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Abstract: Fourier transform infrared spectroscopy based on attenuated total reflec-
tance sampling technique, combined with multivariate analysis methods was used 
to monitor the adulteration of pure sunflower oil (SO) with thermally deteriorated oil 
(TDO). Contrary to published research, in this work, SO was thermally deteriorated in 
the absence of foodstuff. SO samples were exposed to temperatures between 125 
and 225°C from 6 to 24 h. Quantification of adulteration of SO with TDO, based on 
principal components regression (PCR), partial least squares regression (PLS-R), and 
linear discriminant analysis (LDA) applied to mid-infrared spectra and to their first and 
second derivatives is reported for the first time. Infrared frequencies associated with 
the biochemical differences between TDO samples deteriorated in different conditions 
were investigated by principal component analysis (PCA). LDA was effective in the 
twofold classification presence/absence of TDO in adulterated SO (with 5% V/V of less 
of TDO). It provided 93.7% correct classification for the calibration set and 91.3% cor-
rect classification when cross-validated. A detection limit of 1% V/V of TDO in SO was 
determined. Investigation of an external set of samples allowed the evaluation of the 
predictability of the models. The regression coefficient (R2) for prediction was 0.95 and 
0.96 and the RMSE was 2.1 and 1.9% V/V when using the PCR or PLS-R models, respec-
tively, and the first derivative of spectra. To the best of our knowledge, no investigation 
of adulteration of SO with TDO based on PCR, PLS-R, and LDA has been reported so far.
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1. Introduction
Although edible oils (EO) are very stable foodstuff, autoxidation takes place leading to hydroperoxides, 
usually called primary oxidation products. Later, the breakdown of these compounds leads to alco-
hols, aldehydes (mainly responsible for flavors and odors), ketones, lactones, hydrocarbons, fatty acids 
(secondary and tertiary oxidation products), and, in the last stage, the polymerization products is ob-
served (Frankel, 2010).

Uncooked EO keep all their nutritional components, such as vitamins, essential fatty acids, and 
antioxidants. However, EO are frequently used for baking, cooking, and deep frying. The latter is a 
popular method of food preparation, either at home, in traditional or in fast food restaurants. During 
frying, the oils change color and thicken and acquire an unpleasant taste and odor (Sanibal & 
Mancini-Filho, 2004).

Due to the high temperature and absorption of oxygen and water during deep frying, EO in general, 
and sunflower oil (SO) in particular (Aladedunye & Przybylski, 2014), suffer a wide range of reactions, 
namely, hydrolysis, oxidation, isomerization, and polymerization, especially if the process is repeated 
and lasts for long time (Allouche, Jiménez, Gaforio, Uceda, & Beltrán, 2007; Brühl, 2014; Gómez-Alonso, 
Fregapane, Salvador, & Gordon, 2003). Consequently, numerous categories of products are produced 
(Sanibal & Mancini-Filho, 2004). These reactions lead to an increase in polar substances, decomposition 
of essential fatty acids, and in an increase in trans isomers (Moya Moreno, Olivares, Lopez, Adelantado, 
& Reig, 1999). The deterioration substances formed during frying have nutritional and toxicological 
consequences in human health (Stender & Dyerberg, 2004). Therefore, frying oils have to be substi-
tuted before substantial deterioration has taken place.

Analysis of the EO quality and purity is of great importance and has been the subject of research 
of several authors (Bendini, Cerretani, Di Virgilio, Belloni, Bonoli-Carbognin, & Lercker, 2007). 
Adulteration of pure EO either with low-priced oils, with toxic mineral oils, or with deteriorated used 
oils can have great economic and social impact and is a serious public health problem. Adulteration 
results in the integration of harmful substances to the human organism, supplied to unwary con-
sumers (Rossell, 2001).

Several methods were developed to determine the deterioration threshold of frying oils, such as the 
measurement of free fatty acids, total polar compounds, alkaline materials, anisidine, peroxide val-
ues, and mono- and diglycerides (Sanibal & Mancini-Filho, 2004; Stier, 2001). However, most of these 
methods have the disadvantage of being expensive, time consuming, unsuitable for online monitor-
ing, and do not provide results in a short-time interval. Therefore, the development of accurate, inex-
pensive, and real-time methods of frying oil deterioration monitoring is useful in the food industry.

