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Abstract—The vast datasets produced in human genomics must be efficiently stored, transferred, and processed while prioritizing
storage space and restore performance. Balancing these two properties becomes challenging when resorting to traditional data
compression techniques. In fact, specialized algorithms for compressing sequencing data favor the former, while large genome
repositories widely resort to generic compressors (e.g., GZIP) to benefit from the latter. Notably, human beings have approximately
99.9% of DNA sequence similarity, vouching for an excellent opportunity for deduplication and its assets: leveraging inter-file similarity
and achieving higher read performance. However, identity-based deduplication fails to provide a satisfactory reduction in the storage
requirements of genomes. In this work, we balance space savings and restore performance by proposing GenoDedup, the first method
that integrates efficient similarity-based deduplication and specialized delta-encoding for genome sequencing data. Our solution
currently achieves 67.8% of the reduction gains of SPRING (i.e., the best specialized tool in this metric) and restores data 1.62× faster
than SeqDB (i.e., the fastest competitor). Additionally, GenoDedup restores data 9.96× faster than SPRING and compresses files
2.05× more than SeqDB.
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1 INTRODUCTION

P ERSONALIZED medicine brings medical decisions to the in-
dividual level propelling the use of specific procedures and

treatments for each patient. Human genomics enables advances
in this and many other critical applications that are increasing our
health awareness and life expectancy [1]. Datasets produced in this
subject are huge since its studies compare thousands to millions
of biological samples, where hundreds of gigabytes of data are
generated from each sequenced body cell [2].

This data deluge must be efficiently stored, transferred, and
processed to avoid stagnating medical breakthroughs [3]. Cutting
costs in storage space and achieving a high-throughput in restoring
data are paramount for this domain. Our primary goal is to
increase data reduction gains and restore it faster than the generic
compressors used in practice (e.g., GZIP), while approaching the
reduction gains to the ones from specialized tools.

Genomic data has three main representations, as shown in
Figure 1. Sequencing data is the immediate output from genome
sequencing machines [4] and is typically stored in the FASTQ
format [5]. It contains millions of randomly-dispersed small
DNA sequences with associated quality scores (QS) to attest
the sequencing accuracy. Aligned data results from ordering the
FASTQ entries based on a reference genome, and is stored in
the SAM/BAM format [6]. Assembled data results from merging
the aligned overlapping entries into contiguous DNA sequences,
which are commonly stored in the FASTA format.

Humans have 99.9% of DNA sequence similarity since the
assembled genome of any two individuals differ in less than
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0.1% [7]. Additionally, this representation has a public blueprint
(i.e., a reference genome) for humans1. It sizes∼3GB of data from
its 3.2 billion contiguous sequence of nucleobases. Assembled
human genomes can be reduced ∼700× from ∼3GB to ∼4.2MB
in 40 seconds [8] by storing only the genome differences to the
mentioned blueprint in a process called referential compression.
However, sequencing data is much bigger than assembled data
and has particularities that prevent such compression ratio.

Sequencing data is the most critical representation in genomics
because it contains the purest version of genomic data and is
unbiased from subsequent processing steps [5]. On the contrary,
the output from alignment and assembly is imprecise, lossy, and
algorithm-dependent [9]. For instance, using aligned data from
multiple sources means they presumably were aligned with dif-
ferent algorithms and reference genomes. It precludes subsequent
analyses, except if one first converts data back to sequencing data
and realigns it with the same algorithm and reference (see §2).

The main reasons sequencing data is harder to compress than
assembled data are (i) the randomness on entries’ locality (small
data chunks sequenced in no specific order [10]); and (ii) the lack
of a stable reference for quality scores [3] (e.g., a similar blueprint
as the hg38 available for human DNA). Corroborating these
observations, specialized algorithms usually compress sequencing
data no more than 7× (see §3 for details on FASTQ compression).

Many algorithms favor maximizing compression ratio, which
usually comes with penalties in (de)compression speed. This deci-
sion is justifiable when data is intended to be archived. However,
the decompression speed becomes a bottleneck in cases where
compressed data is read from remote storage systems and needs to
be decompressed and read several times. In fact, this issue justifies
why many real-world solutions (e.g., 1000 Genomes Project [11])
prefer generic compression algorithms that decompress fast (e.g.,
GZIP) rather than those that only compress more.

1. hg38, http://genomereference.org/
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Storage of sequencing data is an important, challenging mostly
unexplored domain for the systems community [3]. It presents an
excellent opportunity for deduplication and its assets: leveraging
inter-file similarity and achieving high-performance in reading
data. However, traditional identity-based deduplication fails to
provide a satisfactory reduction in the storage requirements of
genomes (see §4.1).

Solutions for similarity-based deduplication commonly cluster
similar entries into buckets and use identity-based deduplication
within them [12], or they focus mostly on the delta-encoding
problem [13] while employing inefficient global indexes [14].
In this work, we balance space savings and restore performance
by proposing GenoDedup, the first method that integrates scal-
able, efficient similarity-based deduplication and specialized delta-
encoding for genome sequencing data.

Novelty in our approach encompasses (i) the proposal (§4.2)
and implementation (§5.3.2) of GenoDedup, a similarity-based
deduplication solution that integrates scalable, efficient Locality-
Sensitive Hashing (LSH) with delta-encoding; and (ii) specializa-
tions on delta-encoding for genome sequencing data, namely:

• Circular deltas (§2);
• Delta-Hamming (§5.3.1);
• A scalable modeling of generic indexes for multiple

genomes (§5.2).

Additionally, we introduce a converged characterization of aspects
from sequencing data important to deduplication (§2) and justify
why identity-based deduplication fails on it (§4.1). Our experi-
mental results (§6) attest the feasibility of GenoDedup since it
currently achieves 67.8% of the reduction gains of SPRING [15]
(i.e., the best specialized tool in this metric) and restores data
1.62× faster than SeqDB [16] (i.e., the fastest competitor). Ad-
ditionally, GenoDedup restores data 9.96× faster than SPRING
and compresses files 2.05× more than SeqDB.

2 GENOME SEQUENCING FILES

Data obtained from sequencing genomes is stored in the FASTQ
text format [5], which is usually written once and read many
times later for processing. FASTQ is the standard format in both
cold and hot storage systems for genomic sequencing data [5].
A discussion on other datasets and on why this work favors
sequencing data rather than aligned or assembled representations
is available in §7.

A FASTQ file contains many entries with four lines each—
similar to the one presented at the top right corner of Figure 1.
The first line is a comment about the entry starting with a “@”
character. The second line contains the DNA sequence interpreted
by the machine—e.g., A for adenine, C for cytosine, G for guanine,
and T for thymine. The third line is another comment that starts
with a “+” character to determine the end of the DNA sequence,
and can optionally be followed by the same content as the first
one. The fourth line contains quality scores (QS), which measure
the machine’s confidence for each sequenced nucleobase.

The second (DNA) and fourth (QS) lines have the same length
since one QS is attributed for each sequenced nucleobase. This
length is configurable and may vary from file to file, but it is
usually constant within the same file. In the following descriptions,
we detail each portion of FASTQ entries.
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Figure 1. Genome sequencing overview, some subsequent workflows,
and a FASTQ entry.

