© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted for publication. DOI: 10.1109/THMS.2015.2421511

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

Formal Verification of a Space System’s User
Interface with the IVY workbench

José Creissac Campos, Manuel Sousa, Miriam C. Bergue Alves, Michael D. Harrison

Abstract—This paper describes the application of the IVY
workbench to the formal analysis of a user interface for a safety-
critical aerospace system. The operations manual of the system
was used as a requirements document and this made it possible
to build a reference model of the user interface, focusing on
navigation between displays, the information provided by each
display and how they are interrelated. Usability related property
specification patterns were then used to derive relevant properties
for verification. This paper discusses both the modeling strategy
and the analytical results found using the IVY workbench. The
purpose of the reference model is to provide a standard against
which future versions of the interface may be assessed.

Index Terms—Formal verification, IVY workbench, usability.

I. INTRODUCTION

Being able to continue to validate requirements throughout
the life of a system is particularly important when a system
is safety critical. System updates can include replacement
of components and changes to the user interface to reflect
new technologies. Formal specification techniques can play a
role in this ongoing process by providing a proven and valid
reference model and identifying critical properties to be used
as criteria for the acceptance of system updates.

A 1994 paper [1] that investigated computer related deaths
amongst a range of accident descriptions revealed that 92%
of computer related deaths could be related to user interac-
tion failures. Since 1994 user interface designs have become
increasingly complex and, even though developers are more
sensitized to use failures, user interaction continues to be a
major issue. Important problems in the analysis of interactive
systems result from the complexity and concealed nature of
interaction modes introduced by new technologies. Failures
often arise because of mode confusions [2] which are a
consequence of poor feedback. While it is possible to explore
these mode complexities and confusions using a range of
techniques, successful analysis should be systematic and ex-
haustive. Formal analysis techniques have been developed that

Manuscript received —; revised — This work was partly funded by project
ref. NORTE-07-0124-FEDER-000062, co-financed by the North Portugal
Regional Operational Programme (ON.2 O Novo Norte), under the National
Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through the Portuguese
foundation for science and technology (FCT).

J. C, Campos is with Departamento de Informatica, Universidade do Minho
& HASLab/INESC TEC, Campus de Gualtar, 4710-057 Braga, Portugal. e-
mail: jose.campos@di.uminho.pt

M. Sousa is with WeDo Technologies, Braga, Portugal.

M. Alves is with Instituto de Aerondutica e Espaco (Aeronautics and Space
Institute), Sao José dos Campos, Brazil.

M. D. Harrison is with Newcastle University, Newcastle upon Tyne &
Queen Mary University of London, Mile End Road, London, UK.

provide such analyses. The advantage of these techniques for
identifying potential problems is that they are precise, concise
and amenable to automated, computer-aided analysis. Their
disadvantage is that, although significant progress has made
these tools more effective and usable, the scope of analysis
is narrow in comparison with traditional usability analysis
techniques. The challenge is to develop tools that can be used
effectively by developers.

This paper’s main goal is to show how a particular formal
technique is applied to the user interface of a safety-critical
system used within the aerospace domain. A reference model
is produced that satisfies a set of user interface properties and
can be used as a standard against future versions of the design.
The approach is based on model checking techniques using the
IVY workbench [3], [4], a model-based tool for the analysis of
interactive systems, which has shown its potential to be used
in other critical areas [5], [6]. Analysis uses models that are
constructed of the user interfaces under analysis. Verification
is achieved by proving a set of properties (many based on
templates) that express requirements over the specified use of
the system.

The system, responsible for the ground control, testing and
preparation of a satellite launcher developed by the Brazilian
Space Launcher Program, is an evolving legacy system. It has
been in use for more than 15 years. Over time, the system’s
requirements and in particular user interface requirements
have remained mostly unchanged. There is a good reason
for conservatism. Changes to the user interface are likely to
change operating procedures with consequent training costs
and potential for user error.

The motivation for the current work is twofold. On the
one hand, the existing system is due for replacement and it
is understood by the organization that building a thorough
understanding of it (including its user interface) will help
shape the requirements for the new system, its testing and
acceptance. The challenge for the present paper is that re-
quirements should be expressed at an appropriate level, and
be capable of formulation as properties, so that evolutions
of the design can be shown to satisfy the requirements. A
further aim is that the evolution can be tested in relation to
the requirements.

On the other hand, the user interface of the system has
two features that make it challenging from the perspective
of formal modeling. It features a number of workstations
with relatively complex displays, each involving a number of
overlapping but interdependent panels. Operators are able to
switch between these panels and mode confusions can arise
as a result. While mode confusions have previously been

2 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

analyzed using the approach to be described in this paper
[3], [4], the particular challenge here is how to model the
screen and whether the approach used in previous analysis will
scale. The other feature is that the system is safety critical
and therefore verification and validation is typically audited
independently by a third party. The focus of the analysis is
on the interaction between operators and system, and for this
reason the formal model of the system is based on the User
Operation Manual. The manual provides a detailed account of
the user interface of the system and therefore a good basis for
the reference model.

The developed model, expressed in the MAL (Modal Action
Logic) Interactors language, captures a relevant subset of the
system’s user interface as a hierarchy of interactors. The paper
(as space and non disclosure agreement constraints allow)
illustrates part of the model that has been developed. A
collection of feedback properties are proved of the system.

In summary, the paper’s main contribution is an illustration
of how a model developed from an operations manual can be
used to reason about the intended design of a system’s user
interface, and of how the manual made it possible to develop
such a model of the user interface without detailed technical
information about the system’s implementation. As will be
illustrated, the model enabled reasoning about properties of the
system’s user interface. While it is relevant to point out that
these properties are proved of the system as described in the
operations manuals, the paper also shows how it was possible
to uncover missing information in the manual itself; that is, the
model and the manual can be tested against an implementation
of the concrete system. An additional contribution is the
illustration of the scalability of the verification approach used.
A preliminary description of this work was published as [7].
The current paper extends it by providing a more detailed
account of the process, particularly the analysis and discussion
of results.

The paper is structured as follows. Section II discusses the
research that provides the background to this analysis. Section
III describes the space ground legacy system and Section
IV describes the formal approach used. Sections V and VI
describe the model of the system and its analysis. Section VII
discusses the results. Section VIII concludes the paper.

II. RELATED WORK

Most existing analytical and inspection-based usability anal-
ysis methods do not provide a style of analysis that is system-
atic and exhaustive enough to provide adequate guarantees of
compliance with given requirements for safety critical systems.
Formal methods are able to provide such systematic and
exhaustive analysis. Model-checking [8], is one such formal
technology that involves exploration of the state space defined
by the model of the system (its specification). It can use this
exploration to verify that the system model satisfies formulas
representing relevant properties. These formulas are expressed
in a temporal logic and describe properties over the behavior of
the system. When verification fails, the model checker points
out (if it exists) a behavior of the system (a counter-example)

that provides an example of where the property fails'.

The applicability of formal methods to the modeling and
verification of safety-critical systems such as space systems
and other safety critical domains has been extensively explored
[9], [10], [11], [12], [13]. This applicability of exhaustive and
repeatable analysis of user-system interaction is an active topic
of research. Areas of applicability include avionics [14], [2],
and the medical field [15], [4], [16], [5].

Bolton et al. [17] have identified two broad categories of
approach. Those that focus on the analysis of the user interface
of the system, and those that focus on the analysis of how the
system is (supposed to be) used. Approaches in the first group,
of which our work [14], [3], [4] is an example, typically use a
model of the user interface under analysis, proving properties
of the interface that are relevant to the operation of the system.
Examples of properties include usability principles (e.g. [3],
[18], [19]), mode confusion properties (e.g. [20], [14], [2],
[21]) and user-related safety requirements [22], [23]. To help
focus on user relevant issues and behavior, the inclusion of
mental models (models of how the user believes that the
system will work) or knowledge models (models of what the
user knows about how to use the system) have been used to
augment the analysis. Examples of the use of mental models
include [2] and [24]. Examples of the use of knowledge models
include [25] and [6].