Optical techniques, such as Raman, fluorescence, and absorption spectroscopy, are reagentless, 
non-destructive analytical techniques having an increasing number of application in the study of 
foodstuff (Gouvinhas, Machado, Carvalho, de Almeida, & Barros, 2015; Machado et al., 2014). Namely, 
near-infrared (NIR) and Fourier transform infrared (FTIR) spectroscopy found application across a 
wide range of fundamental (Movasaghi, Rehman, & Rehman, 2008) and applied sciences (De Luca, 
Oliverio, Ioele, & Ragno, 2009) and production lines in industry (Gouvinhas, de Almeida, Carvalho, 
Machado, & Barros, 2015; Roggo et al., 2007).

FTIR-ATR (Attenuated Total Reflection) technique is one of the most common analytical tech-
niques found in research laboratories and in the industry (Romera-Fernández et al., 2012). It has 
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been employed as a rapid tool for the identification and quantification of relevant compounds in 
food products, namely, in EO (Vlachos et al., 2006), meat, fish, beer, fruit juices, among others 
(Karoui, Downey, & Blecker, 2010).

FTIR spectroscopy has been used to monitor the thermal deterioration of EO, such as sunflower and 
canola oils, and to study the kinetics of olive oil deterioration (Román Falcó, Grané Teruel, Prats Moya, 
& Martín Carratalá, 2012; Tena, Aparicio, & García-González, 2009). Thermal stability between 30 and 
170°C of EO (colza, corn, SO, soybean and olive oils) was evaluated by ultraviolet–visible (UV–vis) spec-
troscopy (Gonçalves, Março, & Valderrama, 2014) and by FTIR spectroscopy using direct heating of oil 
samples on an ATR diamond crystal (SO, olive and canola oils) (Pinto, Locquet, Eveleigh, & Rutledge, 
2010). A review of other experimental procedures employed for the study of EO thermal deterioration 
was presented by Pinto et al. (2010). However, there are few publications targeted to the authentica-
tion of edible vegetable oils adulterated with used frying oils.

An FTIR-based systematic analysis of adulteration of corn, peanut, rapeseed, and soybean oils 
with used frying oil of unknown origin and characteristics was reported recently (Zhang et al., 2012). 
Area ratio between two absorption band and wavenumber shift of a specific band was treated by 
linear regression. For this four adulteration types, the limit of detection for the area ratio was 6.6, 7.2, 
5.5, and 3.6% and for the wavenumber shift was 8.1, 9.0%, 6.9, and 5.6. Also, it was published re-
cently a low-field nuclear magnetic resonance (LF-NMR)-based study on discrimination of edible 
vegetable oil adulteration with used frying oil. The work focused on discrimination of the adultera-
tion of commercial corn, peanut, rapeseed, and soybean oils with two kinds of used frying oils (col-
lected in restaurants) (Zhang, Saleh, & Shen, 2013)

The purpose of the present work was to study the adulteration of SO with thermally deteriorated 
sunflower oil (TDO), filling the gap in the literature. Contrary to published work, the SO in this work 
was thermally deteriorated without contact with any foodstuff. Specifically, the objective was to de-
velop and validate a methodology based on FTIR-ATR spectroscopy combined with principal compo-
nents regression (PCR) and partial least squares regression (PLS-R), aiming to predict the adulteration 
level of SO with TDO in different conditions.

2. Material and methods

2.1. Sample preparation
Five brands of commercial pure SO was purchased from local producers which were contacted and 
asked to supply pure cold press SO to be used in research. They were delivered to us one month after 
production in the dark glass bottles. Aliquots of these oils were subjected to thermal deterioration 
using a range of different conditions and mixed with pure SO as described below and organized in 
three sets (Set A, B, and C).