Comment Lines
The first and third lines of each FASTQ entry are com-
ments that start with a “@” character in the former and
a “+” in the latter. These lines usually contain: a sam-
ple identifier (e.g., SRR618666 in Figure 1), the entry iden-
tifier (e.g., 296), and some information about the sequencing
run (e.g., HWI-ST483:151:C08KDACXX:7:1101:21215:2070/1).
Comments follow a similar structure through the file, which can
be determined if it contains numeric or alphanumeric fields, and if
they are constant, incremental, or variable among entries [17].

DNA
The second line of each entry contains the DNA sequence inter-
preted by the sequencing machine. This sequence is composed of `
characters, where this length ` can be configured on each sequenc-
ing job. Nucleobases can be represented using different sets of
characters, where the most commonly used is the {A,C,G,T,N}.
It considers the four nucleobases (i.e., adenine, cytosine, guanine,
and thymine) and a special character “N” to represent any of them
when the machine is unsure on the sequenced nucleobase.

A contiguous human genome sizes 3.2 billion nucleobases
and results in more than 3GB of data in text mode (e.g., UTF-8
encodes each character in 1 byte). However, NGS machines do
not provide the whole genome in a single contiguous DNA se-
quence [10]. They generate millions of randomly-dispersed reads,
which contain small pieces of DNA sequences with hundreds to
thousands of nucleobases each [5].

A configurable sequencing parameter determines the coverage
in which a genome is sequenced. It is equivalent to the average
number of different entries in which every nucleobase position
from a genome appears in. Common configurations consider cov-
erage of 30–45× to increase accuracy. This redundancy results, for
instance, in 96 to 144GB of DNA characters per whole sequenced
human genome in the FASTQ format.

Quality Scores (QS)
The fourth line of each FASTQ entry contains the sequence of
quality scores asserting the confidence level for each sequenced
nucleobase. Phred quality score [18] is the typical notation in
FASTQ files. QS values usually range from 0 to 93 (the higher,
the better) and are encoded in ASCII (requiring seven bits per
QS) [5]. QS roughly occupy the same storage space as DNA in
FASTQ since there is one QS for each nucleobase, and standard
text encoding (e.g., UTF-8) use eight bits per character.

Quality score sequences are the most challenging portion
of FASTQ entries to compress, and as such, we concentrate
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most of our efforts on it. There is no reference sequence for
quality scores [3], but they do have patterns that can boost data
reduction [19]. In this paper, we take into consideration three of
them. The first pattern is that many NGS machines have a limited
precision and generate QS only in the range between 0 and 40 [5],
[15], which allows one to describe them using six bits instead of
seven. Second, the longer the read DNA sequence is, the bigger the
uncertainty at the end of the QS sequence. For instance, a practical
implication from this pattern is that, in FASTQ files from Illumina
HiSeq 20002 (the most common NGS machine in the world [20]),
several QS sequences finish with a chain of “#” characters—i.e., a
low Phred value equivalent to 0.

The third pattern is the fact that subsequent QS tend to vary
little from one to the other [21]. It means that one may replace
subsequent QS by a delta value, which results in the zero value
most of the times [19], and convert data to a normal distribution
between −40 and +40.

However, using delta values naively increases the number of
bits required to describe a QS to seven bits again since there are
eighty-one options between −40 and +40. With this in mind, we
propose to use modular arithmetic to convert them to circular
deltas, which distributes the mentioned range into a circular array
from −20 to +20. Each circular delta can be translated into two
different normal delta values. For instance, the circular delta −1
is equivalent to both −1 and +40 normal deltas. When solving
circular deltas to restore the original QS sequence, the correct
alternative can unambiguously be distinguished because only it
results in a valid QS between 0 and 40. This transformation
reduces the QS encoding back to six bits.

3 SEQUENCING DATA COMPRESSION

Before presenting the challenges of deduplicating genomic se-
quencing data, we discuss the state-of-the-art on the compression
of sequencing data, its limitations, and the opportunities it leaves
open for deduplication. There is a well-known trade-off in data
compression between compression ratio and throughput [22]. We
selected ten relevant compression algorithms that achieve the
best results in these properties [23], [24]: GZIP,3 pigz,4 BSC,5

ZPAQ,6 SeqDB [16], DSRC2 [25], Quip [26], FQZcomp [23],
FaStore [27], and SPRING [15].

Our analyses use five representative FASTQ files of human
genomes from the 1000 Genomes Project [11]: SRR400039,
SRR618664, SRR618666, SRR618669, and SRR622458. Only the
FASTQ file from the first end of these genomes are considered
in our analyses, but they sum up 265GB of data and result in
almost one billion FASTQ entries. Table 1 presents these files
and the resulting compression ratio and restore throughput of each
algorithm on them. More details on these files (e.g., number of
entries, sequence lengths, and coverage) can be seen in §2 of our
Supplementary Material.

GZIP is a generic compression tool employed in several appli-
cation domains, including the storage of human genome sequenc-
ing data. For instance, the 1000 Genomes Project [11] stores their
FASTQ files compressed with GZIP. Even recent frameworks for

2. https://www.illumina.com/documents/products/datasheets/datasheet
hiseq2000.pdf

3. https://www.gzip.org/
4. https://zlib.net/pigz/
5. http://libbsc.com/
6. http://mattmahoney.net/dc/zpaq compression.pdf

bioinformatics (e.g., Persona [28]) use GZIP to compress data. The
main strength of GZIP is its decompression/restore throughput,
which reaches 41MB/s on average in our files and 66MB/s in its
parallel version (i.e., pigz), while ZPAQ, Quip, and Fqzcomp reach
less than 10MB/s and SPRING reaches 20MB/s. FaStore and BSC
reach a similar throughput as GZIP, but DSRC2 and SeqDB are the
fastest (specialized) tools to decompress FASTQ files, reaching a
throughput of approximately 125MB/s. We use GZIP and pigz as
the baseline generic tools and SeqDB and DSRC2 as the baseline
specialized tools in experiments that evaluate throughput.

Many specialized tools for FASTQ files focus on maximizing
compression ratio. For instance, SPRING is the specialized tool
that reaches the best compression ratio in our files (i.e., 6.023×
on average). It is followed up by FaStore (i.e., 5.4×) and by the
generic tool ZPAQ (i.e., 5.2×). We use ZPAQ as the baseline
generic tool (together with GZIP and pigz due to their importance
and restore throughput) and SPRING as the baseline specialized
tool in experiments that evaluate FASTQ compression ratio.

We have evaluated other specialized (e.g., G-SQZ [29] and
KIC [30]) and generic compression algorithms (e.g., BZIP27 and
LZMA28). However, they compress data less than SPRING [15]
and restore data slower than pigz and SeqDB [16] in our experi-
ments. Additionally, we have evaluated LFQC [31] and discarded
its results because it uses LPAQ8 to compress the quality score
sequences and LPAQ8 does not support files bigger than 2GB.
The complete discussion on these alternative tools is available in
§3 of our Supplementary Material.