Approaches in the second group (focusing on use) work
either with task models of how the users are supposed to use
the system (their observed behavior) [26], [27], [28], or with
cognitive models of the mental process that drive that behavior
[29], [30], [31].

Initially case studies used to develop and/or illustrate the
approaches tended to be relatively small devices, raising ques-
tions as to whether the techniques would scale. The growing
maturity of the area has meant that these techniques and
tools can be scaled to real problems [32], [5]. An important
consideration when performing analysis is to know which
properties are relevant to which systems and how to express
these properties in the appropriate logic for verification. The
relevance of properties is largely domain dependent relying
on knowledge of the system as a whole. At the same time a
correct understanding of the model, the requirements, and the
logic in which properties are expressed, is needed in order to
guarantee that the properties being verified encode the intent of
the verification process. As illustrated by [33], many situations
can be found in the literature where a logical formula used for
verification does not correspond to what was intended.

Specification patterns can be used to address the problem
of property formulation [33]. These patterns are helpful, not
only to support the process of writing correct properties,
but also as prompts for potentially relevant properties that
should be verified. In the specific case of interactive systems,
patterns capturing relevant usability properties (e.g., feedback)

For some properties, providing a counter-example is not possible. Con-
sider, for example, the case of trying to prove that the system can reach some
designated state. If that is false, the counter-example would have to be all
possible behaviors of the system. In more technical terms, what happens is
that for formulas with existential path quantifiers a single behavior of the
system is not enough to demonstrate them false.

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 3

Operational Oparational
[Telematry Time |_operators | [Bateries | o I .
l Synchronization Cnmml.rlcatlun SlgnaIaHGn
.. "

PW PR CR MN i
Subsystem Subsaystem | SBubsystam | Subsystem | 1

i

i | sc EV
| | Subsystem Subsystem
i

UMBILICAL

INTERFACES CORDS

13IH20Y

Fig. 1. The TPGS’s macro architecture

have been proposed [4]. Alternative approaches include the
automatic generation of properties from task models [34].
Patterns are used in this paper to explore a model of a
safety critical system’s user interface systematically. The aim
is to verify that the model exhibits relevant generic properties
related to the modeled system’s safety as well as its usability.
These properties specify requirements that are recognized by
regulators as mitigating relevant risks. This model is capable
of being used as a benchmark against which the system and
its evolution can be assessed. This process should enable
identification of relevant aspects of the system that might
impact its safety and therefore require further scrutiny.

III. THE TESTING AND PREPARATION SYSTEM (TPGS)

The TPGS is a ground based system that has been used
to support space mission preparation for more than 15 years
as part of the Brazilian Space Launcher Program. It is a
legacy safety-critical system containing customized hardware
and software components. These components are responsible
for ground control, testing and pre-launch preparation of a
satellite launch rocket. It consists of six subsystems each pro-
viding specific functionality relevant to the rocket’s testing and
preparation. Each subsystem is operated through a dedicated
workstation whose user interfaces comprise both a GUI based
interface and a physical panel of buttons and actuators. Figure
1 shows the macro-architecture of the system.

The functional requirements for the TPGS were established
separately for each subsystem and are described in a 250-
page document. The rockets preparation process for flight
includes thoroughly checking specific parts of the rockets
electrical network. The operator of each subsystem must
follow a comprehensive preparation checklist that performs
critical procedures and interactions with the rocket’s hardware
and software in real-time. The preparation and testing process
is triggered by operator interaction with the system via the
user interfaces. The GUI of each subsystem must support these
procedures and interactions so that the checklist is successfully
completed.

The software components of TPGS are often updated as ap-
propriate to accommodate new mission requirements, different
rocket configurations, and new operating systems releases. The
hardware is also occasionally upgraded as a result of equip-
ment obsolescence. An important goal is that despite these
updates operating procedures are changed as little as possible.

As main contractors the Space Institute have responsibilities
for these activities. A goal of the Space Institute is to provide
a set of formally specified and validated critical requirements
to serve as a baseline (an oracle) for system acceptance. This
goal includes providing a set of user interface requirements for
correct mission-safety system operation that do not change as
the system evolves through updates and upgrades. It is this
role that the reference model is designed to play.

Models of the system’s user interfaces derived from the
Operator Manual contribute to this goal. This is achieved by
establishing a set of human interaction sequences with the
system along with the critical properties to be verified within
each sequence. The purpose behind this strategy is to run tests
on a new or updated system that will enable the clients (e.g.
subject matter experts) to use the verified set of user interfaces
as a basis for accepting the new operation environment.

The GUIs of two of the subsystems have been modeled so
far. The EV (flight events’ sequencing) subsystem has been
chosen as illustration. This SCADA (supervisory control and
data acquisition) system enables the operator to monitor the
state of different aspects of the system and relevant flight
events during sequence testing and launching. It enables the
operator to activate different tests and allows the operator to
activate the rocket’s security mechanical devices during the
automatic sequencing for launching. The EV subsystem’s GUI
consists of panels, each presenting a different view of the
system (examples are telemetry readings and a synoptic view
of the system). A row of buttons at the top of the panel allows
access to the different panels available in the subsystem. Each
panel contains tens of graphical elements representing system
variables (examples are a voltage reading and the state of a
relay). When a parameter falls outside specified bounds an
alert or alarm is raised and the displayed parameter changes
color (yellow for alerts, red for alarms) or blinks depending on
severity. The button that accesses the panel also changes color
or blinks. Two panels are designated to collect and display the
alarms and alerts reported in the other panels. More details
about the system are provided in Section V.

IV. THE FORMAL APPROACH

The analysis process used in this case study is supported
by the IVY tool. Further details can be found in [14], [3],
[4]. The IVY tool supports the MAL interactor language for
modeling the systems, the specification of properties, and the
presentation of any feedback produced when a property fails.
These elements are described in more detail in this section.

A. The MAL language

Models are developed in the MAL Interactor language.
The interactor is a structuring object [35] that describes how
part of its state is rendered to some presentation medium.
More explanation of the notation and its use can be found in
Section V. MAL is used because it describes state transitions
in a similar form to those specified by graphical notations
such as Simulink statecharts. Notations such as these are
increasingly acceptable to industry (see [36] for example).

A MAL interactor is defined by:

4 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

& PropertiesEditor

Replace

@ TracesAnalyzer

Find prev

IVY Workbench 1.5.3 [Editorv2]

@ WildAniMAL |

Find next Regex [) Match Case | Replaceall

W teste2-en.i interactors
» 4 types
v 4 sinVariable

v L attributes

S&d N AR

colour interactor sinVariable
attributes
O blkFeature [v:-] colour: Colour
 value [
» L actions 22 [
23 actions
setvalue(Int)

1 blkFeature: boolean
value: Int
4 axioms
v 4 SIN
» % aggregates
» L attributes
» L actions
4 axioms
4 tmtvariable

ackAlarmalert

axioms

[setvalue(_v)] value' = v
[ackAlarmAlert] keep(value)

0 interactor SIN
aggregates
sinvariable BD1A

» L attributes 1
» 4 actions sinVariable BD1Avoltage
attributes

+ axioms 35 [vi:] RSAAC: boolean #
v 4 TMT 3 [automatic: boolean #
v 4 aggregates 3 ; colour: Colour
3 blkFeature: boolean
» @ BDI1A:tmtvariabl H
€ BD1AmtVariable [/12] relRSA4C: boolean
» ¢ BD1Avoltage:tmtVariable actions
» 4 attributes setvalue2(Id, Int)
> & actions setRSA4C(boolean)
L axioms

setAutomatic
setManual

» 4 alertVariable ackalarmilert(Id)

» 4 ALER

» 4 alarmvariable

>

>

<

relayInhib

relayRel
4 ALAR axions

4 main
4 test

per(BD1A. ackhlarmalert)

[lA T ALk (BN ASAL] aff

Fig. 2. The IVY tool

« a set of typed attributes that define the interactor’s state;

« a mapping of the state to some presentation medium;

« a set of actions that define operations on the state;

o a set of axioms written in MAL that define the semantics
of the actions in terms of their effect on the state.