Set A was intended to make a qualitative exploratory analysis of thermally deteriorated SO using 
multivariate analysis. Set B was planned develop a quantitative model for the prediction of adultera-
tion of SO with TDO. Four of the five oils brands (arbitrarily selected) were used to prepare SO aliquots 
with different concentrations of TDO, constituting the so-called “calibration set,” i.e. a set of samples 
used to build and validate the PCR and PLS-R models. Set C was formed with the remaining brand of 
SO and was used to prepare a set of aliquots to test the predictability of the PCR and PLS-R methods, 
referred below as the “external set”.

Set A was constituted by aliquots produced by heating the five brands of SO at 125, 150, 175, and 
225°C for 6 h and at 200°C for 6 and 24 h.

In order to create Set B and Set C, a volume of ~350 ml of each one of the five SO brands was 
heated at 200°C for 24 h, giving rise to five varieties of TDO.
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Set B was prepared by randomly mixing TDO with pure SO from 0.5 to 10% in 0.5% steps and from 
11 to 20% in 1% steps (total of 30 sampling points) using a Vortex mixer (model ZX3, Neu-TEC Group 
Inc, USA) to ensure total homogenization. Set B was assembled using four SO brands and four varie-
ties of TDO (both randomly chosen). For each sampling point of Set B, four samples were produced: 
one out of the four TDO varieties was randomly selected and mixed with the four virgin SO brands. 
The infrared (IR) absorption spectra of 128 samples (120 SO/TDO, 4 virgin SO and 4 TDO) were 
measured.

Set C (the “external set”) was gathered by mixing the remaining SO with the fifth TDO (prepared 
using a different SO brand), therefore creating an external set of 32 samples (30 SO/TDO, 1 virgin SO 
and 1 TDO).

Pure SO samples were preserved in the original package and both TDO and mixed samples were 
stored in small polyethylene terephthalate flasks.

2.2. FTIR-ATR measurement
Infrared spectra were collected in a “Unicam Research Series” FTIR spectrometer equipped with a 
single reflection “Golden Gate” ATR module, a DLaTGS detector and a KBr beamspliter. The equip-
ment is connected to computer and controlled by WinFirst software - v1.1.

FTIR-ATR measurements were performed by pipetting a small drop (~1 μl) of edible oil on top of 
the ATR baseplate, which was kept at 30°C. We calculate that the evanescent field was probing a 
depth of approximately 2.0 μm. All IR spectra were recorded from 500 to 4,000 cm−1, co-adding 128 
interferograms at a resolution of 4 cm−1. The collection time for each sample spectrum was approxi-
mately 2 min. These spectra were subtracted against background air spectrum. After every scan, a 
new background spectrum was taken. The ATR base was carefully cleaned in situ by scrubbing with 
ethanol and dried with soft tissue before measuring the next sample. The cleaning method was veri-
fied by collecting a background spectrum and compared to the previous one. These spectra were 
recorded as absorbance values at each data point. From each oil sample, five replicates were ana-
lyzed. Each measurement was repeated three times and averaged using the software that controls 
the equipment.

2.3. Treatment of spectral data
Baseline drifts of the spectra were corrected by using a fourth-order polynomial. Smoothing of the 
spectra was based on the Savitzky-Golay algorithm using a third-order polynomial and frames of 
seven points. Afterward, data were mean centered and standardized using the standard normal 
variate (SNV) transformation (Bendini, Cerretani, Di Virgilio, Belloni, Lercker, & Toschi, 2007; Nunes, 
Martins, Barros, Galvis-Sánchez, & Delgadillo, 2009). First and second derivatives were determined 
by the Savitzky–Golay method (De Luca et al., 2009).

2.4. Mathematical treatment of data-set
The IR spectral data can be considered as a multidimensional set of variables where each spectrum 
consists of hundreds of variables, corresponding to the absorbencies recorded at the different wave-
numbers (cm−1). These data-sets were then analyzed by a multivariate analysis method as described 
below.

A PCA was applied to inspect differences between samples. The PCA transforms a large number of 
potentially correlated variables into a smaller number of uncorrelated variables (usually called prin-
cipal components, PCs), and thus reduces the size of the data-set.