Algorithms that align the DNA data before compressing it
(e.g., SlimGene [19]) can reduce the DNA portion alone up to
20×, but they take considerable time (e.g., 8 hours per human
genome) and consequently reduce the compression throughput.
Nonetheless, our methods can work with aligned data (see § 7).

Finally, Zhou et al. [32] propose a similarity-based compres-
sion algorithm for quality scores from genome sequencing data.
However, they use a non-scalable memetic algorithm to create a
small codebook for each FASTQ file they want to compress and
they inefficiently compare each QS sequence to all base chunks in
the codebook to calculate the best delta-encoding. Additionally,
we cannot compare the performance of our solution to theirs
because they provide no implementation, but our work surpasses
theirs in several other aspects, which are detailed in §5.

4 HUMAN GENOME DEDUPLICATION

Deduplication reduces the storage requirements by eliminating
unrelated redundant data [33]. Additionally, deduplication has
two advantages when compared to compression algorithms: it
may leverage the inter-file similarities, while most compression
algorithms consider only intra-file data or use a single generic
contiguous reference; and it usually achieves a better restore
performance than compression.

There are many deduplication approaches and systems avail-
able [12], and several of them rely on index data structures to
lookup exact copies of data already stored in the system. This
indexing mechanism maps the content of stored chunks to their
actual storage location to efficiently find duplicate instances.

7. https://github.com/enthought/bzip2-1.0.6
8. https://www.7-zip.org/
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Table 1
Genomes and compression tools. Per genome: its identifier and size in GB. Per algorithm: compression ratio (i.e., original size/compressed size)
on each genome, write and read throughput (in MB/s), its version, and where it was published. ⊗ Generic compression algorithm. † We used only

portions of this file to complete 100GB of DNA and of QS lines in our experiments. ? See §6 for the complete analysis.
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SRR400039 1 (34.3GB) 2.800 2.801 3.994 4.426 2.015 3.878 4.550 4.523 4.695 5.179 4.110
SRR618664 1 (64.6GB) 3.006 3.004 4.328 4.839 2.007 4.240 4.982 4.935 N/A 6.038 4.419
SRR618666 1 (62.3GB) 2.927 2.930 4.198 4.688 2.003 4.120 4.825 4.776 N/A 5.841 4.354
SRR618669 1 (79.6GB) 3.027 3.027 4.362 4.886 2.012 4.287 5.029 4.968 N/A 6.187 4.517
SRR622458 1† (23.6GB) 4.367 4.373 5.830 7.367 1.924 4.212 4.811 5.018 6.173 6.869 3.047

Avg. Comp. Ratio 3.225 3.227 4.543 5.241 1,992 4.148 4.839 4.844 5.434 6.023 4.089
Write (MB/s) 15.5 281.1 159.9 5.3 415.6 1375.9 28.7 60.5 25.5 43.1 0.3?

Read (MB/s) 41.4 66.1 46.2 1.1 127.9 125.3 3.4 9.6 45.2 20.9 208.2?
Version 1.6 3.1.0 7.15 2.00 0.2.1 1.1.8 4.6 1.0 0.8.0 9.22 0.1

4.1 Identity-based Deduplication

In this section, we discuss the strengths and limitations of common
approaches for identity-based deduplication and present examples
confronting them with FASTQ files. Given the particularities of
FASTQ files (§2), this discussion is of extreme importance to
clarify and caution the general deduplication community in the
search for efficient solutions to the problem of interest. The next
discussions encompass three approaches: file deduplication, block
deduplication, and application-aware deduplication.

File deduplication
This approach identifies exact copies of the same file by comparing
their content hashes (e.g., SHA-2) and replaces the redundant data
with pointers to a single instance. It is ineffective in genome
repositories because these facilities store data mostly from their
unique samples [34] or because even sequencing the same sample
results in files with different content [10].
Example. The 1000 Genomes Project [11] contains half a million
files, in which more than 200k are FASTQ. We downloaded its
current directory tree9 and compared the content hashes (MD5) of
all FASTQ files to obtain the duplicate ratio. These MD5 hashes
are available in the last column of this directory tree, which means
one does not need to download all FASTQ files to perform the
present comparison. The result indicates that less than 0.007%
of the FASTQ collection is composed of duplicate files, which
validates the low interest for file deduplication in sequencing data.

Block deduplication
This approach splits files into fixed- or variable-size blocks, calcu-
lates their content hashes, and compares them to find duplicates.
Systems with fixed-size block deduplication commonly adopt
blocks of 4KiB for historical and compatibility reasons—e.g., this
is the size of virtual memory pages in several computer archi-
tectures and of blocks in many filesystems. For variable-length
blocks, the most common algorithms are the Rabin fingerprinting
and the Two-Threshold Two-Divisor (TTTD).

Block deduplication fails to identify copies of FASTQ data
chunks because they are unlikely to happen. Reasons for that

9. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree

include the fact FASTQ files contain the unique sample and entry
identifiers; the DNA sequences contain mutations, transforma-
tions, and are sequenced in no specific order; and the distribution
of QS varies from run to run.
Example. We have split three FASTQ files (SRR400039,
SRR618664, and SRR618666) into 40 million fixed-size blocks
of 4KiB, calculated the MD5 hash of each block, and verified that
there are no duplicates on it. We executed the same experiment
with variable-size chunks using the Rabin fingerprinting10 (with
blocks between 1–8KiB) to generate more than 23 million hashes,
where no duplicates were found.

Application-Aware deduplication

A final strategy is to take into consideration the files’ structure and
content to increase the chances of deduplication. One may write
each line type of FASTQ entries into different files—each one
containing only (1) the “@” sequencing comments, (2) the DNA
sequences, (3) the “+” comments, or (4) the quality scores—and
deduplicate them separately. Both fixed- and variable-size block
deduplication can be employed in this approach.
Example (Comment lines). Comments have an identifiable struc-
ture that can be parsed into fields—e.g., lines from the SRR618666
genome have ten fields each. Five of them are constant across the
whole file, two are incremental numbers, and three are variable.
One may replace the constant and incremental fields by a small en-
coding at the beginning of a compressed file. Then, the remaining
variable fields can be placed in a file to be deduplicated separately.
In SRR618666, the 231 million lines, with three variable fields
each, can be replaced by pointers to only 48 unique values in
the first field, 20k in the second, and 199k in the third. Bhola et
al. [17] compresses comments 17× with this approach.
Example (DNA and QS blocks). We separate the lines from the
three FASTQ files as previously mentioned, removed the new-
line character and performed the block deduplication previously
presented. We split the DNA and the QS files into 4KiB blocks
and separately compared their content hashes, which results in
no duplicates. Similarly, executing the same workflow with Rabin
fingerprinting does not find any redundant blocks.

10. https://github.com/datproject/rabin
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We execute the same block deduplication with the block
size as 100 characters in SRR618664 and SRR618666 (i.e., the
sequence length in these files). This approach is the first to
provide a considerable number of duplicates. From the 471 million
entries in these genomes, 44 million DNA lines (9.42%) are exact
duplicates, as well as 468 thousand QS lines (0.01%). However,
these values are unsatisfactory since spatial deduplication requires
gains of 20–40% to be worth the invested cost and time [33].