Those parts of the state that are rendered are indicated by
decorating the attributes with modality annotations. MAL
axioms define how an interactor’s state changes in response to
interactor actions. Axioms are of three types:

o Propositional axioms — which define axioms that must
always be true of the state of the interactor;

e Modal axioms — these axioms define the effect of an
action on the state of the interactor;

o Deontic axioms — these axioms define the conditions
under which an action is permitted or obligatory.

Models are constructed by composing interactors hierarchi-
cally. A model can therefore be seen as a state machine, where
the states are defined by the attribute values and the transitions
are labelled by the actions that cause changes to the attributes.

B. The CTL logic

Properties for verification are specified in CTL (Computa-
tional Tree Logic) [8]. These express assumptions about the
expected behavior of the device. The example focuses on a
general problem in user interfaces that confusions can occur
when modes or other aspects of the system state are not clearly
indicated and as a result the behavior of actions is unclear [3].

CTL enables description of quantifiers over paths in the
model using either the operator “A” (along all paths) or “E”
(along at least one path). Predicates on states in these paths
may be expressed using temporal operators “G” (always), “F”
(eventually), or “X” (in the next state). Propositional logic is

> effect(ackAlarmAlert(action

[« k Simulator [INENEE
” & @ [X | Tabular
”C‘l > KAV popup

AG (monitTMT.BD1A.col + | 8

_ Filters Area

L = 1
mainaction

beepEnbld FALSE

beeping FALSE TRUE

display SysArcess SysAccess
monitALAR.ED1A.action setstate(NA.
critical TRUE TRUE
error none Lim
state Good NACKAlarm
action
eritical FALSE FALSE
yyyyy none none
state Good Good
action setstate(sD
blkFeature FALSE TRUE

[1 RSA4C = false & automatic = true & relRSA4C = colour Green Red

monitALER BD1A.action
error none nane
state Good Good

LAY A A lar error none none
state Goad Good

5

used to express the state properties. By combining quantifiers
and predicates it is possible to express properties such as that
some state property is true of all states, or that some state
property is inevitable. For example:

o AG(effected(help) — display = helpScr) means that,
for all paths starting at the current state (A), and for all
states in those paths (G), the help action (effected (help)?)
implies that attribute display has value helpScr

o EX(display = helpScr) means that for some path (E),
in the next state in that path (X)) the display attribute has
value helpScr

o EF(display = helpScr) means that for some path (£),
in some state in that path (F) the display attribute has
value helpScr

C. Tool support — The IVY workbench

The IVY tool (see Figure 2) supports the development
of models of the interactive device, the formulation of re-
quired properties of the device’s behavior and their verification
through model checking. When verification fails, the counter-
examples produced by the verification process act as scenarios
for analysis. The tool supports these activities as follows.

1) Building models: Models are developed in the MAL
Interactor language. IVY offers a textual editor that supports
syntax highlighting, code completion, undo/redo and other
usual editing facilities. The editor also presents as a side panel
a tree view of the model that allows easy navigation of the
model’s structure.

2) Expressing and verifying properties: Patterns help ex-
press properties. They have been collected from a number of

2The effected operator is part of MAL, not CTL.

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 5

| B Editorv2 # PropertiesEditor

k Simulator

IVY Workbench 1.5.3 [TracesAnalyzer]

& WildAniMAL |

H & @ [X | State Based B

AG (monitTMT.BD1A.colour = green -> I(EX monitTMT.BD1A.colour = red)) is false =

Hc H >k Popups

CLOBAL main monitiIN

monitiIN.BOLA

monitThT monitTMT BOLA >

automatic=TRUE
relRSAAC=FALSE

dis play=Frincipal

tmt setValue2 @D 14,2}

automatic=FALSE
relREAAC=FALSE

display=MonitTs|

colour=grasn
critical=FALSE
characteristic=Fined
walue=3

setValueQ)

colour=red
critical=FALSE
characteristic=Fined
walue=2

colour=gresn
characteristic=Fixed

supAlertlim=0
calour=graan
critical =FALSE
state=AckAlert
srrar=Lim
infélamLim=2
unity="E5
characteristic=Fixed
supAlammlim=3
walue=D
infilertLim=0

setValue2(@D14.2) setValueQ)

colour=yellon
characteristic=Fixed

supAlertlim=0
colour=red

critical =FALSE
state=AckAlert
srrar=Lim
infalamLim=0
unity="E5
characteristic=Fixed

Fig. 3. State-based representation of a trace.

sources [37], [38]. The tool supports the selection and instanti-
ation of patterns, with the actions and attributes of the model,
thus facilitating the identification and development of CTL
properties that describe requirements. The verification step
itself is performed by invoking the NuSMV model checker
[39] from the IVY tool. MAL interactor models are translated
automatically into equivalent SMV models.

3) Analyzing results: Visual representations of counter-
examples where properties fail are offered to provide support
for analysis. A tabular representation (see inset in Figure 2)
uses columns to represent states and lines for actions and
attributes. The yellow/darker background color is used to
highlight actions or attributes where values have changed.
An alternative state-based representation (see Figure 3) is
also offered that represents each interactor by a column that
shows the states that the interactor goes through. Actions are
indicated by labels on the arcs between two consecutive states.

Properties can be checked using the model checker and
refined iteratively to verify the circumstances in which a
property is true. If it fails to be true then the trace offers a
counter-example. These counter-examples provide three types
of information. Property failure can be the result of a deliberate
strategy by the analyst, in which the originally property is
negated in order to obtain a sequence of actions representing
a potentially significant scenario where the required property
is satisfied. For example, alternative sequences that involve a
confirming action can be used to assess situations in which the
confirming action could be used. The failure of a property can
also provide valuable feedback to indicate why the modeled
system fails the property. This can be useful in redesign, or
in deciding that the circumstances in which the property fails
are not significant in terms of the correctness and safety of
the system. The failure of a property can, finally, indicate
that the property is not adequate as its stands to represent the
requirement. This kind of failure would result in refinement
of the property.

V. MODELING THE EV SUBSYSTEM

A formal model of the EV subsystem offers benefits. It
enables a clearer understanding of the system. It also enables
exhaustive and systematic analysis of the modeled system. For
these benefits to be manifest an appropriate level of abstraction
must be taken in the model. The focus of the model in this
case is to capture the information and actions that are available
through the user interface. A focus on the user interface to the
EV subsystem can be achieved without making assumptions
about the behavior of the rocket and its supporting systems.
The model of the user interface developed for the case study
is triggered by these systems randomly. There are of course
situations where these other parts of the system are important
to an understanding of the user interface as is described, for
example, in [40].

Constructing a model from the User Operation Manual
that was sufficiently rich to provide meaningful feedback to
the Aeronautics and Space Institute (IAE) team offered a
significant challenge.

A. Macro-structure of the model

The EV subsystem operation manual describes the EV
subsystem as consisting of 23 interdependent panels each
featuring output elements exhibiting slightly different behav-
iors. Interdependency is most evident in the alarms and alerts
panels which aggregate information variables that are in an
alarm/alert condition from the other panels. Previous analyses
using the IVY tool have involved multiple panels (see, for
example, [5]) but they have used a flat model structure,
employing a single interactor. This single interactor represents
the union of all panel information. While this made it simpler
to describe coordination between different elements of the
panel, it was only capable of dealing with relatively simple
display combinations. More structure was sought to achieve a
more general approach. The specified model uses the object-
oriented features (in particular the aggregation relation) of

6 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

o 0

SIN Panel TMT Panel Alarm Pane Alert Panel
SIN TMT ALAR ALER

1.* 1.* 1.* 1.*

sinVariable tmtVariable alarmVariable alertVariable

Fig. 4. The models’s macro architecture (aggregation is represented, in UML
style [41], by a connection with a diamond shape on the aggregator’s side).

the MAL interactor language to create a tree-like structure
of panels.

Figure 4 shows the architecture of the model describing four
of the panels An interactor for each panel is aggregated in the
main interactor. Each panel interactor aggregates interactors
that represent the state, the display behavior and controls
associated with the displayed variables. Many instances of
variables are needed to represent the information that a panel
displays. This structured approach enables better management
of the scalability of the model. However a remaining challenge
is expressing coordination between panels.