For preliminary qualitative analysis, principal components contributing to the variance of the da-
ta-set were subjected to a linear discriminant analysis (LDA) in an attempt to predict the likelihood 
of a sample belonging to a previously defined group. LDA is a statistical method used to find a linear 
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combination of structures which characterizes or separates classes of objects or observations. The 
resulting arrangement may be used as a linear classifier or dimensionality reduction.

For quantitative analysis of adulteration, variables considerably contributing to the variance of the 
data-set were regressed using PCR and PLS-R (Miller & Miller, 2005). Both regression methods are 
used to model a response variable when a biological system is analyzed trough a large number of 
predictor variables that are highly correlated or even collinear (Marini, Bucci, Ginevro, & Magrì, 2009). 
They give rise to new predictor variables or factors (usually known as principal components (PC) in 
the context of PCR or latent variables in the case of PLS-R) that are linear combinations of the origi-
nal predictor variables.

Those factors are calculated in different ways, PCR creates PC to explain the observed variability in 
the predictor variables, without considering the response variable. In PLS-R, the response variable is 
taken into account and, consequently, leads to models that can fit the response variable with fewer 
factors (Wentzell & Vega Montoto, 2003). Whether or not it ultimately translates into a useful model 
that depends on the specific biological system.

2.5. Model selection
The calibration methodology for quantification of the adulteration relied on two steps, so-called cali-
bration and validation. In the calibration step, a mathematical model was built to establish a rela-
tion between the matrix of FTIR spectra (predictor variables) and the concentration of analytes of 
interest (response variables), using a set of observations usually named calibration set. In the valida-
tion step, the developed model was used to calculate the concentration of samples not used to set 
up the model (De Luca et al., 2009).

The relative performance of the established model is evaluated by the root mean square error of 
calibration (RMSEC), root mean square error of cross-validation (RMSECV), and multiple coefficient of 
determination or regression coefficient (R2). The model selected is then used to determine the con-
centration of samples of an independent prediction set (or external set). The predictive ability of the 
model is evaluated from the root mean square of prediction (RMSEP). The lower the RMSEP value, the 
higher the degree of accuracy of the prediction result provided by the calibration model.

PCA, LDA, PCR, and PLS-R calculations were performed using the Excel-based “XLSTAT” V2006.06 
package (Addinsoft, Inc, New York, USA) and statistical software “Unscrambler” V9.6 package 
(Camo, Oslo, Norway).

3. Experimental results and discussion

3.1. FTIR spectra analysis
Figure 1 illustrates the measured FTIR spectra of oil samples subjected to temperatures from 125 to 
225°C for 6 h in the range of 600–3,100 cm−1. All spectra appear to be very similar in this range of 
deterioration conditions; however, there are visible differences between spectra of TDO at 225°C for 
6 h and SO. These small differences in relative absorbencies were used for qualitative classification 
and quantification of SO adulterated with TDO, as discussed below.

For quantitatively observing the oxidative deterioration of SO by thermal treatment, several IR 
bands can be motorized. The expression of oxidation products (hydroperoxides followed by carbonyl 
compounds) can be perceived by changes in the spectral regions from 3,100 to 3,700 cm−1 and from 
1,700 to 1,800 cm−1, respectively. A decrease in peak absorbance at around 2,853 and 2,922 cm−1 
due to C–H stretching vibration of aliphatic, CH3 and CH2, respectively, was observed.

For samples of Set A (heated from 125 to 225°C for 6 h) and of Set B (SO adulterated with 5, 10, 15 
and 20% of TDO), Figure 1(a) and (c) shows the reduction in absorbance in the region between 2,990 
and 3,030 cm−1, due to the stretching vibration of cis- double bond, respectively. Figure 1(b) and (d) 
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shows the corresponding absorbance increase from 930 to 1,000 cm−1, due to bending vibration of 
trans- double bond. Fading of the cis- double bond of fatty acids and the appearance of trans- prod-
ucts occur in parallel, therefore, the oxidation process occurs alongside with cis/trans isomerization. 
Also, a decrease in peak absorbencies at around 1,655, 1,401, and 1,119 cm−1 and an increase at 
1,635 and 1,418 cm−1 were observed. These spectral features were reported as being related to ther-
mal deterioration of olive oil (Zhang et al., 2012).