Summary
The three selected FASTQ files used in these examples are enough
to illustrate the inefficiency of traditional identity-based dedupli-
cation methods, whereas considering more genomes here leads to
similar conclusions. Identity-based deduplication provided signif-
icant gains only in comment lines in our analyses. Based on the
descriptions from the present section and the characteristics of
FASTQ files, there are excellent opportunities for similarity-based
deduplication, which we discuss in the next section.

4.2 Similarity-based Deduplication
Similarity-based deduplication matches resembling objects of any
size using similarity search to deduplicate them [13]. We integrate
similarity-based deduplication with delta-encoding, which stores
(1) a pointer to the most similar entry together with (2) the
minimal list of modifications to restore the original object from
this entry. This most similar entry is known as the base chunk [12].

Associating this approach with the application-aware dedupli-
cation is intuitively a promising solution to deduplicate genomes.
However, there are at least three challenges that need to be
addressed: (1) choosing a distance metric and encoding, (2) mod-
elling the deduplication index, and (3) reducing the number of
candidate comparisons.

A distance metric is critical as it defines what makes entries
similar and determines how to choose the best deduplication
candidates. In this work, we consider three metrics and present
experiments using them in §6.

• HAMMING: Counts the number of positions with different
characters in two strings of the same size. The resulting
list of edit operations is composed of only UNMODIFIED
and SUBSTITUTION operations.

• LEVENSHTEIN: Calculates the minimal number of mod-
ifications to convert a string into another. It considers
UNMODIFIED, DELETE, INSERT, and SUBSTITUTION
operations. Since it considers insertions and deletes, it
allows comparing strings with different sizes.

• JACCARD: Calculates the ratio between the intersection
and the union of N-grams from the strings. It also is
independent of the size of the to-be-compared strings.

The first two metrics return the distance value and a list of
edit operations to restore the original data from the base chunk,
whereas the last one provides only the distance.

After choosing the distance metric, one may model the dedu-
plication index based on it. It is an optimization process that
selects a subset of (real or synthetic) entries and results, for
example, in the smallest distance sum to a known sample of
sequences. As previously mentioned, human DNA sequences
have a comprehensive reference (i.e., hg38) that can be used
to create such an index, but there is no such reference for QS
sequences [3]. To create the index for quality score sequences,

one may resort to optimization, memetic (e.g., [32]), or clustering
(e.g., K-Means [35]) algorithms to find the best codebooks to the
deduplication task.

Another option is to choose the most frequent sequences from
each file empirically. However, naively creating the index with
entries exactly as they appear in FASTQ files is inefficient due
to a combinatorial explosion. Finally, one may initiate the system
with an empty deduplication index and dynamically insert every
queried entry that has not found a similar enough neighbor (i.e.,
under a predefined threshold). However, the index may grow
indefinitely if the threshold is too hard to achieve, or it will result
in low reduction gains if the threshold is too easy to reach.

After obtaining a deduplication index that achieves satisfac-
tory compression results, one may decide how to improve the
scalability and performance of the system [36]. The human DNA
reference provides nearly 3.2 billion base chunks. As mentioned
before, QS sequences do not have a reference, and thus one may
define the limits of the index size according to its capacity. For
instance, storing 1 billion entries of 100 characters each in a
simple key-value store, indexed by integers of 32-bits, results
in at least 100GB of data. Keeping all data in main memory in
a single node may become a burden, and thus partitioning data
across several nodes [37] or using sparse indexes [38] emerge as
desirable alternatives.

Finally, reducing the number of candidate comparisons is
another crucial performance improvement to the system. One
may achieve this goal through other auxiliary data structures
such as K-mer tables [39], indexes for Locality-Sensitive Hash-
ing (LSH) [40], or cluster deduplication [37]. However, these
structures may interfere with the recall of the best deduplication
entries, producing suboptimal search results depending on their
configuration. It means that there is a trade-off in improving the
performance that may compromise the deduplication gains.

5 GENODEDUP

In this section, we describe GenoDedup, which integrates scal-
able, efficient similarity-based deduplication and specialized delta-
encoding for sequencing data. In Section 5.1, we present the main
components of GenoDedup and how data flows among them.
Sections 5.2 and 5.3 detail how we solve the three main challenges
from Section 4.2.

5.1 Overview

The main components of GenoDedup can be seen in Figure 2.
The similarity-based deduplication selects the nearest base chunk
for each sequence in FASTQ entries using two auxiliary data struc-
tures. The first is a Locality-Sensitive Hashing (LSH) index, which
enables the similarity search when the number of deduplication
candidates is too big to perform optimal searches. Entries are
blocks with a variable size similar to the length of the DNA and
QS lines in the FASTQ files used in this work. The second data
structure is a key-value store (KVS) indexing unique entries that
are used in optimal similarity searches and to retrieve the value
of deduplication candidates using their content hashes as keys.
A data storage component is used to store the deduplicated files
and provide them to readers. Readers use a restore module, which
reads the pointers and delta-encoding from the deduplicated file
and queries the deduplication index of unique entries to restore
the original FASTQ file from it.
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An offline setup phase, described in §5.2 but not shown in
Figure 2, prepares the environment where the deduplication will
take place. This phase populates the auxiliary data structures (i.e.,
LSH and KVS) with the previously generated list of deduplication
candidates. For instance, the human reference genome (e.g., hg38)
can be loaded to the LSH and KVS during this phase. At the
end of this offline phase, data has been loaded to the appropriate
data structures in a way that similarity search can be efficiently
executed.

Data flow during a deduplication execution is composed of
the numbered steps present in Figure 2. Steps 1–21 represent the
deduplication process, while steps 22–34 represent the FASTQ re-
store process. Squared steps are processor-bounded tasks, circular
steps are disk-bounded, and triangular ones are network-bounded.

When sequencing a genome, (1) NGS machines generate data
at 0.3MB/s, which is (2) stored in a disk that supports this through-
put. Similarity-based deduplication receives the sequenced data
by (3) reading it from the disk and (4) transferring it through the
network to the deduplication component. Then, (5) each FASTQ
entry is parsed into the different line types, where comments are
sent to Step 18 (see below), DNA to Step 7, and QS to Step 6. QS
sequences are (6) converted to circular deltas, and QS and DNA
sequences are used to (7) calculate the hashes that will be used to
query the LSH. These hashes are (8) sent to the LSH component,
which will (9) obtain the internal LSH keys from these hashes,
query them in the respective LSH indexes, and join the lists of
pointers to the candidates in a bigger list, which is (10) returned
to the deduplication component.