Although alternative approaches have been explored (cf.
[42]), the composition of interactors is currently strictly hierar-
chical. The main interactor coordinates dependencies between
all the other interactors. It ensures that changes to the state of
a panel variable are reflected throughout the model, including,
for example, the Alarm and Alert panels. These panels provide
a summary view of the variables that are in an alarm or alert
condition. Furthermore, each interactor representing a panel is
responsible for its own internal dependencies. This approach
favors an incremental style of modeling, in which detail can
be gradually added to each interactor as modeling progresses
and/or more information becomes available. This happens both
in terms of adding additional panels to the model, and in
adding detail to each of the panels. It remains to be seen
however how this centralized approach will scale as more
variables and panels are added to the model; not only in
terms of expressing the coordination, but also in terms of
computational resources during verification.

B. Navigation between panels

The user interface of the EV subsystem contains a top row
of navigation buttons and a display area where the panels
are shown. Which panel is being displayed is captured in
the model by an attribute (display). The attribute has type
Screens, representing all panels that compose the subsystem:

types
Screens = { MainScr, Events, Proced, Reports, Help, ...}
interactor main
attributes

[vis|display : Screens

The [vis] annotation in the display attribute indicates that the
information represented by the attribute is visible; that is, users
can see which panel is being displayed.

Navigation buttons are modeled by actions. These actions
update the value of the display attribute. For example, the
action sinBtn changes the value of display to indicate that
the Synoptic panel is visible.

actions

sinBtn tmtBtn alertsBtn alarmsBin ...
axioms

[sinBtn] display’ = Synoptic

This action is only permitted when the appropriate navi-
gation button appears on the user interface. As described in
the manual, the row of navigation buttons is not available
on a number of panels, including the login (SysAccess)
and exit (EndScr) panels, and when the system is blocked
(ScreenLock). For action sinBtn, this is specified by the
permission axiom:

per (sinBtn) — !(display in {SysAccess,
SEVaccess, ScreenLock, SelScr, EndScr})

All actions that are used to navigate between panels are
specified similarly. To complete the navigation model the
initial panel of the system is described. This is done using
the initialization axiom:

[|display = SysAccess

C. Modeling the panels

Each of the panels of the EV subsystem presents informa-
tion about a specific aspect of the system. Modeling a panel
involves defining the the variables represented on the panel
along with the additional actions and control logic that relate
to them. The manual describes these in detail.

1) Variables: Displayed variables can have behavior; for
example, they change color under certain conditions. These
variables are captured as interactors which are then aggregated
into the panel’s own interactor. Simpler variables, where color
and display characteristics are not relevant (for example, the
state of a relay represented as a boolean value), are included
directly as attributes. In most cases the manual describes
variables as having a value that can change over time, a color
used to display the value, and a display characteristic, which
can be either fixed or blinking.

The value of a variable is modified according to underlying
system properties (e.g. temperature of some specific device).
The model assumes nothing about the processes that the
subsystem manages. Therefore, it provides no restriction on
the behaviors of variables, which permits an analysis of error
behavior.

Variables can be critical or non-critical, depending on which
system property they represent. The telemetry monitoring
panel (modeled by interactor TMT) is a good example be-
cause it includes more complex variables that feature addi-
tional characteristics including “working limits,” description,

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 7

and measurement units. The working limits specify when alerts
or alarms can occur. Alerts and alarms must be acknowledged
by the operator by selecting the corresponding entry on the
alerts or alarms panel. The ¢mtVariable interactor specifies at-
tributes including value, color and other display characteristics.
Changing the variable and its attributes is achieved generically
through the setValue(int) action. This action specifies how
the panel reacts to changes to the underlying system properties.
Axioms defining this action are of a general form, where
priming is used to reference the value of an attribute in the
state after the action has happened, as follows:

[setValue(_v)] (conditions on _v) —
value' = v
& color’ = new_color_value
& characteristic’ = new_characteristic_value

As an illustration of how the model was generated
from the operation manual, consider the following ex-
tract (translated from the Portuguese original), which de-
scribes when a variable from the telemetry monitor-
ing panel should be displayed in blinking yellow (.e.,
value’ = yellow & characteristic’ = blink):

Blinking yellow: For a critical variable, when the
current value of the variable is in non acknowledged
alert (value within the alert range), there is no
acknowledged alarm in the variable, and the pre-
vious criterion [non acknowledged alarm criterion]
is not satisfied. If over the same critical variable an
acknowledged alarm exists, then Fixed Red prevails.
For a non critical variable, when the current value
of the variable is a non acknowledged alarm (value
within the alarm range)

Whether a variable is critical or not is represented by
the boolean attribute critical, and the upper and lower
alert and alarm limits by infAlertLim/supAlertLim and
infAlarmLim/supAlarmLim, respectively. The condition ex-
pressed in the first sentence of the quote above can therefore
be expressed as:

critical
& ((_v >=infAlarmLim & _v < infAlertLim)
| (Lv <= supAlarmLim & _v > supAlertLim))
& alarmState! = AckAlarm & alarmState! = NAckAlarm)

where AckAlarm is the acknowledged alarm state and NAck-
Alarm is the non acknowledged alarm state.

In the same way the last sentence of the manual extract can
be represented by the expression:

leritical & ((_v < infAlarmLim)|(_v > supAlarmLim))

The full axiom representing these two sentences is presented
in Figure 5. The type of error and the units associated with
the variable are also described in this instantiation. The keep
operator is used to express that the value of the listed attributes
are kept unchanged. The value of an attribute will change non-
deterministically in MAL, unless this is ruled out by the keep
operator, or the value is explicitly set by the modal axiom.

The middle sentence of the manual extract is not directly
included in the axiom in Figure 5. Because that sentence is

about the red color, it is addressed in a different axiom, dealing
with the red color.

2) Panels: Besides defining the values being displayed and
the actions supported, each interactor representing a panel also
models the color of the panel’s access button and its blinking
characteristic.

The TMT interactor is therefore described as follows (note
that since its purpose is to provide the means to monitor
variables there are no user actions relating to the variables
in this case).

interactor TMT
aggregates
tmtVariable via BD1A
tmtVariable via BD1B

attributes
characteristic : Characteristic
color : Color

actions
setValue2(Id, Int)

The manual states that an access button is red and blinking
when at least one critical variable of a given panel is in a non-
acknowledged alarm state. These constraints are expressed as
an invariant over the interactor as is illustrated by the following
invariant that expresses the blinking red condition:

BD1A.alarmState = NAckAlarm —

(color = red & characteristic = blink)
BD1B.alarmState = NAckAlarm —

(color = red & characteristic = blink)

The setValue2 action is used to change the value of a vari-
able on the panel. The first argument identifies the variable, the
second its new value. It is coordinated with BDIA.setValue and
BDIB.setValue (depending on the first argument) by adding
constraints to ensure the requirement that when a variable
sets its value the panel performs the same action (the effect
operator asserts the occurrence of an action):

effect(BD1A.setValue(_v)) —
effect((set Value2(BDI1A, _v))
effect(BD1B.setValue(_v)) —
effect(setValue2(BDI1A, _v))
per (setValue2(BD1A, _v)) —
effect(BD1A.setValue(_v))
per (setValue2(BD1B, _v)) —
effect(BD1B.setValue(_v))

The first two implications specify that when the BDIA or
BDIB variables set their values the setting of the variable is
done in the telemetry panel too (i.e., setValue2 happens when
any of the variables are set). The third and fourth implications
state that setValue2 for BDIA and BDIB are only permitted
when BDIA and BDIB respectively are set. In other words
setValue2 cannot happen unless a variable is set.

For the sake of simplicity the axioms above describe a panel
with only two variables. Adding more variables amounts to
adding more axioms, or adding conditions to the existing ones
using the same principle. It should be noted that in the final

8 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

[setValue(_v)] (

((critical & ((_v >=infAlarmLim & _v < infAlertLim)

| (Lv <= supAlarmLim & _v > supAlertLim)))
| (Yeritical & ((_v < infAlarmLim) | (_v > supAlarmLim))))
& (alarmState = AckAlarm & alarmState '= NAckAlarm))
— walue’ = _v & color’ = yellow & error’ = Lim
& alertState’ = NAckAlert & characteristic’ = Blink
& keep(supAlertLim, infAlertLim, supAlarmLim, infAlarmLim, unit, critical, alarmState)

Fig. 5. Axiom for the blinking yellow case (tmtVariable interactor)

version of the model simplification was achieved by combining
some of these axioms.

