9.645 7.7835 2.9697
23 10.9913 7.2251 8.6667 0.9524 73 35.7749 28.3939 27.0476 16.6667
24 29.4199 20.2338 26.2035 10.1255 74 18.5801 13.7706 13.0563 6.3853
25 35.1905 25.3377 22.7706 14.5455 75 78.0433 44.7316 56.9134 35.2424
26 84.2597 54.7229 57.4589 50.0909 76 73.1082 48.8095 48.6753 52.2165
27 9.987 9.8052 11.2641 4.4372 77 8.8615 8.2944 8.3983 0.2381
28 20.3896 16.4632 14.7316 3.1732 78 29.5238 21.5108 12.5455 10.697
29 0 0 0 0 79 76.4675 53.1732 55.961 50.9437
30 93.2468 65.0736 69.4156 48.4199 80 48.5152 23.4459 23.5325 15.3074
31 47.8701 35.5108 36.8398 32.8528 81 4.2338 10.303 9.1645 4.5801
32 74.7013 60.7835 70.7576 40.3939 82 38.316 22.0779 21.9481 10.3377
33 0 0 0.6537 0 83 85.9004 57.8052 57.1775 40.6797
34 71.7229 40.6623 40.9437 20.0866 84 8.3074 4.7965 4.5152 0.7749
35 88.7706 54.7489 48.5152 52.1472 85 20.303 14.8095 12.4978 3.1255
36 61.2468 50.4719 40.6407 39.8268 86 77.6061 42.0996 49.8745 35.7532
37 31.0866 15.4719 12.961 16.8918 87 22.5671 18.0173 22.4459 8.658
38 31.6104 23.2771 27.3247 18.7662 88 8.3723 6.5238 7.0303 1.316
39 95.3203 65.1385 73.9913 46.8831 89 57.5108 40.0606 51.1212 21.7229
40 33.3939 18.9307 23.9177 15.8874 90 67.71 46.0433 58.1385 24.2381
41 65.0909 39.8918 39.2208 31.29 91 67.7749 48.6797 43.1169 20.7056
42 77.7359 43.7273 49.8528 24 92 68.316 55.5541 56.2035 34.9221
43 30.9264 20.4719 20.5887 10.4762 93 66.987 48.7013 47.1039 28.5022
44 63.0303 46.039 48.8918 36.4416 94 28.697 24.1688 27.7056 9.7576
45 81.7879 47.7792 49.3506 45.2771 95 69.4632 48.1169 47.2944 33.2814
46 84.7749 65.7662 67.8355 41.4589 96 34.0216 16.8528 18.2121 12.4502
47 8.3377 11.1688 9.684 0.5108 97 4.0996 6.1818 7.5498 1.619
48 43.6234 19.7879 29.7489 15.4242 98 34.0476 18.4372 15.0087 14.7403
49 26.5195 14.1861 18.1169 15.4286 99 56.0909 30.987 42.8485 22.7186
50 33.4329 31.6797 35.3117 16.5671 100 66.7922 46.4242 50.5844 28.9394

2

M∑
i=1

rin
2
i +

M∑
i=1

ni

M∑
j=1

nj
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Table 5
Detection Delay (in days) for 100 datasets averaged for 231 p-values (0.020, 0.021, . . . , 0.250)