The deduplication component (11) receives this list of pointers
to candidates and (12) sends it to the KVS to obtain their content.
The KVS (13) obtains the candidate value using each pointer as
a key and (14) returns the list of candidates (their content, not
the pointers). The deduplication algorithm (15) calculates the edit
distance only (not the edit operations) between each candidate
from the received list and the sequence from the FASTQ file and
keeps track only on the pointer and value of the best candidate
(i.e., the one with the smallest edit distance). After identifying the
best candidate, it (16) calculates the edit operations between the
sequence from the FASTQ file and the best candidate and (17)
converts the edit operations to the delta-encoding using Huffman
codes. In parallel to this process, the deduplication component
(18) compresses the comment lines with an external algorithm
(e.g.,Bhola et al. [17]). At the end, the component (19) joins the
deduplicated and compressed version of the comment, DNA, and
QS lines and (20) sends the reduced entry to a storage component,
which (21) writes the entry in a deduplicated file.

When a client intends to read a deduplicated FASTQ file, he
(22) reads the file from the disk and (23) transfers it to the FASTQ
restore component. The restore module (24) converts, both for the
DNA and QS sequences, the bytecode to the pointer to the best
candidate, to the first character of the original QS sequence and the
delta-encoding. For each sequence (25), the restore module (26)
sends the pointer to the KVS, which (27) obtains the respective
value indexed by the pointer as a key and (28) returns the value
of the best candidate to the restore module. The restore module
then (29) applies the edit operations from the delta-encoding to
the returned candidate and (30) converts from circular delta QS to
normal QS if it is a QS sequence. Finally, it (31) decompresses the
comment lines using an external algorithm (e.g., Bhola et al. [17])
and (32) joins the restored comment, DNA, and QS lines. The
restore entry is (33) sent to the client, which (34) stores it in a

FASTQ file on disk.
Steps 12 and 14 can be avoided if the LSH index stores and

returns the list of the actual content of the deduplication candidates
instead of their content hashes. These content hashes are used as
pointers to retrieve the candidate content from the KVS index
with unique entries. We opted to store only the content hashes
of candidates in the LSH because it makes the size of LSH
index smaller and linearly proportional to the number of entries,
independent on the candidate’s size.

5.2 Offline Phase
Modelling the group of base chunks that will be inserted in the
deduplication index is paramount to achieve satisfactory reduction
gains. As previously mentioned, we suggest the use of the avail-
able human reference genome hg38 as the deduplication index for
DNA sequences. For QS sequences, we resort to representative
entries that result in the smallest sum of distances to a group of
real entries, e.g., from the SRR618666 genome.

GenoDedup converts the original input QS sequences to
circular delta values (see §2) and employs clustering algorithms
to distribute them into a predefined number of clusters. Centroids
from the resulting clusters are stored in a file that is loaded to the
deduplication index during an offline setup phase. GenoDedup
employs the Bisecting K-means from Apache Spark, which is
a faster and more scalable hierarchical divisive version of K-
means [35]. Additionally, our solution can generate three orders
of magnitude more base chunks than the memetic algorithm from
Zhou et al. [32] in useful time. This scaling up allows us to
create generic deduplication indexes from many genomes instead
of generating one small codebook for each FASTQ file. In this
paper, we deliberately select specific numbers k of clusters in the
form of k = 2i, where i ranges from 0 to 20, four by four.

At this point, the base chunks that compose the deduplication
index are already defined and placed in the proper data structures.

5.3 Optimizations of the Online Phase
In this section, we describe two optimizations that balance stor-
age space and performance in the similarity-based deduplication
described in §5.1. The first one describes how the distance metric
ant its encoding are implemented, whereas the second discusses
how do we reduce the number of candidate comparisons.

5.3.1 Distance Metric and Encoding
Choosing a distance metric determines what makes entries similar
while designing an optimal encoding provides reduction gains
when describing entries as the differences to previously known
sequences. GenoDedup includes all the three string distances
(Hamming, Levenshtein, and Jaccard) mentioned in §4.2. Our
implementation uses the java-string-similarity library,11 which
provides implementations for these distances. We employ Huff-
man codes to encode the divergent characters in all metrics.

The encoding sizes of Hamming and Levenshtein algorithms
are presented in §1 of our Supplementary Material. We pro-
pose to extend the Hamming algorithm to aggregate subsequent
matching characters—in an encoding dubbed Delta-Hamming—
and replace them by a delta number that informs how many
characters should be skipped before finding the next substitution.
For example, applying this comparison algorithm between the

11. https://github.com/tdebatty/java-string-similarity
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Figure 2. Overview of the architecture of GenoDedup.

strings “ABCDEFGH” and “AXCDEYZH” results in the follow
operations: “1X3YZ”, while the result in the original Hamming
is: “USXUUUSYSZU”. This algorithm results in the encoding
size presented in Equation (1).

SizeDH = M+C0 +(len(�)∗ (5))+(len(◦)∗ (1+huf (•))) (1)

The size of the candidate pointer M (in bits) corresponds to
M = log2(N), where N is the expected number of entries in the
deduplication index. C0 describes the first character in the original
sequence, which allows one to initiate a chain of conversions from
circular delta values to the original quality score sequence. C0
is unnecessary for DNA sequences since they do not use delta
values. It can be a fixed-size value or a Huffman code based on
the distribution of the first character observed from several FASTQ
files. Function len(�) is the quantity of delta numeric characters
(i.e., [0–9]) in the string, where each one is represented by five
bits. Function len(◦) is the number of differing characters in the
string, where each one is represented using Huffman codes.

One of the main advantages of this approach is that its encod-
ing size is not lower-bounded by the length of the sequences `. For
instance, if two strings are identical, the encoding results only in
a special code of five bits to inform that there is no additional
edit operation in the comparison. Contrarily, the encoding of
Hamming and Levenshtein algorithms are lower-bounded by ` bits
informing that there are ` UNMODIFIED operations (see §1 of our
supplemental material).

5.3.2 Number of Candidate Comparisons
The number of candidate comparisons executed on each query
influences the search performance and directly depends on the
employed algorithm and configuration. We implement two forms
of similarity search: optimal and probabilistic.

In the former, the system loads all modeled base chunks to a
list in main memory and compares each queried sequence to all
entries in this list. This process is inefficient when the number
of candidates is very large. However, it always finds the best

candidate (i.e., the nearest neighbor) in the index and is a feasible
solution for small indexes.

In the latter, the system inserts all base chunks into an efficient
data structure, called Locality-Sensitive Hashing (LSH) index, and
compares each queried sequence only to entries that belong to the
same buckets as the queried sequence. It effectively reduces the
number of candidates to be compared.

LSH is an algorithm that, given an entry, returns a content hash
that has a high probability of colliding with the hash of similar
objects—and a low probability of colliding with distinct ones [40].
This idea is the opposite of cryptographic hashes, where even very
similar objects should generate very distinct content hashes.

The resulting hash from LSH is composed of a group of k
smaller hashes (e.g., integers). The LSH index is composed of k
multimaps—i.e., a KVS where each key maps to a list of values.
Each smaller hash from the LSH hash is the key to one of these
multimaps. In an insert operation, the LSH hash from the received
sequence is obtained, and the object is appended in the list of
values mapped by each small hash in the respective multimap.

In a query operation, the LSH hash is also obtained, and the
result is the joint set of values mapped by the small hashes in
the respective multimaps. The best candidate sequence is obtained
by calculating the string distance of choice between the queried
sequence and all base chunks present in the returned small joint
set. Finally, the chosen base chunk is used to calculate the delta-
encoding, which is the minimal list of edit operations necessary to
restore the queried sequence from the base chunk.