3.2. Principal component analysis
Looking for an eventual relationship within samples of Set A, a matrix was built with its corresponding 
absorption spectra in order to run a preliminary PCA. Spectral regions that presented an overall low 
signal-to-noise ratio and were found to be susceptible to induce misclassification were left out of the 
analysis. In addition, during measurement, the laboratory atmosphere was not very stable and in-
duced random spectral changes in the region between 1,800 and 2,750 cm−1. The collected spectra 
were divided in two regions: a first region from 600 to 1,800 cm−1 and a second from 2,750 to 3,050 cm−1.

It was found that the total variance of the data-set could be explained by 24 principal compo-
nents, among which the first seven principal components, with eigenvalue higher than 1, explain 
approximately 89% of the total variance.

Communality is defined as the sum of the squared principal component loadings for all principal 
components for a given original variable. It is the variance in that variable accounted for by all the 
principal components. In other words, the communality measures the percentage of variance in a 
given variable explained by all the principal components together and may be interpreted as the 
consistency of the indicator (Abdi & Williams, 2010). The initial value of the communality in PCA is 1. 
According to (Stevens, 2002), a lower limit of 0.6 should be used. Small communalities values after 
extraction indicate variables that do not fit well the principal component solution and should be 
dropped from the analysis (Field, 2005).

Wavenumbers (variables) for which the communality value of each principal components out of 
the six was higher or equal to 0.6 were considered as meaningfully explaining the variance of the 
spectral data-set and were considered as potential wavenumbers associated with the biochemical 
variations occurring during the thermal deterioration process.

Frequency bands with peaks at 723, 969, 990, 1,037, 1,099, 1,117, 1,160, 1,234, 1,361, 1,385, 
1,417, 1,463, 1,701, 1,745, 2,853, 2,922, 2,952, and 3,007 cm−1 were selected for a second PCA. The 

Figure 1. FTIR spectra of 
sunflower oil (SO) samples 
heated at temperatures 
ranging from 125 to 225°C for 
6 h.

Notes: Inset: Changes 
observed in absorbencies: (a) 
and (b) samples heated at 
temperatures ranging from 125 
to 225°C for 6 h (Set A); (c) and 
(d) SO samples adulterated 
with 5, 10, 15, and 20% of TDO 
(Set B). Increase in absorbance 
between 930 and 1,000 cm−1 
is due to bending vibration of 
trans-double bond decrease 
in absorbance from 2,990 to 
3,030 cm−1 is due to stretching 
vibration of cis double bond.
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peak at 723 cm−1 is associated with a CH2 rocking mode, while the peaks at 1,099, 1,117, 1,160, and 
1,234 cm−1 correspond to CO stretching vibration. The peak at 1,463 cm−1 is associated with a CH2 
bending (scissoring) vibration and the peak at 1,376 cm−1 is ascribed to symmetrical bending of CH3. 
A large peak at 1,745 cm−1 is responsible for the CO stretching vibrations. Symmetric and asymmetric 
stretching vibrations of CH2 are caused by the absorbance at 2,853 and 2,922  cm−1, respectively 
(Downey, 1998; Guillén & Cabo, 1997; Lerma-García, Ramis-Ramos, Herrero-Martínez, & Simó-
Alfonso, 2010).

The first principal component (F1) explained 66.85% variance, while the second (F2) explained 
28.38%; therefore, approximately 95.23% of variance can be described by only two principal compo-
nents. According to the observation diagram shown in Figure 2, each oil sample occupies a different 
position in the F1/F2 plane, thus, leading to the conclusion that PCA allows qualitative discrimination 
between samples deteriorated in wide range of different conditions. It should be noticed that a cluster 
of pure SO samples occupy a distinct position on the F1/F2 plane.

The loading reveals that the wavenumbers 969 and 3,007 cm−1 have a high contribution to the for-
mation of principal components F1 and F2. These frequencies correspond to the bending and stretch-
ing vibrations referred above, characteristic of oil deterioration.

3.3. SO/TDO adulteration discrimination by supervised analysis
Representative measured spectra from 600 to 3,100 cm−1, together with its first and second deriva-
tives are shown in Fig. 3 for SO, TDO (200°C/24 hours), and SO adulterated with 5, 10, 15, and 20% of 
TDO (part of Set B).