3) Adding more panels: The other panels defined for the
system have similar characteristics. For example, the SIN
panel features safety relays in addition to variables. Each relay
indicates whether it can be released or not. Relays are defined
as boolean attributes of the SIN Interactor. The SIN panel also
has the additional feature that it can be set to automatic mode.

As long as no dependencies between the panels exist, adding
more panels to the model is only a matter of aggregating their
corresponding interactors in main. When interdependencies
exist, the states and/or actions of the relevant interactors must
be coordinated as will be discussed in the next section.

D. Coordination between the panels

The same variable can be represented in more than one
panel thereby creating interdependencies between the panels.
If the value changes in one panel, it must also change in the
other. Examples are the alarms and alerts panels, which feature
lists of alarms and alerts fed with information from the other
panels. The approach used in the TMT panel is used here.
The alerts and alarms variables are defined and aggregated to
create the panels’ models, as captured in the ALER and ALAR
interactors. A distinctive feature of these panels is that their
content is solely defined by the alarms and alerts occurring in
the other panels in the system, and that the acknowledgment
of alarms/alerts must also be reflected in the original variable.
To support this an acknowledge action was added to the other
interactors (e.g., TMT and SIN).

Coordination of variables’ values between panels is ex-
pressed in the main interactor. This coordination can either
be expressed in terms of invariants or in terms of modal
axioms. The use of invariants has already been illustrated when
specifying the coordination between the TMT panel and its
internal variables. Invariants can also be expressed over two
or more variables in different panels. To do this the axioms
must be placed in the main interactor. For example, specifying
that the variable BDIA must have the same value in the
monitTMT and monitSIN interactors, is as follows:

monitTMT.BD1A.value = monitSIN .BDI1A.value

Each interactor must then have (at least) one action that
enables setting the value so that when it changes in one
interactor it also changes in the other. The action being
used, however, is not defined explicitly. While this mechanism
for coordination scales well, it can generate unwanted side
effects. Two different axioms might, for example, express

requirements over attributes that, although not contradictory,
mean that no actions exist that achieve both effects. This will
create a deadlock in the model (i.e., a situation where no action
is possible) whose cause can be hard to diagnose. Auxiliary
actions must be added to solve the problem which can increase
complexity.

An alternative approach expresses coordination directly us-
ing modal axioms in the definition of actions. This can be done
at the level of actions or at the level of attributes. At the level
of actions, the coordinating main set Value action invokes the
actions in the coordinated panels:

[setValue(id, _v)] id = BD1Aid —
effect(monit TM T .setValue(BD1Aid, _v))
& effect(monitSIN .setValue(BD1Aid, _v))

At the level of attributes, the coordinating axiom, explicitly
sets the attributes in the coordinated panels:

[setValue(id, _v)] id = BD1Aid —
monitTMT.BD1A.value’ = _v
& monitSIN .BD1A.value' = v

In either case, setting the values in the panels must be con-
strained to happen only when setValue happens in the main
interactor, otherwise coordination would not be guaranteed:

per (monit TMT .setValue(_id, _v)) —

effect(set Value(_id, _v))
per (monitSIN .setValue(_id, _v)) —

effect(set Value(_id, _v))

The example illustrates that while this formulation makes
the coordination rationale somewhat more explicit, it is more
complex to formulate. In addition it does not completely
eliminate the implicit execution of actions. As a result of this
exercise an approach based on invariants was favored.

E. Confidence in the model

Before verification of the model can proceed, confidence
that the model serves as the required reference model must be
established. Confidence can be established by appealing to the
process that was used to construct the model. The User Opera-
tion Manual contains a detailed description of the interface and
its operation. This information was systematically translated
into the model as has already been illustrated. The modelers’
understanding of the manual was checked through discussion
with a subject matter specialist from the IAE. The model was
based on our understanding of what the user interface should

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 9

be. At the end of the process, the model was checked against
the manual by a member of the modeling team.

Confidence in the model was further achieved by investigat-
ing its behavior. This involved stating that some goal of the
system cannot be achieved and checking template properties.
This process aims to get counter-examples that can then be
analyzed with subject matter specialists to check whether the
illustrated behavior is consistent with understanding of the
system. Examples of how this was done are presented in the
next section.

When two axioms define conflicting behaviors for an action,
the model becomes empty and anything can be proved true of
its behavior. Although the model checker (NuSMV) can be
set to check for transition relation totality and the absence of
deadlocks, the negation of some of the initially proved prop-
erties was also checked as a means to prevent any problems
at this level.

VI. ANALYSIS

The first step in the analysis was to formulate properties
expressed in CTL. Once a property has been formulated it
is checked using the model checker, and the result inter-
preted. Checking the property is an automated step. However,
formulating properties and interpreting results, although tool
supported, requires human judgment.

At this point it must be stressed that the goal of the analysis
if not to prove the system correct. What the analysis provides
is an exhaustive investigation of the model against a collection
of properties found relevant of the system under consideration.
Two sources of properties can be identified. The first is
knowledge of the domain. Clearly domain knowledge plays a
relevant role in identifying relevant properties that a particular
user interface should or should not exhibit. The other regards
intrinsic properties of the user interface that are commonly
considered as good practice (for example, Nielsen’s usability
heuristics [38]). For both cases, IVY provides a collection
of property specification patterns to help identify and express
relevant properties (see Section IV-C above).

A. Formulating properties

The patterns provided by the IVY tool were used to gen-
erate properties for verification. An often-cited user-related
requirement of such a safety critical system (feedback) will be
used to illustrate the process. Providing appropriate feedback
is important in maintaining situation awareness and avoiding
mode confusion problems. Feedback is best considered in the
context of a system’s goals. An example is whether feedback
is always provided to the operator when a variable generates
an alarm or alert. For example, in the case of the telemetry
panel and the displayed attribute BDIA (monitTMT.BDIA),
the instantiation of the feedback pattern is presented in Fig-
ure 6. The instantiation specifies that the alarm/alert state
is represented by the error attribute. Feedback is provided
by changing the color of the telemetry panel’s access button
(modeled by attribute monitTMT.colour).

A family of IVALI-indexed properties is generated from the
template:

ece IVY Workbench 1.5.3 [PropertiesEditor]
| B Editorv2 S0 R Simulator @ TracesAnalyzer @ WildAniMAL |
EA(x)
Panerns
v B VY Current Parameter Values
v B ECS P: monit TMT.BD1A.errar=null
Completness Q: monitTMT.BD1A.error! =null
$: monitTMT.colour=IVALL
Eccentricity
Reachability Description: When P, then Q always provides feedback through the attributes in S.
v [Behavioural Consistency
Guarded Consistency P: A predicate on the state characterising the subset of states of interest to the analysis
Consistency
S: an attrib=IVALn expression defining which attributes are relevant to the analysis
v [Feedback €
| Note that 5 should only reference attributes with an associated modality.
[Guarded Feedback
Feedback Q: the action
v 5 Undo
Reversibility Intent: To verify that a given action provides feedback.
v [Immediate
Example: to be filled.
Undo tby any action) P
Undo (by a given action) Parameter P: [monitTMT.BD 1A error=null
» [Dwyer
[monitTMT.BDLA.error!=null
=il Parameter Q |
Parameter : [monitTMT.colour=IVALL
scope | Global + cam _ IVALValues
yellow, red, green
AG(monit TMT BD1A. error=null & monitTMT.colour=IVALL -> VAl
" . AX(monit TMT.BD 1A errori=null -> (monitTMT.colour=IVAL1))
Logic [CTL ¢
+ X &
AGmonitTMT BDIA.error=null & monitTMT.colour=yellow -> ..
Edition | Manual AG(monitTMT.BD1A.error=null & monitTMT.colour=red -> AX(...
AG(monitTMT.BD1A error=null & monitTMT.colour=green —> ... =

Fig. 6. The feedback pattern’s instantiation

AG(monitTMT.BD1A.error = null
& monitTMT .colour = IVAL1
— AX(monitTMT.BD1A.error = null
— Y(monitTMT .colour = IVALI)))

where IVALI ranges over the possible colors for the button
(yellow, red and green). This will generate three properties,
one for each value of IVALI. Note that these properties do
not have to be written, they are automatically generated by
successive instantiation of values of IVALI.