Dataset WS2.0 WS2.5 WS3.0 EigenEv Dataset WS2.0 WS2.5 WS3.0 EigenEv
1 1.3463 2 1.3463 2 51 1 1 1 3.5325
2 1.0433 1 1 1.2987 52 1 1 1 2.0693
3 2 2 2 12.9394 53 3.7835 8.7532 7.7706 4.8312
4 1 1 1 1 54 1 1 1 1
5 1 1 1 2.7273 55 1 1 1 1
6 4.7056 6.2035 5.2511 6.0346 56 1 1 1 1
7 1 1 1 1.5065 57 1 1 1 1
8 1.2251 1 1 1.6104 58 1 1 1 1
9 1.5628 1.2771 1.1688 1 59 5.0909 4.4892 6.1212 11.0606
10 1 9.1905 1 1 60 3.039 2 1.5628 5.4286
11 1 1 1 1.5974 61 1.9957 2 2 2
12 1 1 1 1 62 1 1 1 1
13 4.2078 1 1 7.8139 63 1 2 1 1
14 1 1 1 1 64 4.5065 13.9913 1.7316 2.026
15 2.3593 1 1 1.7316 65 4.0779 7.6364 10.4156 8.4502
16 1.039 1 1 1.0996 66 2 1.3463 2 1.5758
17 1 1 1 1.5065 67 2.8095 1 1 1.3506
18 1 1 1 1.026 68 1 1 1 1
19 1.3074 1 1.2338 2 69 1 1 1 3.8139
20 1 1 1 1 70 1 1 1 2.5931
21 1 1 1 1 71 1 1 1 1
22 1 1 1 1 72 6.5368 3 3 11.5455
23 1 1 1 1 73 4 7.5758 6.3463 5.3333
24 1 1 1 1 74 1.2597 1 1 1
25 1 1 1 1 75 1 2.1255 1 1
26 2.5541 2 1.2035 5.0649 76 1.2121 2 1 1.2251
27 1.4329 1 1 1 77 1.9091 1 1 2.2468
28 1 1 1 1 78 10.0779 7.4632 13.7403 11.2294
29 1 1 1 1 79 4.2554 8.1039 4.961 8.7532
30 8.6883 2.0823 2 4.2338 80 1 1 1 1
31 1 1 1 1 81 1 1 1 1
32 5.4242 1.2597 1 2.3506 82 1.4502 1 1 1
33 1 1 1 1 83 6.6753 4.5022 7.355 5.6147
34 1 1 1 1 84 1.3463 1 1 1
35 3.6883 1.329 1.8788 5.6623 85 1 1 1 1
36 2.2597 6.4935 7.1126 10.1082 86 1.7835 2 2 1.974
37 1 1 1 1 87 2.9134 2.645 1 4.0823
38 1 1 1 1 88 1 1 1 3.0823
39 5.7186 6.4242 10.0649 10.7273 89 1 1 1 1
40 1.0476 1 1 1 90 1 1 1 1
41 1 1 1 1 91 2.1732 1.0866 1 7.1602
42 1.5628 1 1 1 92 6.8095 3.4762 5.1429 11.1602
43 1 10.0779 1 1 93 1.5628 1.3463 1 2.329
44 2.329 1 1 1.961 94 1.2468 1.329 1.1299 1.9827
45 6.3074 2.3853 2.039 1 95 1.4502 1 1 1
46 4.5281 1 1 6.8831 96 1 1 1 1
47 7.3506 10.2944 7.9913 12.9957 97 1 1 1 1
48 1.2727 1 1 1.3593 98 3.645 1 1 1.3377
49 4.8268 3.3463 2.3463 1 99 1 1 1 1
50 1 1 1 1 100 1 1 1 1.9567

where ri is the core size for each mode which in our case is equal to 1. Therefore, assuming the tensor
with three dimensions (as our case study) we require only 2

∑3
i=1 n

2
i +

∑3
i=1 ni

∑3
j=1 nj which is a

tremendous improvement over OTA. For low-order tensor (i.e. M � 5) as is pointed out in [42], the
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Fig. 7. AMOC curve for EigenEvent vs. WSARE. Fig. 8. Effect of indicators on the performance.

diagonalization which is the main cost can be performed via faster approximation approaches. However,
since computation efficiency is not the main concern in this part of our research we do not test all the
available techniques.