With the goal of determining the possibility of using IR spectral data to discriminate between pure 
SO and SO adulterated with small percentages of TDO, a sub-set of Set B constituted by SO samples 
adulterated with 5% or less of TDO, pure SO, and TDO was classified by LDA, using the absorbencies 
at the aforementioned set of 17 frequencies, based on the known classification of each sample as 
SO/TDO, SO, or TDO, constituting the dependent variable.

The observation diagram represented in Figure 4 is defined by discriminant factors DF1 and DF2, 
which explained the total variance. The TDO samples are positioned in the lower right side of the plot 

Figure 2. Observation diagram 
of a principal component 
analysis for the differentiation 
of sunflower oil (SO) samples 
deteriorated using a set of 
different conditions using FTIR-
ATR spectral data.
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opposed to the SO samples located in the upper left side of the diagram. The classification in Table 1, 
resulting from LDA, provided 93.7% correct classification for the calibration set and 91.3% correct 
classification when cross-validated. A high degree of correct classification after cross-validation was 
achieved for SO/TDO, with only 6 out of 200 SO/TDO samples being classified as SO. Those samples 
had concentrations of 0.5 and 1% V/V of TDO. Thus, LDA allows the possibility to categorize SO sam-
ples according to presence/absence of TDO in concentrations smaller than 5%, the limit of detection 
being 1% V/V.

Figure 3. Measured spectra 
together with its first and 
second derivatives for 
sunflower oil (SO) samples, 
thermally deteriorated 
sunflower oil (TDO, 200°C/24 h), 
and SO adulterated with 5, 10, 
15, and 20% of TDO (sub-set of 
Set B).

Figure 4. Similarity map as 
determined by discriminant 
analysis using factors DF1 
and DF2 for FTIR-ATR spectral 
data of pure sunflower oil 
(SO), thermally deteriorated 
sunflower oil (TDO), and 
SO mixed with thermally 
deteriorated sunflower oil (SO/
TDO) (samples with less than 
5% of TDO deteriorated at 
200°C for 24 h).
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3.4. Model for prediction of SO adulterated with TDO based on FTIR spectral data
In the PCR, PLS-R, and calibration models, the evaluation of the methods linearity was carried out in 
order to establish a proportional relationship between predictor variables (absorbencies) and the 
concentration of TDO in pure SO.

PLS regression method is able to collect information from large spectral intervals, correlating 
changes therein to the concentration of specific constituents, and concomitantly consider other 
possible contributions to these changes not related to the sample constitution (Cheman, Syahariza, 
Mirghani, Jinap, & Bakar, 2005). On the other way, in PCR method, the spectral and concentration 
information are incorporated into the model in one step (Smith, 2002).

The quality of the fitting was scrutinized by the root mean square error of calibration (RMSEC), 
multiple coefficient of determination, or regression coefficient (R2, where R is the correlation factor) 
and by the root mean square error of cross validation (RMSECV) (Wang, Lee, Wang, & He, 2006). The 
optimum number of factors, either for PCR and PLS-R models, was determined using leave-one-out 
cross-validation (LOOCV) method. This is done by plotting the number of factors against the RMSECV, 
and from this, the optimum number of factors is selected for both PCR and PLS-R models. The opti-
mum number of factors is the one that minimizes the RMSECV (Naes et al., 2002). The capability of 
the models to predict the concentration of TDO in SO for external samples was inspected by the 
RMSEP.

The results achieved for the PCR and PLS-R calibrations models of concentration of TDO in terms of 
R2, RMSEC, RMSECV, and RMSEP, either for normal spectra and its first and second derivatives are 
presented in Table 2. The high value of R2 and the lowest of RMSEC, RMSECV, and RMSEP indicate good 
performance and precision of the models. Furthermore, to obtain a good calibration model, the num-
ber of regression factors used should be the lowest as possible (Smith, 2002). A model build with such 
high number of factor would lead to over fitting, conducting to a very low RMSE value for the calibra-
tion samples but would give rise to high values of RMSE for an external set of samples. Table 2 also 
shows the number of factors that minimizes the RMSECV for PCR and PLS-R.