B. Verification

One interesting example of a property used in establishing
confidence in the model is presented in Property 1.

AG(monitTMT.BD1A.colour = green — (D
'EX (monitTMT.BD1A.colour = red))

To check that variables can be in an alert state, the property
negates that possibility. For variable BDIA, the property states
that for all states (AG) where the variable is in normal state
(its color is green: monitTMT.BDI1A.colour = green), there is
no next state (/EX) where the variable is in an alarm state
(color red: monitTMT.BDI1A.colour = red):

The property proved to be false, and a trace was generated
(see Figure 3). This trace highlighted a situation where the
BDIA variable is red under an acknowledged alert condition.
This situation conflicted with an understanding of how the
system worked based on the manual. Analysis of the model
indicated a lack of specification of what happens to a non-
critical alert. The manual on which the model was based
did not treat these conditions accurately. In practice this only
represents a problem if it is possible for a non-critical alert to
occur, and as a result the operator could be surprised by this
unexpected and undocumented behavior. This analysis enabled
us to uncover the potential for an automation surprise. This
finding led to discussion with the operator of the system and
the model was updated to consider non-critical alerts.

The feedback template, using the instantiation described in
the previous section, generates three properties:

AG(monitTMT.BD1A.error = null 2)

10 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

& monitTMT.colour = yellow
— AX(monitTMT.BD1A.error = null
— (monitTMT.colour = yellow)))
AG(monitTMT.BD1A.error = null 3)
& monitTMT .colour = red
— AX(monitTMT.BD1A.error = null
— (monitTMT .colour = red)))
AG(monitTMT.BD1A.error = null ()
& monitTMT .colour = green
— AX(monitTMT.BD1A.error |= null
— WmonitTMT.colour = green)))

The properties hold when the color is green or red (Properties
3 and 4), but not when it is yellow (Property 2). A counter-
example indicates that the button may be yellow already
because another variable is being alerted. The button’s color,
on its own, is not enough to guarantee that feedback is
provided when new alerts are raised. In fact even the beep
feature does not solve the problem because that feature can
be turned off. This is not necessarily a problem, but raises
discussion about the level of feedback provided by the system.
Is immediate feedback about individual variables needed, or
is the goal to call attention to alarms and alerts in general?
Discussion with operators clarified that the goal is to generate
a general call to attention.

It is clear that properties being proved and results of proofs
must always be interpreted in the context of the broader system
and its requirements and with a sense of the future versions
of the system. For example (also in the light of the results for
property 2) consider whether property 3 being true is a positive
result. If an alarm is issued, surely the button should remain
red. Looking more closely, this two-variable model shows that
BDI1A is the only critical variable in the TMT interactor. This
means that the color can only be red when BD1A is in an
error state, as demonstrated by the fact that Property 5 below
fails. Checking for models with a larger number of variables
indicates the same situation relating to yellow.

EF(monitTMT.BD1A.error = none 3)
& monitTMT.colour = Red)

A second requirement that was analyzed was whether the
help panel is always available to the operator. Which panel
is presented to the user at any given moment is modeled
by the display attribute in the main interactor. A total of
23 panels were considered, although only the content of the
Synoptics, Telemetry, Alarms and Alert panels were modeled
in detail. For the others, the display attribute models the fact
they are being displayed and the behavior of the system is
constrained accordingly. The help panel is modeled by the
value Help. The action used to access the panel is action
helpBtn. This requirement was checked through successive
instantiations of the universality pattern. This pattern captures
the requirement that some condition on the state of the system
always holds. Instantiating the pattern explored whether the
helpBtn action always implies that the Help panel is displayed
(display=Help). This was expressed in Property 6, which
verified true.

AG (effected(helpBtn) — display = Help) (6)

Care must be taken in interpreting what has been proved.
Property 6 expresses that in all states, if the helpBtn action
is executed, then the help panel will be displayed. This,
however, is not the same as saying that the help panel is always
reachable using the helpBtn action. In fact the helpBtn action
is not always available.

Two possibilities avoid this. The first is to check simply
whether the help panel is always reachable (Property 7) but
this says nothing about how it is reached. The other is to
check explicitly that the action is available in all states. With
this approach, Property 6 becomes Property 8.

AG(EX (display = Help)) 7
AG(EX(effected(helpBtn) (8)
& (effected(helpBtn) — display = Help)))

Both formulations of the property fail indicating that help is
not possible from the access panel (the initial state). Further
possibilities can be explored by removing the access panel
from consideration:

AG(display = SysAccess 9)
— EX (effected(helpBtn) & display = Help))

This property also fails. The property can be generalized to
all panels by introducing a variable ranging over the set of all
panels, generating 23 properties:

AG(display = IVAL1 (10)
— EX (effected(helpBtn) & display = Help))

A total of five panels that had no access to a help system
were found as a result: the lock panel, the sequence of panels
that the operator must go through during login, and the logout
panel.

Figure 7 presents the relevant excerpt (the attributes and
action for the main interactor) of the trace for the logout panel
(EndScr) case. The trace ends at state 5 with display=Final.
The fact that there is no next state points out the fact that the
helpBtn action is not possible in that panel. This issue was
discussed with domain (and, possibly, usability) experts who
came to the conclusion that in this particular case the situation
was sensible. This analysis demonstrates that it is possible to
explore all states of the system’s user interface systematically,
and identify deviations from expected (or expressed) behavior.

Further analysis considered the consistency of the user
interface, for example in the acknowledgment of panels, and
the reversibility of user actions. Patterns were instantiated as
described above.

VII. DISCUSSION

This analysis has shown how more complex display struc-
tures can be modeled and analyzed using the IVY tool.
In this particular case the model was developed from the
User Operation Manual, while interaction with the IAE team
was kept to a minimum. The model therefore represents the
information that is provided to operators as a guide rather
than necessarily reflecting the actual implementation. Proving
properties can therefore be understood as investigating the
quality of the provided information. The analysis made it

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 11

1 2 3 4 5
main.action enterBtn _executeBtn executebtn exitBtn
beepEnbld FALSE FALSE FALSE FALSE FALSE
beeping FALSE _FALSE FALSE FALSE FALSE
display SYSACCESS Selscr SEVaccess MainScr EndScr
monitALAR.BD1A.action setstate(MACkAlarm)
critical TRUE TRUE TRUE TRUE TRUE
error naone Lirm Lirm Lirm Lirmn
state Good MNACkAlarm MACKAlarm MACKAlarm MACKAlarm

Fig. 7. Trace illustrating unavailability of the help action in the Final panel (excerpt)

possible to identify instances where not enough information is
provided by the manual. We argue that this lack of appropriate
information is relevant on two accounts. On the one hand, it
might lead to automation surprises during the operation of the
system. The model that the operator is able to build from the
manual is incomplete. This is particularly relevant in systems
such as the one being analyzed where operating procedures are
followed, and little or no exploration of the systems outside
these procedures is carried out. On the other hand, if we
consider the operator manual as the de facto specification of
the user interface, then the fact that it is incomplete will have a
negative impact on the design and testing of updates or future
versions of the system.

The considered requirements were properties derived from
the IVY templates. The failure of properties, and also their
success, prompted discussion with operators about, for ex-
ample, the adequacy of alert and alarm conditions as well
as the availability of on-line help. While we make no claim
that the set of proved properties is exhaustive, the paper
has demonstrated the feasibility of proving sets of externally
defined requirements as discussed elsewhere in [23]. It also
demonstrates that a reference model can be constructed that
can be used to analyze future versions of the design.