In GenoDedup, we implement the LSH hash as a Min-
Hash [41], which is proportional to the Jaccard distance—i.e., the
ratio between the intersection and union of two sets. It means that
sequences that are more similar than a given threshold will have
a higher probability of being placed in the same bucket in at least
one multimap. We also implement bitsampling techniques [42] in
our LSH hash to reduce its size and to become even more efficient
in space and time.

To implement the LSH index, we extended the Chronicle-
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Map library12 to provide a multimap instead of their original
key-value store. GenoDedup benefits from Chronicle’s princi-
ples and results in a well-engineered solution that provides: off-
heap techniques to avoid garbage collection; efficient persistent
storage to support data bigger than the available main memory;
multi-threads and fine-grain locks to support multiple writers and
readers; collections of objects as small as Java primitives to avoid
space overhead; etc. Finally, our deduplication index supports four
orders of magnitude more base chunks than the values reported by
other solutions for similarity-based deduplication [13], [14].

6 EVALUATION

We evaluate our Java prototype of GenoDedup to illustrate
the strengths and limitations of similarity-based deduplication in
genome sequencing data. It is open-source and publicly available
on GitHub13.

Experiments are divided into three parts: the encoding size of
deduplicated entries; a performance evaluation; and an end-to-end
scenario with a large workload. In the first two experiments (§6.1
and §6.2), our testing dataset is the first two hundred and fifty
thousand FASTQ entries from the SRR618666 genome, which
properly represents the diversity of its entries. We use this subset,
instead of all portions of this genome, because we intend to
evaluate an optimal (exhaustive) search algorithm that compares
every queried sequence to all candidates in a deduplication index.
Testing this optimal search with the whole genome (instead of
using only these 250k reads) would make it infeasible to complete
these tests in practical time when using indexes with more than
216 deduplication entries. This optimal search is also important to
identify the expected performance of the system given different
number of candidates returned by the LSH optimization (§5.3.2).

Tests with DNA sequences are directly executed using the
original FASTQ file and the human reference genome hg38. Tests
with QS sequences first convert them to circular delta values (§2)
and compare them to entries in the deduplication index, which
also are encoded as circular deltas.

Experimental Setup
The experimental setup is composed of a Dell PowerEdge
R430 server, equipped with 2 Intel Xeon E5-2670v3 processors
(2.3GHz), 128GB of RAM (DIMM 2133MHz) and a 300GB disk
of 15k RPM with an average sequential write and read throughput
of 215MB/s. The operating system used was an Ubuntu 16.04.2
LTS x86 64.

6.1 Encoding Gains

In this experiment, we compare the average size (in bits) of delta-
encoded entries using Hamming edit operations, Levenshtein, and
Delta-Hamming ones. They include a pointer to the most similar
deduplication entry and the encoded edit operations to transform
it back into the original sequence.

To validate the differences on the data entropy of each portion
of FASTQ entries, we separate and compress them individually
with ZPAQ. For instance, the file with the first comment line of
every FASTQ entry from the SRR618666 sizes 15.1GB. ZPAQ
compresses it 6.43× to 2.3GB. The DNA and QS portions of this

12. https://github.com/OpenHFT/Chronicle-Map
13. https://github.com/vvcogo/GenoDedup
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Figure 3. Average encoding size of deduplicated QS sequences (in bits)
and its reduction ratio.

genome size 23.3GB each. ZPAQ compresses the former to 5.4GB
(4.33×) and the latter to 7.4GB (3.14×).

Every queried DNA and QS sequence has 100 characters,
which means that each one of them occupies 800 bits in text
mode originally. When using the human reference genome hg38 as
the deduplication index, DNA sequences are compressed 13.43×
with our Delta-Hamming encoding, whereas ZPAQ compresses it
only 4.33×. We used only the Delta-Hamming encoding for DNA
sequences because the encoding of Hamming and Levenshtein
are bounded up to 8× and 4×, respectively (see §1 of our
Supplementary Material for more details on their encoding).

For QS sequences, the results from Figure 3 show that
Hamming encoding achieves a smaller output size than Delta-
Hamming, which is smaller than Levenshtein. Their best case (i.e.,
2.46× considering the Hamming distance and 220 index entries)
already achieves nearly 80% of the reduction gains from the ZPAQ
algorithm when considering only quality score sequences—3.14×
for SRR618666. Our solution can obtain even better reduction
gains with bigger indexes.

6.2 Performance

In this section, we evaluate the read and write performance of
GenoDedup both for DNA and QS sequences. We discuss the
performance of the deduplication and restoring processes only in
the aspects that our algorithm and implementation may have a
bigger impact or may represent a bottleneck to the workflow. More
specifically, GenoDedup is compute-bound, mostly by finding
the best candidate, which requires calculating the distance metric
between the query and all returned candidates. For this reason, we
do not evaluate in this section:

• Processing bottlenecks on services (e.g., LSH and KVS),
because they can be placed in local memory if they are
small enough or they can horizontally scale by using
multiple nodes;

• Bottlenecks from parsing and direct data conversion, be-
cause they usually are significantly faster than the main
processing steps we evaluate here;

• Disk bottleneck, because it is specific to the hardware used
in the experimental environment and it can be avoided by
processing entries from multiple files on different disks up
to the point the processing becomes the main bottleneck
again;

• Network bottleneck, because it is also specific to the
experimental environment and can be avoided with faster
networks (e.g., 10Gbps instead of 1Gbps).
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6.2.1 Read Operations
Our next experiment aims to evaluate the performance of applying
the list of edit operations (i.e., the delta-encoding) in a base chunk
to restore the original sequences from FASTQ entries (i.e., steps
29 and 30 in Figure 2). In theory, it is directly related to the
number of differences between the two sequences, where the less
differences they have, the faster it is.

Figure 4 presents the throughput (in MB/s) that GenoDedup
reaches in applying the identified edit operations with different
parallelism configurations (from 1 to 48 threads). The length
of the analyzed sequences is 100 characters. As expected, the
more threads processing requests up to the number of physical
cores, the bigger the throughput. For instance, GenoDedup
restores entries in a single thread at a pace of 30.8MB/s with
the Hamming encoding, 21.3MB/s with Delta-Hamming, and
9.5MB/s with Levenshtein. Since the machine in our experimental
environment has 24 physical cores (i.e., two processors with 12
cores each), using 24 threads obtains the best results: 188MB/s
with Hamming, 108.1MB/s with Delta-Hamming, and 65.3MB/s
with Levenshtein.

The Hamming algorithm results in the best throughput because
it is the simplest encoding to be restored. The Hamming and
Levenshtein algorithms have the number of operations directly
proportional to the length of the used sequences since they store
UNMODIFIED operations when characters from both sequences
match. However, the Delta-Hamming has potential in obtaining
a higher throughput as the modeled index becomes better. If
the best base chunk for each queried sequence results in less
SUBSTITUTION operations, then the Delta-Hamming becomes
proportionally smaller and reduces the restore time.