The multivariate calibrations showed the highest value of R2 and the lowest of RMSEP value when 
using the first derivative of the spectral data. Figure 5(a) and (b) show the plot of the measured con-
centrations of TDO against the predicted values based on absorbencies for PCR and PLS-R regression 
models, respectively, which illustrates the quality of the models established in this work. In general, 
PLS-R offers enhanced results compared to others regression methods, such as PCR (Liang & 
Kvalheim, 1996) or multiple linear regression (MLR) for quantitative analysis of concentration of ana-
lytes (Wentzell & Vega Montoto, 2003).

The relationship between measured values of TDO concentration and predicted values based on 
FTIR absorbencies shows R2 values ranging from 0.91 to 0.96 after cross-validation and from 0.90 to 
0.96 when using Set C of samples (external set, used for prediction). The higher difference of R2 val-
ues between calibration and prediction sets was 0.14 (~17%), for the PLS-R model, using the second 
derivative. The RMSEP is as low as 1.9% V/V when using the first derivative and a PLS-R model with 

Table 1. Confusion matrix for the classification of pure SO, TDO, and SO/TDO (samples with less than 5% of TDO). Results for 
calibration and cross-validation. Observed classifications in the rows. Predicted classifications in columns
From/To Learning set Cross-validation

SO TDO SO/TDO Total Correct (%) SO TDO SO/TDO Total Correct (%)
SO 17 0 3 20 85.0 16 0 4 20 80.0

TDO 0 20 0 20 100.0 0 20 0 20 100.0

SO/TDO 8 0 192 200 96.0 12 0 188 200 94.0

Total 25 20 195 240 93.7 28 20 192 240 91.3

D
ow

nl
oa

de
d 

by
 [

2.
80

.3
4.

19
2]

 a
t 1

3:
43

 1
6 

M
ar

ch
 2

01
5 



Page 11 of 14

Vilela et al., Cogent Food & Agriculture (2015), 1: 1020254
http://dx.doi.org/10.1080/23311932.2015.1020254

Ta
bl

e 
2.

 P
rin

ci
pa

l c
om

po
ne

nt
 re

gr
es

si
on

 (P
CR

) a
nd

 p
ar

tia
l l

ea
st

 s
qu

ar
es

 re
gr

es
si

on
 (P

LS
-R

) m
od

el
s-

ba
se

d 
ca

lib
ra

tio
ns

 fo
r q

ua
nt

ifi
ca

tio
n 

of
 a

du
lte

ra
tio

n 
of

 S
O 

w
ith

 
TD

O 
us

in
g 

st
an

da
rd

 n
or

m
al

 v
ar

ia
te

 (S
NV

) s
pe

ct
ra

l d
at

a 
an

d 
its

 fi
rs

t a
nd

 s
ec

on
d 

de
riv

at
iv

es
Re

gr
es

si
on

 
m

et
ho

d
Fa

ct
or

Sp
ec

tr
a

Eq
ua

tio
n

R2
RM

SE
 (%

 V
/V

)
Ca

lib
ra

tio
n

Va
lid

at
io

n
Pr

ed
ic

tio
n

Ca
lib

ra
tio

n
Va

lid
at

io
n

Pr
ed

ic
tio

n
Ca

lib
ra

tio
n

Va
lid

at
io

n
Pr

ed
ic

tio
n

PC
R

5
No

rm
al

y 
= 

1.
03

x 
− 

0.
16

y 
= 

1.
13

x 
+ 

0.
31

y 
= 

1.
13

x 
+ 

0.
43

0.
93

0.
91

0.
89

2.
8

3.
0

3.
2

(Δ
I; 

ΔS
)

(0
.1

2;
 0

.0
3)

(0
.1

4;
 0

.0
3)

(0
.1

5;
 0

.0
4)

4
1s

t d
er

iv
at

iv
e

y 
= 

0.
99

x 
+ 

0.
19

y 
= 

1.
01

x 
+ 

0.
46

y 
= 

1.
07

x 
+ 

0.
18

0.
99

0.
95

0.
95

1.
5

1.
9

2.
1

(Δ
I; 