An additional issue relevant to this exercise was the
scaleability of the approach. While the paper describes the
simpler versions of the models (considering very few vari-
ables), the complete study involved adding more detail to
the model. Building the larger model involved just adding
more variables and corresponding axioms and involved no
particular complexity. The model with four panels (Telemetry,
Synoptic, Alarms and Alerts), with 4 system variables (two
represented through aggregation and two through attributes),
plus all the navigation logic, amounts to 490 lines of MAL
(including comments). More relevantly, the model consists of
9 interactors, totaling 168 axioms (of which 4 are initialization
axioms, 52 are permissions, 64 are modal, and the remaining
48 are invariants) producing a state space of approximately 8¢5
reachable states. Although exact numbers will depend on the
concrete type of variable being added, the size of the model
grows roughly linearly with every new variable added (around
an extra 50 lines of MAL code, with 7 to 8 new permission
and modal axioms, and the number of interactors remaining
constant).

Verification times are dependent on a number of factors,
including the concrete property being checked and the ordering
of variables used. While experimenting with the two ap-
proaches to expressing coordination, we found that invariants

make the model checker consume more memory during the
verification, as well as taking more time to complete the
analysis. Nevertheless, without any particular attempt to set
up the verification process for speed, the properties in the
previous section were all verifiable in under five minutes. The
addition of new variables substantially increases verification
time, but by adjusting the model checker’s configuration it
was still possible to check larger models in reasonable time.
Even though adding more variables increases verification time
quickly, adding more variables does not necessarily add more
relevant information to the model. In a parallel piece of work
we are currently comparing model checking as a technology
with theorem proving in terms of time taken for the automated
analysis vs. time and difficulty for the human analyst to
perform the proof [23].

The model described in the paper together with a model of
another subsystem and a number of alternative and comple-
mentary variants were developed in the context of a masters
dissertation in software engineering over a period of 6 months.
A considerable part of this time involved study of the user
manual and of the alternative modeling approaches. A final
validation of the model by the first author, was done in
the space of a week. The student (Manuel Sousa) had a
background in formal methods, part of the MSc curriculum,
but no extensive experience of formal methods usage in a
system of the scale of this one. He had no background in
Human-Computer interaction. While formal methods use is
still not widespread and requires appropriate expertise, tools
such as the IVY workbench aim to ease the learning curve
for specific application domains. Results show that, with
reasonable knowledge of formal methods (such as obtained
at MSc level) and adequate guidance, an approach such as the
one described can be used to identify potential problems in the
user interface of a complex safety critical system. Additionally,
they show that the analysis can be carried out independently,
based on a description of the system under analysis and using
interaction with domain experts to validate their understanding
of the provided documentation (effectively hiding the technical
details of the approach), and still provide relevant results.

If a model is to be used as a basis for demonstrating
that requirements are true of a device, it is necessary to
demonstrate that the model is a faithful description of the
device. One way of doing this is to develop the device formally
by refining the model as supported by tools such as Event
B [43]. Alternatively a model could be generated from the
code of an existing device. This can be achieved by using
a set of rules to generate a model from code as discussed

12 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH YEAR

in [44], and is an approach we are exploring [45] (see also
[46]). In the approach taken here, confidence is grounded on
on a two fold argument. First, the fact that the user operation
manual can be considered as the de facto specification of
the system’s user interface; second, the systematic translation
of such documentation into the modeling notation, and the
comparison of the behavior exhibited by the model against the
expected behavior of the system. The possibility of validating
the model through simulation is currently under development.

VIII. CONCLUSIONS

Formal verification techniques have an important role in
reducing risk in safety-critical interactive systems. The model
checking based approaches used in this paper have the rigor,
and the tool support needed to perform exhaustive and au-
tomatic verification of key properties of system designs. The
approach also has potential to prove systematically that capa-
bilities are supported.

The paper has described how the IVY workbench was
applied to an existing aerospace system. Unlike previous work,
the model was based solely on a description of the system,
making the exercise closer to that of applying the approach
during development. The size and complexity of the system
also meant that a more structured approach to modeling the
different panels in the user interface, and (especially) their
coordination had to be developed.

Our experience has shown that the proposed approach
provides a practical and feasible way to systematically spec-
ify, and automatically verify, the user interfaces of complex
systems. In most of the cases, such verification activities
are currently restricted to inspections of documents and test
results analysis, where the interpretation of the results can
still be quite subjective and the test scenarios may not cover
all the possible combinations of actions that can take place.
The support of a computer-aided tool would greatly expedite
the accomplishment of this activity. The overall approach
described in this paper represents a significant step forward.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for helpful feedback on the paper.

REFERENCES

[1]1 D. MacKenzie, “Computer-related accidental death: an empirical explo-
ration,” Science and Public Policy, vol. 21, no. 4, pp. 233-248, 1994.

[2] J. Rushby, “Using model checking to help discover mode confusions and
other automation surprises,” Reliability Engineering and System Safety,
vol. 75, no. 2, pp. 167-177, February 2002.

[3] J. C. Campos and M. D. Harrison, “Systematic analysis of control
panel interfaces using formal tools,” in Interactive systems: Design,
Specification and Verification, DSVIS ’08, ser. Springer Lecture Notes
in Computer Science, N. Graham and P. Palanque, Eds., no. 5136.
Springer-Verlag, 2008, pp. 72-85.

[4] ——, “Interaction engineering using the IVY tool,” in ACM Symposium
on Engineering Interactive Computing Systems (EICS 2009). New
York, NY, USA: ACM, 2009, pp. 35-44.

[5] M. Harrison, J. Campos, and P. Masci, “Reusing models and properties
in the analysis of similar interactive devices,” Innovations in Systems
and Software Engineering, 2013.

[6] J. C. Campos, G. Doherty, and M. D. Harrison, “Analysing interactive
devices based on information resource constraints,” International Jour-
nal of Human-Computer Studies, vol. 72, pp. 284-297, 2014.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Sousa, J. Campos, M. Alves, and M. Harrison, “Formal verification
of safety-critical user interfaces: a space system case study,” in Formal
Verification and Modeling in Human Machine Systems: Papers from the
AAAI Spring Symposium. AAAI Press, 2014, pp. 62-67.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems, vol. 8,
no. 2, pp. 244-263, April 1986.

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements specification for process-control systems,” IEEE Trans.
Soft. Eng., vol. 20, no. 9, pp. 684-706, September 1994.

F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann,
“Validating requirements for fault tolerant systems using model check-
ing,” in Proc. 3rd Interntional Conference on Requirements Engineering,
Colorado Springs, Colorado, April 1998, pp. 4-13.

K. Havelund, M. Lowry, and J. Penix, “Formal analysis of a space craft
controller using SPIN,” IEEE Transactions on Software Engineering,
vol. 27, no. 8, pp. 749-765, 2001.

P. R. Gliick and G. J. Holzmann, “Using SPIN model checking for flight
software verification,” in Proc. IEEE Aerospace Conference, Big Sky,
Montana, March 2002, pp. 105-113.

M. C. B. Alves, D. Drusinsky, J. B. Michael, and M. Shing, “Formal
validation and verification of space flight software using statechart-
assertions and runtime execution monitoring,” in Proc. 6th IEEE In-
ternational Systems of Systems Conference, Albuquerque, N.M., June
2011, pp. 155-160.

J. C. Campos and M. D. Harrison, “Model checking interactor specifi-
cations,” Automated Software Engineering, vol. 8, no. 3-4, pp. 275-310,
August 2001.

M. C. Elder and J. C. Knight, “Specifying user interfaces for safety-
critical medical systems,” in 2nd Annual Intl. Symp. Medical Robotics
and Computer Assisted Surgery. Wiley-Liss, 1995, pp. 148-155.

P. Masci, R. Ruksenas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li,
P. Curzon, and H. Thimbleby, “On formalising interactive number entry
on infusion pumps,” Electronic Communications of the EASST, vol. 45:
Formal Methods for Interactive Systems 2011, 2011.

M. L. Bolton, E. Bass, and R. Siminiceanu, “Using formal verification
to evaluate human-automation interaction, a review,” IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans, no. 99,
pp. 1-16, 2013.