3.4. Leading indicators

As we mentioned before, EigenEvent algorithm tracks the deviation of sliding window eigenspace
from the baseline tensor eigenspace for change detection. Now the question is that what elements of the
eigenspace we should take for the match. Should we opt for eigenvectors corresponding to the spatial
dimension or to the feature dimension. Should eigenvalue be used along eigenvector or eigenvector alone
is enough. We examine five circumstances: the first condition is the default setting in the Algorithm (The
optimum selection in line 9 of Algorithm 1), and the rest are different combination of eigenvectors and
eigenvalues. Figure 8 illustrates the AMOC curve for these different combinations. As it can be seen, by
using only spatial eigenvector (without considering eigenvalue) we experience the same result but with
more half-day average delay. In fact, involving of Eigenvalue in the change detection process provides
earlier detection. We also study a condition where whole eigenspace is used. In this case we take into
account both spatial and features eigenvectors along the eigenvalue. This leads to half-day delay earlier
detection, but with 1.5 more false alarms. Excluding spatial eigenvector from the eigenspace matching
also leads to lower performance both in terms of delay and false alarms. This result reveals that how the
spatial dimension is important. In fact, temporal methods that exclude the spatial dimension loose lots of
information. The reason is that feature signals are very noisy and detection of pattern of such noisy data
comes with high false discovery. Instead, the spatial dimension is more stable and tracking changes in
this dimension can be a better indicator for tracking particular events such as disease outbreaks (our case
study), because, one of the key signatures of disease outbreak is movement in the space. This movement
changes the constant patterns in the spatial dimension and subsequently this appears in the principal
spatial eigenvector.

3.5. Baseline selection

We compare three scenarios for baseline creation: 1) from historical set without respect to the environ-
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Fig. 9. Dynamic baseline vs. environmental matching base-
line.

Fig. 10. Dynamic baseline vs. historical baseline.

mental setting; 2) from historical set with respect to the environmental setting; and 3) dynamic baseline
tensor (our strategy). In the first scenario we compare the recent data with historical data without con-
sidering the environmental setting. For instance, we compare the recent data with data of last one week
or the last eight weeks. In the second scenario we take reference data from the matched environmental
setting of the day. For instance, if the environmental setting of recent day is 4112 we search in historical
set for those Space× Features matrices whose corresponding environmental setting is 4112. In the third
scenario (our method), we create the baseline tensor from matched environmental setting, but we give
more importance to the most dominant environmental setting and more recent data.

Figures 9 and 10 compare the obtained performance through these different strategies. Figure 10 illus-
trates the comparison of the first scenario versus the third scenario and Fig. 9 compares the performance
of the second scenario versus the third scenario. The results reveal that our dynamic tensor creation
strategy outperforms the first and second scenarios. The reason of this good performance is related to
this that our approach makes a batter inference for unseen environmental setting. This approach is also
robust to the noises and therefore provides a higher quality baseline reference.

4. Conclusion and future works

We propose a novel approach based on eigenspace techniques for early detection of events from com-
plex data streams in syndromic surveillance. The purpose of this work is to reduce the false alarm rate
of the state-of-the-art early detection methods. The experimental evaluation results on benchmark data
sets shows that the proposed approach provides a better overall performance versus state-of-the-art. Our
approach while maintains the detection delay in a reasonable level improves the false alarm rate to
a considerable extent. While top-down approaches look for changes in higher level feature space and
bottom-up approaches track changes in the low-level feature space, we introduce a novel methodology
based on eigenspace and tensor decomposition techniques that track changes both in high level and the
dimension level. The overall changes in the system appear in the eigenvalue and a change in the dimen-
sions appears in the eigenvectors. Such dimension-based strategy is very helpful in some applications
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such as disease outbreak where the spatial dimension gets very important. However, using such methods
makes sense when data contains further dimensions (e.g. Space and time). In other words, the competi-
tive part of our approach is its dimension-based change tracking which is valid only for multidimensional
(multiway) data.

A challenge to the future research is to utilize EigenEvent in a real-world problem and evaluate its
performance in the practice. This was one of our main limitations in this research. Unfortunately, there
is no public real-world data available with ground truth for syndromic surveillance research. Most of
bio-surveillance programs also correspond to the governmental sections where gaining data in most of
the time is impossible. Even if we access to real data, the period of outbreaks or events is not specified
in that. There is a recent developed simulator [29] that simulates multivariate syndromic time series and
outbreak signatures. However, since this simulator does not support the spatial dimension as the future
work we are going to adapt it for this purpose and perform more experiments based on the new simulated
data sets. We also intend to study the computational performance of the algorithm using incremental and
streaming tensor decomposition techniques [43] which are more appropriate for large-scale data sets.

Complements

The MATLAB code and data sets are available online via http://fanaee.com/research/EigenEvent.
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