ΔS
)

(0
.1

1;
 0

.0
2)

(0
.1

3;
 0

.0
2)

(0
.1

4;
 0

.0
4)

5
2n

d 
de

riv
a-

tiv
e

y 
= 

1.
23

x 
− 

0.
44

y 
= 

1.
19

x 
− 

0.
14

y 
= 

1.
10

x 
+ 

0.
25

0.
93

0.
91

0.
88

2.
9

3.
0

3.
3

(Δ
I; 

ΔS
)

(0
.1

3;
 0

.0
3)

(0
.1

4;
 0

.0
5)

(0
.1

6;
 0

.0
6)

PL
S-

R
4

No
rm

al
y 

= 
1.

15
x 

− 
0.

04
y 

= 
1.

12
x 

+ 
0.

53
y 

= 
1.

22
x

0.
94

0.
92

0.
90

1.
7

2.
3

2.
1

(Δ
I; 

ΔS
)

(0
.1

2;
 0

.0
3)

(0
.1

4;
 0

.0
5)

(0
.1

6;
 0

.0
7)

3
1s

t d
er

iv
at

iv
e

y 
= 

1.
00

x 
+ 

0.
14

y 
= 

1.
01

x 
+ 

0.
33

y 
= 

1.
01

x 
+ 

0.
41

0.
99

0.
96

0.
96

1.
4

1.
7

1.
9

(Δ
I; 

ΔS
)

(0
.1

1;
 0

.0
2)

(0
.1

3;
 0

.0
3)

(0
.1

4;
 0

.0
4)

5
2n

d 
de

riv
a-

tiv
e

y 
= 

1.
20

x 
− 

0.
35

y 
= 

1.
09

x 
− 

0.
12

y 
= 

1.
17

x 
+ 

0.
37

0.
94

0.
92

0.
80

1.
9

2.
0

2.
4

(Δ
I; 

ΔS
)

(0
.1

3;
 0

.0
2)

(0
.1

5;
 0

.0
5)

(0
.1

7;
 0

.0
6)

N
ot

es
: Δ

I–
Er

ro
r o

n 
th

e 
in

te
rc

ep
t; 

ΔS
–E

rr
or

 o
n 

th
e 

sl
op

e.

D
ow

nl
oa

de
d 

by
 [

2.
80

.3
4.

19
2]

 a
t 1

3:
43

 1
6 

M
ar

ch
 2

01
5 



Page 12 of 14

Vilela et al., Cogent Food & Agriculture (2015), 1: 1020254
http://dx.doi.org/10.1080/23311932.2015.1020254

three factors. A fairly higher value of 2.1% V/V was attained for a four-factor PCR model. The greater 
difference of the RMSE value between calibration and prediction sets was 0.60 (~28%), for the PCR 
model, using the first derivative.

4. Conclusions
In this work, we presented a preliminary study of the applicability of FTIR-ATR spectroscopy in the 
prediction of the adulteration of sunflower oil with thermally deteriorated oil. PCR and PLS-R multi-
variate regression techniques were found suitable for the establishment of a practical experimental 
methodology.

Using PCA, we were able to establish the most informative wavenumbers that provide distinction 
between thermal deterioration conditions used in this work. Furthermore, LDA was able to differenti-
ate between pure SO and SO adulterated with 5% V/V or less of TDO. Using LDA methodology, a 
detection limit of 1% V/V was established.

Assessment of the predictability of the models was achieved by the analysis of a set of external 
samples. A value for the RMSE of prediction of 1.9% V/V was obtained for a three-factor PLS-R model 
based on the first derivative of spectral data.

In conclusion, FTIR spectroscopy combined with PLS-R applied to the first derivative of spectral 
data is reliable technique for the discrimination and quantification of TDO in SO.

Figure 5. Quality of the models 
for the relationship between 
measured concentration 
of thermally deteriorated 
sunflower oil (TDO) in pure 
sunflower oil (SO) samples 
and predicted values based on 
FTIR spectra: (a) PCR model 
and (b) PLS-R model, using first 
derivative of spectral data.
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