M. Feary, “Automatic detection of interaction vulnerabilities in an
executable specification,” in Proceedings of the 7th International Con-
ference on Engineering Psychology and Cognitive Ergonomics, ser.
EPCE’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 487-496.
M. L. Bolton, “Validating human-device interfaces with model checking
and temporal logic properties automatically generated from task analytic
models,” in Proc. 20th Behav. Represent. Model. Simul. Conf., 2011, pp.
130-137.

G. Liittgen and V. Carrefio, “Analyzing mode confusion via model
checking,” in Proc. Theor. Pract. Aspects SPIN Model Check, 1999,
pp. 120-135.

A. Joshi, S. P. Miller, and M. P. E. Heimdahl, “Mode confusion analysis
of a flight guidance system using formal methods,” in Proc. 22nd Digit.
Avionics Syst. Conf., Oct 2003, pp. 2.D.1-1-2.D.1-12.

P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, O. Sokolsky, and
H. Thimbleby, “Verification of interactive software for medical devices:
PCA infusion pumps and FDA regulation as an example,” in Proceedings
ACM Symposium Engineering Interactive Systems (EICS 2013). ACM
Press, 2013, pp. 81-90.

M. D. Harrison, P. Masci, J. Campos, and P. Curzon, “Demonstrating that
medical devices satisfy user related safety requirements,” in Proceedings
of Fourth Symposium on Foundations of Health Information Engineering
and Systems (FHIES) & Sixth Software Engineering in Healthcare
(SEHC) Workshop. Springer-Verlag, 2014, accepted.

B. Buth, “Analyzing mode confusion: An approach using FDR2,” in
Proc. 23rd Int. Conf. Comput. Safety, Rel., Security, 2004, pp. 101-114.
J. Bredereke and A. Lankenau, “Safety-relevant mode confusions —
modelling and reducing them,” Reliability Engineering & System Safety,
vol. 88, no. 3, pp. 229 — 245, 2005.

P. Palanque, R.Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in
6th IFIP Working Conference on Engineering for Human-Computer
Interaction (EHCI’95), Wyoming, U.S.A., August 1995.

F. Paterno and C. Santoro, “Preventing user errors by systematic analysis
of deviations from the system task model,” International Journal of
Human-Computer Studies, vol. 56, no. 2, pp. 225-245, February 2002.

CAMPOS et al.: FORMAL VERIFICATION OF A SPACE SYSTEM’S USER INTERFACE WITH THE IVY WORKBENCH 13

[28]

[29]

[30]

[31]

[32

[33]

[34]

[35]

[36]

[37]

[38
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Bolton, R. Siminiceanu, and E. Bass, “A systematic approach
to model checking human—automation interaction using task analytic
models,” IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 41, no. 5, 2011.

A. Blandford, R. Butterworth, and P. Curzon, “Models of interactive
systems: a case study on programmable user modelling,” International
Journal of Human-Computer Studies International Journal of Human-
Computer Studies, vol. 60, pp. 149-200, 2004.

B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI *04. ACM,
2004, pp. 455-462.

R. Ruksénas, J. Back, P. Curzon, and A. Blandford, “Verification-guided
modelling of salience and cognitive load,” Formal Aspects of Computing,
vol. 21, pp. 541-569, 2009.

J. Berstel, S. Reghizzi, G. Rouseel, and P. Pietro, “A scalable formal
method for the design and automatic checking of user interfaces,” ACM
Transactions on Software Engineering and Methodology, vol. 14, no. 2,
pp. 124-167, 2005.

M. Dwyer, G. Avrunin, and J. Corbett, “Property Specification Patterns
for Finite-State Verification,” in 2nd Workshop on Formal Methods in
Software Practice, M. Ardis, Ed., March 1998, pp. 7-15.

M. L. Bolton, N. Jiménez, M. M. van Paassen, and M. Trujillo, “Au-
tomatically generating specification properties from task models for the
formal verification of human-automation interaction,” IEEE Transactions
on Human-Machine Systems, vol. 44, no. 5, pp. 561-575, October 2014.
D. J. Duke and M. D. Harrison, “Abstract interaction objects,” Computer
Graphics Forum, vol. 12, no. 3, pp. 25-36, 1993.

D. Ramos-Hernandez, P. Fleming, and J. Bass, “A novel object-oriented
environment for distributed process control systems,” Control Engineer-
ing Practice, vol. 13, no. 2, pp. 213 — 230, 2005.

M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifi-
cations for finite-state verification,” in 21st International Conference on
Software Engineering, Los Angeles, California, May 1999, pp. 411-420.
J. Nielsen, Usability Engineering. Academic Press, Inc., 1993.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An Open Source
Tool for Symbolic Model Checking,” in Computer-Aided Verification
(CAV ’02), ser. Lecture Notes in Computer Science, K. G. Larsen and
E. Brinksma, Eds. Springer-Verlag, 2002, vol. 2404.

J. Campos and M. Harrison, “Modelling and analysing the interactive
behaviour of an infusion pump,” Electronic Communications of the
EASST, vol. 45: Formal Methods for Interactive Systems 2011, 2011.
M. Fowler, UML Distilled: a brief guide to the standard object modelling
language, 3rd ed., ser. The Addison-Wesley Object Technology Series.
Addison-Wesley, 2004.

M. A. Barbosa, L. S. Barbosa, and J. C. Campos, “A coordination model
for interactive components,” in Fundamentals of Software Engineering,
ser. Lecture Notes in Computer Science, vol. 5961. Springer-Verlag,
2010, pp. 416-430.

J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

G. J. Holzmann, “Trends in software verification,” in FME 2003: Formal
Methods, ser. Lecture Notes in Computer Science, K. Araki, S. Gnesi,
and D. Mandrioli, Eds. Springer Berlin Heidelberg, 2003, vol. 2805,
pp. 40-50.

J. C. Silva, J. C. Campos, and J. A. Saraiva, “GUI inspection from
source code analysis,” Electronic Communications of the EASST, vol.
33: Foundations and Techniques for Open Source Software Certification
2010), 2010.

A. Gimblett and H. Thimbleby, “User interface model discovery: To-
wards a generic approach,” in Proceedings of the 2nd ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS ’10).
New York, NY, USA: ACM, 2010, pp. 145-154.

José Creissac Campos is an Assistant Professor at
the Department of Informatics of the University of
Minho, and a senior researcher at HASLab/INESC
TEC, in Braga, Portugal. His research focuses on
the application of software engineering techniques
and tools to the modeling and analysis of inter-
active systems, aiming at bringing closer the soft-
ware engineering and human-computer interaction
(HCI) fields. Besides leading the development of
the IVY workbench, current and recent funded re-
search includes applying model-based testing to user

interfaces, prototyping ambience intelligence systems using virtual reality
simulations, and reverse engineering user interfaces.

)
h

Manuel Sousa holds an MSc. in Software Engineer-
ing from the University of Minho. He is currently a
User Experience consultant at WeDo Technologies.

Miriam C. Bergue Alves received the Doctoral de-
gree in applied computer science from the National
Institute for Space Research, Sdo José dos Campos,
Brazil, in 1999. She is a Government Researcher
with the Institute of Aeronautics and Space at the
Department of Aerospace Science and Technology,
Sdo José dos Campos, Brazil, and during 2010
and 2011 she was a Post-Doctoral Researcher with
the Department of Computer Science, Naval Post-
graduate School, Monterey, California. Her research
interests include modeling, design, reliability and

formal V&V of mission-critical systems. She has been developing space and
aeronautical software systems since 1995 and has leaded the team responsible
for flight software development of the Brazilian Satellite Launcher Program.

Michael D. Harrison is Emeritus Professor of Infor-
matics and senior research investigator at Newcastle
University and research fellow at QMUL (funded
to work on the analysis of medical devices). His
research focuses on the systematic analysis of the
functional behavior of interactive systems using a
combination of model checking and automated the-
orem proving techniques. These techniques have also
been used to model human aspects of ubiquitous
systems with the aim of enabling a larger scale
analysis of the properties of implicit actions that can

take place within a physical environment augmented by technology.