As mentioned in §3, the restore throughput from the ten
selected compression algorithms range as follows: ZPAQ, Quip,
and Fqzcomp reach less than 10MB/s; SPRING reaches 20MB/s;
GZIP, BSC, and FaStore reach 40–50MB/s, pigz reaches 66MB/s,
and DSRC2 and SeqDB reach 125MB/s. These values refer to
decompressing the whole FASTQ file in the specialized tools, not
only quality scores as in the results from Figure 4. Restoring only
the QS data from GenoDedup is up to 2.84× faster than pigz,
the fastest generic competitor and up to 170× faster than ZPAQ,
the generic algorithm that with the best compression ratio for QS.

6.2.2 Write Operations
We evaluate the performance of string comparisons using different
encoding algorithms and how do they interfere with the perfor-
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Figure 5. Average throughput of GenoDedup writes with different in-
dexes for QS using a single thread.

mance of GenoDedup (i.e., mainly steps 15–17 in Figure 2).
Similarity-based deduplication directly depends on the number
of comparisons necessary to find the nearest neighbor (i.e., the
best candidate) of a queried sequence. Genome sequencing data is
usually written once and read many times later for processing.
Systems for genome sequencing data should support a write
throughput of at least 0.3MB/s—the average write throughput
from an NGS machine [4]—to not become a bottleneck in an
NGS pipeline.

Figure 5 presents the throughput (in MB/s) obtained when
comparing a single queried sequence to all entries in deduplication
indexes of different sizes (from 20–220) using a single thread. As
expected, the more entries to compare in the index, the smaller the
throughput is. More specifically, GenoDedup reaches 25MB/s
when comparing the queried sequence to a single candidate using
Hamming encoding (i.e., 0.004ms per comparison), 15.5MB/s
using Delta-Hamming (ie.e., 0.0064ms), and 0.0076MB/s using
Levenshtein (i.e., 13.11ms). From these results, Levenshtein is
two to three orders of magnitude slower than Hamming and Delta-
Hamming algorithms.

GenoDedup must process at least 3000 queries (of 100
characters each) per second to support the 0.3MB/s throughput
from NGS machines [4]. The maximum number of comparisons
on each query, to reach at least 0.3MB/s, is 422 for Hamming
and 113 for Delta-Hamming. Levenshtein requires a speedup of
40 to reach 0.3MB/s when comparing to a single entry, which
makes this algorithm unappealing for our solution. Parallelization
can improve GenoDedup to support higher write throughput in
the future. Currently, it means that queries should return fewer
deduplication candidates than these numbers; otherwise, the sys-
tem does not support the required throughput of 0.3MB/s.

Conveniently, reducing the number of candidates returned in a
query is the exact benefit LSH brings to GenoDedup. It makes
Hamming and Delta-Hamming algorithms even more feasible.
For instance, in an LSH with a similarity threshold of 0.95 and
128 permutations on the MinHash, it can reduce the number of
candidate comparisons from 350 million entries (333× bigger
than 220) to only 50. Such reduction contributes, for instance, to
approximate the write throughput of GenoDedup with the one
of the ZPAQ (i.e., 5.3MB/s). GenoDedup has the potential of
reaching higher write throughput with parallelism since FASTQ
entries are processed unrelated with each other.

These results consider only the string comparison. Usually,
there are other steps (e.g., communication and parsing) that need
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to be considered. However, 0.3MB/s per second is an achievable
throughput for most modern service solutions.

6.3 Large End-to-End Workload
Our last experiment evaluates GenoDedup with a large workload
in an end-to-end scenario. The evaluation considers approximately
265GB from all files in Table 1. We compare our results with the
most prominent competitors in terms of compression ratio (i.e.,
SPRING [15]) and read throughput (i.e., SeqDB [16]). We also
add to the comparison DSRC2 [25] and pigz). Table 2 presents
the observed results. The complete set of components in our end-
to-end solution encompasses: (1) the algorithm from Bhola et
al. [17] to compress FASTQ comments with a ratio of 17.26×
on average; and our similarity-based deduplication both (2) for
DNA sequences, which compresses them 13.43×; and (3) for QS
sequences (with 28 entries), which compresses them 1.88×.

SPRING compresses the mentioned FASTQ files 6.023×,
which is the biggest compression ratio observed in our experi-
ments. For the same dataset, SeqDB achieves a compression ratio
of 1.992×, DSRC2 4.148×, and pigz 3.227×. Our end-to-end
deduplication solution achieves a compression ratio of 4.089×
using a deduplication index with the human reference genome
hg38 for the DNA sequences and with 28 entries for the QS
sequences. This result corresponds to 67% the compression ratio
of SPRING, 98.6% the ratio of DSRC2, while we compress 2.05×
more than SeqDB and 1.26× more than pigz.

Our solution compresses data at 0.3MB/s with an index of 28

candidates for the QS sequences in a single thread. The other
solutions perform better than us in terms of the compression
speed. However, GenoDedup can reach higher speeds with multi-
threading, with better deduplication indexes, and with the use
of LSH to reduce the number of candidate comparisons (e.g., it
reaches almost 10MB/s when comparing 24 entries).

In terms of restoring throughput, SeqDB decompressed the
selected FASTQ files at 127.9MB/s (i.e., the fastest competi-
tor), DSRC2 at 125.3MB/s, pigz at 66.1MB/s, and SPRING at
20.9MB/s. Our end-to-end solution achieves a read throughput of
208.25MB/s in the same dataset. This result makes GenoDedup
1.62× faster than SeqDB, 1.66× faster than DSRC2, 3.15× faster
than pigz, and 9.96× faster than SPRING.

An important aspect of our solution is that achieving better
compression ratios is possible in the future and it does not com-
promise our read throughput since it is independent of the number
of candidates in the deduplication index. Furthermore, a better
compression ratio implies more UNMODIFIED edit operations,
which accelerates the restore process even more.

Applying these results to a repository like the 1000 Genomes
Project [11] provides a better figure of the savings GenoDedup
can bring to big genome data warehouses. The project currently
stores approximately 115TB of FASTQ files compressed with
GZIP (i.e., the equivalent to 370TB of uncompressed FASTQ
files). By using our deduplication strategy, it would be able to
store such files using only 90TB, which corresponds to 78% of
the 115TB used today with GZIP. Perhaps even more importantly,
GenoDedup would also improve their data sharing ecosystem by
allowing data consumers to restore FASTQ files 5× faster than
today (i.e., GZIP decompressed our files at 41.4MB/s).

7 DISCUSSION

The methods proposed in this work are generic enough to support
sequencing data from other species and NGS machines, as well

Table 2
Comparison (i.e., the ratio best/worst) of the compression ratio (C.R.)
and the (write and read) throughput between GenoDedup with 28 QS

candidates and its main competitors. Brackets ({}) indicate where
competitors are better than GenoDedup.

Algorithm C.R. Write Read
SPRING {1.47×} {143.6×} 9.96×
DSRC2 {1.01×} {4586.3×} 1.66×
SeqDB 2.05× {1385.3×} 1.62×
pigz 1.26× {937×} 3.14×

as other data representations (e.g., aligned data) and file formats
(e.g., SAM). Additionally, it can be explored in other highly-
dimensional data where identity-based deduplication fails [13].
In this section, we discuss how our solution can work with or be
adapted to support other datasets and methods.

7.1 Other Data Representations
As previously mentioned, sequencing data is considered the purest
unbiased version of genomic data coming from Next Generation
Sequencing (NGS) machines [5]. Contrarily, the output from
alignment and assembly processes is imprecise, lossy, and depend
on the employed algorithm and reference [9].

For instance, aligned data in the 1000 Genomes Project [11]
was generated using different algorithms and references in distinct
phases of the project. Studies that use data from multiple of these
phases must first reconvert the aligned data into sequencing data,
and then realign all the data of interest using the same reference
and algorithm before analyzing it. This rework in converting from
aligned to sequencing data takes considerable additional time (e.g.,
50–200 minutes for each 100GB [43]) and is even more likely to
be required in studies that involve large quantities of samples and
data from multiple sources. It is no surprise that the 1000 Genomes
Project stores the original sequencing data (i.e., FASTQ) of every
aligned data (i.e., SAM/BAM) they have.

Notwithstanding, our methods can be used with aligned data
(e.g., in the SAM/BAM format [6]). The only difference is that
this data representation already contains the pointer to the best
candidate of DNA sequences in the aligned file. It only eliminates
the need to execute the similarity-based deduplication for the
matched DNA sequences. However, it still requires (1) a compres-
sion algorithm for the QS sequences, in which our similarity-based
deduplication has shown its potential, (2) a delta-encoding (e.g.,
our Delta-Hamming) for the matched DNA sequences, and (3) a
similarity-based solution like ours to the unmatched ones.

Another important data representation is the assembled data.
However, recovering the original sequencing data file from assem-
bled data is impossible because the resulting assembled genome
file (i.e., FASTA) does not contain details such as: How many
FASTQ entries were used to create the assembled genome? In
which genome position each one of them started and ended?
Which was the quality score for each sequenced nucleobase?
Additionally, we consider the compression of assembled data a
challenge that has been mostly addressed by different approaches.
For instance, we devised a tool that reduces assembled human
genomes ∼700× in 40 seconds [8].

7.2 Paired-end Sequencing
Paired-end sequencing digitizes both ends of DNA fragments to
increase accuracy and help detecting repetitive sequences and
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rearrangements. It produces two FASTQ files, one for each end,
where the entry order matches among them (i.e., entry 100 from
the second file is the reverse complement of the DNA sequence
of entry 100 from the first file). GenoDedup may explore this
additional redundancy in the future to eliminate the similarity-
search for the DNA sequences of the second FASTQ file. In this
case, GenoDedup may use the reverse complement of the best
candidate of the DNA sequence from the first file also as the
best candidate for the DNA sequence in the second file. It will
reduce the size of our encodings and speedup the deduplication
and restore since only one pointer is used as the best candidate of
two sequences.

7.3 Other Species

In this work, we favor sequencing data from human genomes due
to the the availability of a comprehensive reference genome and
the potential impact of this data domain. However, the methods
proposed in this work can easily be adapted to work with se-
quencing data from other species. In an extreme case, one will
end up with one deduplication index for DNA of each species.
Moreover, species with a representative reference genome have
the advantage of using it as the deduplication index for DNA, but
it is not a requirement since the same method of modelling the
index of QS sequences can be used for DNA.

7.4 Other Sequencing Machines

Many related works for FASTQ compression select genomes from
several species and sequencing machines. This choice usually
results in selecting only a few genomes per species or selecting
small FASTQ files with very low coverage. We intended to
select more and bigger genomes from the same species and the
same sequencing machine to reduce the influence from these two
variables in our results.

Our datasets include only human genomes (due to the previ-
ously mentioned reasons) sequenced with the Illumina HiSeq 2000
platform. To the best of our knowledge, this machine was the most
used NGS machine in sequencing laboratories around the world
when we started this work [20]. Additionally, some of the selected
datasets were used also in other papers on FASTQ compression
(e.g., SRR400039 in Quip’s paper [26]).

Datasets in our work had an expected alphabet of 40 possible
QS.14 Newer Illumina platforms have been binning QS into groups
with reduced alphabets (e.g., seven groups in HiSeqX1015 and four
in NovaSeq16). This binning is similar to the initial approach of
many lossy FASTQ compression algorithms [44]. These smaller
alphabets reduce the size of our encoding and may benefit our
index modelling since it reduces also the possible combinations.
Notwithstanding, our methods can work with data from most of
the modern NGS machines. The differences in QS distribution
patterns and alphabet may require one to model new deduplication
indexes and one may end up with one index per machine in an
extreme case.

14. https://www.illumina.com/documents/products/technotes/technote
Q-Scores.pdf

15. https://www.illumina.com/content/dam/illumina-marketing/documents/
products/appnotes/appnote-hiseq-x.pdf

16. https://www.illumina.com/content/dam/illumina-marketing/documents/
products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf

7.5 Other Sequence Lengths

Our methods support sequences of any length, while working
even with indexes containing sequences with multiple lengths.
The length influences several aspects in our solution (e.g., index
size, string comparison time, chances of finding more differences).
More specifically, LSH supports entries of different sizes when
using MinHash. MinHash converts entries of any size into hashes
of fixed size proportional to Jaccard distance (i.e., also indepen-
dent on the entry size). Furthermore, Levenshtein edit operations
can compare strings of different sizes since it includes insert and
delete operations. In an extreme case, one may model a few
different deduplication indexes for different entry sizes. However,
big differences in the size of the query sequences and the modelled
ones may reduce the compression ratio.

Additionally, the bigger the sequence length is, the bigger the
chances of having more edit operations, which tends to reduce
the compression ratio and throughput on the selection of the
best candidate. The impact of this length in GenoDedup is
proportional to the impact of the sequence length in the string
distance calculation.

7.6 Reordering FASTQ entries

Reordering FASTQ entries to group similar entries is another
pattern explored in the literature [15], [45]. The current version
of our methods work entry by entry, without correlating them or
their order. GenoDedup compresses the DNA and QS sequences
independently and reordering them would reduce its compression
ratio and performance since it requires storing and working with
additional correlating metadata.

on a per-entry Reordering the QS sequences to group similar
entries is another pattern explored in the literature [45]. However,
we do not employ reordering because it has produced only minor
gains in reducing sequencing data—e.g., less than 6% compared to
compressing entries in the original order. Furthermore, reordering
both DNA and QS sequences separately and storing them in an
unmatched order nullify these reduction gains since it requires
additional correlating metadata.

8 CONCLUSION

In this work, we presented GenoDedup, the first method that
integrates efficient similarity-based deduplication and specialized
delta-encoding for genome sequencing data. Our experimental
results attested that our method currently achieves 67.8% of the
reduction gains of SPRING (i.e., the best specialized tool in this
metric) and restores data 1.62× faster than SeqDB (i.e., the fastest
competitor). Additionally, GenoDedup restores data 9.96× faster
than SPRING and compresses files 2.05× more than SeqDB.
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